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Production of the ρ(770)0 meson in pp and Pb-Pb collisions at
√

sNN = 2.76 TeV

S. Acharya et al.∗
(ALICE Collaboration)

(Received 24 May 2018; published 4 June 2019)

The production of the ρ(770)0 meson has been measured at midrapidity (|y| < 0.5) in pp and centrality
differential Pb-Pb collisions at

√
sNN = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The

particles have been reconstructed in the ρ(770)0 → π+π− decay channel in the transverse-momentum (pT )
range 0.5–11 GeV/c. A centrality-dependent suppression of the ratio of the integrated yields 2ρ(770)0/(π+ +
π−) is observed. The ratio decreases by ∼40% from pp to central Pb-Pb collisions. A study of the pT -differential
2ρ(770)0/(π+ + π−) ratio reveals that the suppression occurs at low transverse momenta, pT < 2 GeV/c. At
higher momentum, particle ratios measured in heavy-ion and pp collisions are consistent. The observed suppres-
sion is very similar to that previously measured for the K∗(892)0/K ratio and is consistent with EPOS3 predictions
that may imply that rescattering in the hadronic phase is a dominant mechanism for the observed suppression.

DOI: 10.1103/PhysRevC.99.064901

I. INTRODUCTION

Due to its very short lifetime (τ ∼ 1.3 fm/c) the ρ(770)0

meson is well suited to study various properties of the inter-
action dynamics in nucleon-nucleon and heavy-ion collisions
[1]. Previous measurements at the Large Electron–Positron
Collider (LEP) [2–5] and the Relativistiv Heavy Ion Collider
(RHIC) [6] showed that properties of ρ(770) mesons recon-
structed in the two-pion decay channel are modified in high-
energy hadronic interactions and e+e− annihilation. At low
momentum, reconstructed ρ(770)-meson peaks were found
to be significantly distorted from the p-wave Breit-Wigner
shape. The observed modifications in the ρ(770)0 → π+π−
channel were explained by rescattering of pions [π+π− →
ρ(770)0 → π+π−], Bose-Einstein correlations between pi-
ons from ρ(770)0 decays and pions in the surrounding matter,
and interference between differently produced π+π− final
states [7–9]. In general, the masses of ρ(770)0 mesons pro-
duced in hadronic interactions were measured to be system-
atically lower than the masses measured in e+e− annihila-
tion and a world-averaged difference of ∼10 MeV/c2 was
reported in Ref. [1]. It is apparent that these effects depend
on the charged pion density in the final state and should also
play an important role in proton-nucleus and nucleus-nucleus
collisions.

In heavy-ion collisions, properties of ρ(770)0 mesons can
additionally be affected by the hot and dense matter produced
in such collisions and by pseudoelastic or elastic interactions
in the late hadron gas stage occurring between chemical
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and kinetic freeze-out. In-medium modification of ρ(770)0

mesons was proposed as one of the signals for chiral symme-
try restoration [10–12]. Dilepton continuum measurements in
heavy-ion collisions at the Super Proton Synchrotron (SPS)
[13–20] and RHIC [21–23] indeed exhibit an excess of low-
pT dilepton pairs below the mass of the ρ(770)0 with respect
to a hadronic cocktail from all known sources. Results at the
SPS and RHIC are well reproduced by models, which assume
that ρ(770)0 mesons are regenerated via π+π− annihilation
throughout the hadron fireball lifetime and freeze-out later
than the other, longer-lived, hadrons. The low-mass dilep-
ton excess is thus identified as the thermal radiation signal
from the hadron gas phase, with broadening of the ρ(770)0-
meson spectral function from the scattering off baryons in the
dense hadronic medium and thermal radiation from the quark-
gluon plasma (QGP). In heavy-ion collisions, rescattering and
regeneration are expected to occur between chemical and
kinetic freeze-out, affecting the final-state yields and peak
shapes of short-lived resonances [24–26]. Rescattering of
daughter particles with the surrounding hadrons changes the
kinematics of the decay and some of the resonances can no
longer be reconstructed. However, the process of regeneration,
in which pseudoelastic scattering of hadrons results in the
production of resonances, tends to increase the yields. The cu-
mulative effect depends on the lifetime of the hadronic phase
and that of the resonance, as well as on particle cross sections
and medium density. Previous measurements at RHIC and
the LHC showed suppressed production of K∗(892)0 [27,28]
and �(1520) [29] but no effect for longer-lived resonances
such as the φ(1020) [27,30] and �(1385)± [29] in central
heavy-ion collisions. These results are qualitatively consis-
tent with expectations from rescattering and regeneration in
the hadronic phase. These measurements allowed for model-
dependent estimates of the hadronic phase lifetime of at least
2−4 fm/c in central collisions [27,29]. With the addition of
the very short-lived ρ(770)0 meson to this study, one can gain
additional insight into processes occurring in the late hadronic
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phase. A measurement of ρ(770)0 mesons at high pT also
contributes to the systematic study of parton energy loss via a
measurement of leading hadron suppression [31–33].

The measurement of ρ(770)0 → π+π− in heavy-ion col-
lisions was done only in peripheral Au-Au collisions at√

sNN = 200 GeV, where the ratio of integrated yields,
2ρ(770)0/(π+ + π−), was found to be consistent with that
in pp collisions and the reconstructed mass of the ρ(770)0

was shifted to lower values [6]. In this paper, production of
ρ(770)0 mesons is studied in the ρ(770)0 → π+π− decay
channel in pp and centrality differential Pb-Pb collisions at√

sNN = 2.76 TeV, including in the 0–20% most central Pb-
Pb collisions. Measurements in the hadronic decay channel
do not have enough sensitivity for a detailed study of the
reconstructed ρ(770)0-meson peak shape. As a result, particle
yields can be extracted only by using a certain peak model
with a limited number of parameters. At present, there are no
measurements for the ρ(770)0-meson yields or line shapes
available in the dilepton decay channels at LHC energies.
Besides, sensitivity to the in-medium spectral function of the
ρ(770)0 is expected to be different in the dilepton and the
hadronic decay channels. Measurements in the dilepton chan-
nels are sensitive to the whole evolution of the system since
leptons leave the fireball mostly unaffected. Measurements in
the hadronic channel, because of rescattering and regenera-
tion, should be more sensitive to ρ(770)0 mesons, which de-
cay late in the evolution of the hadron gas, where the medium
density is low and the mean free path of the decay pions is
large. Prediction of the ρ(770)0 peak shape in the hadronic
channel should rely on the models that describe the full
dynamics of heavy-ion collisions, including the late hadronic
phase. An example of such studies performed for K∗(892)0

can be found in Ref. [34]. Similar studies are not yet available
for ρ(770)0. In this work, the yields of ρ(770)0 mesons in
pp collisions in different pT bins were extracted by using a
p-wave relativistic Breit-Wigner function corrected for phase
space, a mass-dependent reconstruction efficiency, and pion
interference as described by the Söding parametrization [35].
The peak position was kept as a free parameter. Due to the lack
of detailed predictions for the ρ(770)0-meson peak shape as a
function of transverse momentum and centrality in heavy-ion
collisions, the same model was also used in Pb-Pb collisions.

The paper is organized as follows. Details of the data
analysis and the peak model are described in Sec. II. Sec-
tions III and IV present details on the normalization and
corrections used to obtain the invariant differential yields of
ρ(770)0 mesons in pp and Pb-Pb collisions. Results, including
ρ(770)0-meson yields, reconstructed masses, particle ratios,
and nuclear modification factors are presented in Sec. V
and compared to model predictions where available. For the
remainder of this paper, the ρ(770)0 will be denoted by
the symbol ρ0 and the half sum of the charged pion yields
(π+ + π−)/2 as π .

II. DATA ANALYSIS

A. Event and track selection

In this work, the production of ρ0 mesons is measured at
midrapidity (|y| < 0.5) in Pb-Pb and pp collisions at

√
sNN =

2.76 TeV using the data samples collected by the ALICE
experiment at the LHC during the 2010 and 2011 data taking
periods, respectively. The experimental setup and the event
selection criteria for these periods are described in detail
in previous ALICE publications on resonance production
[27,36].

The main detector subsystems used in this analysis are
the V0 detectors, the Inner Tracking System (ITS), the Time
Projection Chamber (TPC), and the Time-of-Flight (TOF)
detector [37]. The minimum bias trigger in pp collisions was
configured to obtain high efficiency for hadronic interactions
and required at least one hit in either of the V0 detectors
(V0A and V0C) or in the Silicon Pixel Detector (SPD), which
constitutes the two innermost layers of the ITS. In Pb-Pb
collisions, the minimum bias trigger required at least two out
of the following three conditions: (i) two hits in the outer
layer of the SPD, (ii) a signal in V0A, and (iii) a signal in
V0C [38]. The collision centrality is determined on the basis
of the multiplicity measured in the V0 detectors. Glauber-
model simulations are used to estimate the average number of
participants (〈Npart〉) and number of binary inelastic nucleon-
nucleon collisions (〈Ncoll〉) for each selected centrality interval
[39,40]. The number of analyzed minimum bias events is
equal to about 6 × 107 in pp collisions, corresponding to an
integrated luminosity of Lint = NMB/σMB = 1.1 nb−1, where
NMB and σMB = (55.4 ± 1.0) mb are the number and cross
section of pp collisions passing the minimum bias trigger
conditions [41]. In Pb-Pb collisions the number of analyzed
events is 17.5 × 106. The TPC is used to reconstruct charged
particle tracks with the requirement that the track has crossed
at least 70 read-out rows out of a maximum 159 [42]. Only
high-quality tracks reconstructed with the TPC and ITS are
selected for analysis; tracks are required to be matched to
the primary vertex within 2 cm in the longitudinal direction
and within 7σ in the transverse plane, where σ is (0.0015 +
0.0050/p1.1

T ) cm for pp and (0.0026 + 0.0050/p1.01
T ) cm for

Pb-Pb [27], with pT in units of GeV/c. The primary vertex is
required to be within ±10 cm of the detector center along the
beam axis. Tracks are required to have a minimum transverse
momentum of 150 MeV/c in pp collisions and 400 MeV/c in
Pb-Pb collisions and a pseudorapidity of |η| < 0.8. The higher
pT cut in Pb-Pb collisions was needed to improve the signal-
to-background ratio at low and intermediate momentum. To
be identified as charged pions, reconstructed tracks in pp
collisions need to have a specific ionization energy loss dE/dx
measured in the TPC within 2σTPC of the expected value. For
Pb-Pb collisions, particles with a signal in the TOF subsystem
are identified by requiring the time-of-flight and dE/dx to be
within 2σTOF and 5σTPC of the expected values, respectively.
Particles without a signal in the TOF are identified in the same
way as in pp collisions. The σTPC is about 5% for isolated
tracks and 6.5% for central Pb-Pb collisions. The typical value
of σTOF is about 80 ps.

B. Yield extraction

Yields of ρ0 mesons for each pT and centrality inter-
val are measured by calculating invariant mass distributions
of oppositely charged identified pions (π+π− pairs). The
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FIG. 1. Invariant mass distributions for π+π− pairs after subtraction of the like-sign background. Plots on the left and right are for the
low- and high-transverse-momentum intervals, respectively. Examples are shown for minimum bias pp, 0–20%, and 60–80% central Pb-Pb
collisions at

√
sNN = 2.76 TeV. Solid red curves represent fits to the function described in the text. Colored dashed curves represent different

components of the fit function, which includes a smooth remaining background as well as contributions from K0
S , ρ0, ω(782), K∗(892)0,

f0(980), and f2(1270). See text for details.

combinatorial background is estimated using the like-sign
method: This background is 2

√
N++N−−, where N++ and

N−− are the numbers of π+π+ and π−π− pairs within
the same event, respectively. In addition to the uncorrelated
combinatorial background, the like-sign method also partly
subtracts the minijet [43] contribution in the background; this
is the main reason why it is preferred to the mixed-event
approach in this analysis. However, production of like-sign
and opposite-sign pairs in jets differ and a perfect background
description is not expected. Examples of invariant mass distri-
butions after subtraction of the like-sign background in mini-
mum bias pp, 0–20%, and 60–80% central Pb-Pb collisions at√

sNN = 2.76 TeV are shown in Fig. 1. The analysis has also
been performed using an event-mixing technique to compute
the combinatorial background. The ρ0 yields obtained using
event mixing are consistent with those obtained when a like-
sign background is subtracted.

After subtraction of the like-sign background, the resulting
distributions contain the remaining correlated background
from minijets and pairs from hadronic decays. The latter has
a very complex shape, which depends on π+π− pair-invariant
mass and transverse momentum. The main contributions
to the correlated background are as follows: (i) ω(782) →
π0π+π−, ω(782) → π+π−, f0(980) → π+π−, f2(1270) →
π+π−, and K0

S → π+π−; (ii) K∗(892)0 → K±π∓, where the
charged kaon in the final state is reconstructed as a pion;
and (iii) η → π0π+π−, η′(958)→ ηπ+π−, and φ(1020) →
K−K+ decays. The first two contributions overlap with the

wide ρ0-meson peak and need to be correctly accounted
for as described in Sec. II B 2. The last contribution can be
neglected if the analysis is limited to a mass range of Mπ+π− >

0.4 GeV/c2. Contributions from misreconstructed decays of
heavier hadrons do not result in peaked structures and were
estimated to be negligible.

In order to extract the ρ0 yields, the invariant mass distri-
butions after subtraction of the combinatorial like-sign back-
ground are fitted with a function that accounts for all known
correlated contributions to the π+π− mass distribution. In
this section, we discuss the assumptions used to approximate
different components of the background.

1. Background from minijets

The invariant mass distribution of π+π− pairs has been
extensively studied using full event Monte Carlo simula-
tions of the experimental setup. PYTHIA 6 [44] and HI-
JING [45] are used as event generators for pp and Pb-
Pb collisions, respectively. The produced particles and their
decay products are propagated through the ALICE detec-
tor using GEANT 3 [46]. Invariant mass distributions for
pairs of charged pions are accumulated after application of
the same event, track, and particle identification cuts as in
data. The study shows that after subtraction of the like-
sign background and known contributions from K0

S , η, ρ0,
ω(782), K∗(892)0, η′(958), f0(980), φ(1020), and f2(1270),
the remaining background has a smooth dependence on mass.
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FIG. 2. Left: Measured ω/π ratio as a function of transverse momentum in pp collisions at
√

s = 62 and 200 GeV [51,52]. The smooth
curve shows the estimated ω/π ratio in pp collisions at

√
s = 2.76 TeV. Right: Estimated ω/π ratio as a function of the transverse momentum

for 0–20% central Pb-Pb collisions at
√

sNN = 2.76 TeV. The shaded regions in the two panels correspond to a ±20% variation of the ratio,
see text for details.

Based on a dedicated study of PYTHIA simulations, this
remaining contribution is due to minijets. As described in
Refs. [3–5], the remaining background is parameterized with
the following function: FBG(Mππ ) = (Mππ − 2mπ )nexp(A +
BMππ + CM2

ππ ), where mπ is the mass of the charged pion
and n, A, B, and C are fit parameters. It has been checked that
this function describes the remaining background in Monte
Carlo events for all analyzed pT and centrality intervals. A
lower-order polynomial in the exponential would not provide
enough flexibility for the function to describe the remaining
background in a wide mass range. A higher-order polynomial,
while not improving the fit quality, could result in unjustified
fluctuations of the background function. When a polynomial
is tried as a fit function, it needs larger number of fit pa-
rameters to describe the background in the same mass range.
Parameters of the background function are not constrained in
fits to data.

2. Contributions from K0
S , ω(782), and K∗(892)0

The production of K∗(892)0 mesons in pp and Pb-Pb
collisions at

√
sNN = 2.76 TeV was measured in Refs. [27,36].

The yield of K0
S mesons in pp collisions is estimated as (K+ +

K−)/2 using the charged kaon measurements published in
Ref. [47]. For Pb-Pb collisions, the production of K0

S mesons
was measured in Ref. [48]. The production of ω(782) mesons
has not been measured in the collision systems under study.
However, it has been estimated using procedures similar to
those previously used in calculations of hadronic cocktails
in the dilepton continuum or direct photon measurements
[21,23,49,50].

Contributions from K0
S , ω(782), and K∗(892)0 are approxi-

mated with templates extracted from Monte Carlo simulations
and normalized to known yields. The template shapes are
simulated by applying the same analysis cuts as in data and re-
constructing the K0

S , ω(782), and K∗(892)0 mass shapes in the
π+π− channel separately for each pT and centrality interval
used in the ρ0 analysis. Then the templates are normalized to
the independently measured K0

S , ω(782), and K∗(892)0 yields
in the corresponding intervals and corrected for the branching

ratios and the acceptance times reconstruction efficiency val-
ues (A × εrec, hereafter “efficiency”) estimated in simulations.

Measurements of the ω(782)-meson pT spectrum are
rare. A summary of the worldwide measurements of ω(782)
mesons in pp collisions at different energies is given in the
left panel of Fig. 2 [51,52]. The data are presented in terms
of the ω/π ratio. Most of the data come from PHENIX
measurements at

√
s = 200 GeV. It is important to note that

the ω/π ratio does not depend on the collision energy within
uncertainties in the range

√
s = 62−200 GeV. In this analysis,

it is assumed that the ω/π ratio stays constant in the range√
s = 200−2760 GeV. This assumption is supported by other

light-flavor meson ratios like K/π , η/π , and φ/π , which do
not show any significant energy dependence in pp collisions in
the range

√
s = 200−7000 GeV [47,53–57]. This assumption

is also confirmed with PYTHIA 6 [44] and PYTHIA 8 [58]
calculations, which predict the ω/π ratios in pp collisions
at

√
s = 200 GeV and

√
s = 2.76 TeV to be consistent within

10%.
For pp collisions at

√
s = 2.76 TeV, the shape of the ω(782)

pT spectrum is approximated using the fit to π spectrum
[47] with a mT -scaling correction [59]. The function, which
is fit to the transverse-momentum distribution of pions, is
transformed into a production spectrum of ω(782) in two
steps. First, pπ

T of charged pions in the function is replaced

with
√

m2
ω − m2

π + pω
T

2, where mω and pω
T are the mass and

transverse momentum of the ω meson. Second, the resulting
function is scaled to the ω/π ratio measured at high transverse
momentum. Based on the left panel of Fig. 2, the ratio is
normalized to ω/π = 0.81, which is in agreement with the
value of ω/π = 0.81 ± 0.02 ± 0.09 measured by PHENIX in
pp collisions at

√
s = 200 GeV [51]. The ratio of the derived

ω(782) spectrum to the measured π spectrum is shown with a
curve in the same figure. The shaded region corresponds to a
±20% variation of the ω/π ratio, which is used in Sec. V to
estimate the systematic uncertainty for measurement of the ρ0

yields.
For Pb-Pb collisions one has to additionally account for

radial flow that modifies the shapes of particle production
spectra at low and intermediate transverse momenta. The
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strength of the radial flow for each centrality interval is
estimated by simultaneous fits of the charged pion, kaon,
and (anti)proton production spectra [60,61] with Tsallis blast-
wave (TBW) functions [62]. The nonextensivity parameter q
is set to be equal for mesons and baryons, thus keeping all
fit parameters the same for all particles, except for particle
masses and normalizations. Pions, kaons, and protons are fit
in similar pT ranges, from the lowest measured momentum
(0.1 GeV/c, 0.2 GeV/c, and 0.3 GeV/c for pions, kaons, and
protons, respectively) up to 3.5 GeV/c. In this range, the fits
reproduce the measured results within the experimental uncer-
tainties. Fits performed in different pT ranges, 0.1–2 GeV/c
and 0.5–3.5 GeV/c, produce very similar results and therefore
lead to negligible systematic ucncertainties in this procedure.
For all fits, it has been checked that the total integrated yields
extracted from the fit curves are consistent with the published
values within uncertainties. The expected ω(782) pT spectrum
is parameterized with a TBW function with the ω(782) mass
[1] and all other fit parameters set to the values from the
combined fit. This function is normalized so that the ratio of
the integrated yields ω/π = 0.1. This value of the ratio was
previously measured with high precision in pp and e+e− colli-
sions [3,63]. Measurements of the ratio in heavy-ion collisions
are available only from STAR in Au-Au collisions at

√
sNN =

200 GeV: ω/π = 0.086 ± 0.019 [21]. This measurement is in
good agreement with pp results. This is similar to the K/π

and p/π ratios, which vary only within ∼20% from pp to
central heavy-ion collisions for

√
sNN = 200−2760 GeV [60].

The resulting ω/π ratio is shown in the right panel of Fig. 2
with a solid red curve. The shaded region around the curve
corresponds to a ±20% variation of the ratio, which is used to
estimate the systematic uncertainty (see Sec. V). Up to pT =
3.5 GeV/c the ratio is determined from TBW fits as described
above. It is important to note that two alternative approaches
are also used for estimation of the ω(782) production spectrum
in this pT range. In these approaches, only the production
spectra for charged pions and kaons or only the spectra for
charged kaons and (anti)protons are used to fix parameters
of the TBW function. Both approaches result in ω/π ratios
which are consistent with the default value within the shaded
region.

At very high transverse momentum it is assumed that the
ω/π ratio returns to the same values measured in pp collisions
(a mT -scaled π± spectrum), similar to what is observed for
other ratios like K/π and p/π [47]. This assumption is
also confirmed by PHENIX in Au-Au collisions at

√
sNN =

200 GeV, where the ω/π ratio was measured at high pT to be
ω/π = 0.82 ± 0.09 ± 0.06 [51], very close to the value in pp
collisions. The exact pT value at which the influence of radial
flow becomes negligible for ω(782) mesons is not known. It is
expected to be mass dependent and sit in between pT values
where the K/π (point A) and p/π (point B) ratios measured in
Pb-Pb collisions merge with those measured in pp collisions.
The dashed lines show how the ω/π ratio would look in the
transition region if the merging point to the mT -scaled curve
was the same as for K/π or p/π . For the nominal ω/π ratio
we choose the average of the ω/π ratios obtained for these
two extreme cases, shown with a solid line. The merging point
for ω(782) is varied between the merging points for K/π and

p/π for a study of systematic uncertainties. One can see that
the two extreme cases for the transition are within the shaded
region.

3. Contributions from ρ0, f0(980), and f2(1270)

Contributions from ρ0, f0(980), and f2(1270) mesons are
described analytically. The shapes of these resonances are
described with a relativistic Breit-Wigner function (rBW)
[64,65]:

rBW(Mππ ) = AMππM0�(Mππ )(
M2

0 − M2
ππ

)2 + M2
0�2(Mππ )

, (1)

where M0 is the mass of the resonance under study and A
is a normalization constant. For wide resonances one should
account for the dependence of the resonance width on mass:

�(Mππ ) =
(

M2
ππ − 4m2

π

M2
0 − 4m2

π

)(2J+1)/2

× �0 × M0/Mππ , (2)

where �0 is the width of the resonance, mπ is the charged
pion mass, and J is equal to 0 for f0(980), 1 for ρ0, and 2 for
f2(1270). The masses of ρ0, f0(980), and f2(1270) are kept
as free parameters. As has been pointed out, measurements of
ρ0 mesons in the hadronic decay channel do not have enough
sensitivity for a detailed study of the resonance peak shape. As
a result, the width of the ρ0 is fixed to 149.3 MeV/c2, which
corresponds to the resonance width in vacuum 147.8 ± 0.9
MeV/c2 [1] convoluted with the detector mass resolution
extracted from simulations. Due to the large width of the
ρ0 peak, its smearing due to the mass resolution results in
a negligible change in the extracted yields. The width of the
f0(980) is limited to be within 40–100 MeV/c2 and the width
of the f2(1270) is fixed to 186.7 MeV/c2 [1].

Since resonances can be produced through ππ scattering
in the hadronic phase, the reconstructed peaks can be affected
by the phase space available for pions. It was suggested in
Refs. [6,66–68] to use a Boltzmann factor to account for the
phase-space correction,

PS(Mππ ) = Mππ√
M2

ππ + p2
T

× exp
(−

√
M2

ππ + p2
T /T

)
, (3)

where T is the kinetic freeze-out temperature, set to 160 MeV
in pp and 120 MeV in heavy-ion collisions [60,69].

The ρ0, f0(980), and f2(1270) resonances have quite large
widths. Efficiencies for these mesons can change with par-
ticle masses at a given transverse momentum, resulting in
distortion of the reconstructed peak shapes. The effect is most
prominent at low pT , where the efficiency A × εrec rapidly
increases with mass and transverse momentum. Therefore,
the peak shapes for ρ0, f0(980), and f2(1270) are corrected
for the dependence of A × εrec on the particle masses. The
corresponding corrections are evaluated from Monte Carlo
simulations.

Previous measurements showed that ρ0-meson peaks
reconstructed in the π+π− decay channel are distorted:
the central value (mass) was shifted to lower values by
tens of MeV/c2. This phenomenon was studied in de-
tail at LEP [2–5] and was also observed at RHIC [6].
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The modification of the reconstructed ρ0-meson shape was
explained by Bose-Einstein correlations between identical
pions in the final state (including decay pions from short-lived
ρ0 mesons) and interference between final states which are
either two directly produced pions or two pions from ρ0

decays. Both effects result in a similar modification of the
peak shape, which at LEP was accounted for by including an
interference term parameterized by Söding [35] in the peak
model

fi(Mππ ) = C

[
M2

0 − M2
ππ

Mππ�(Mππ )

]
fs(Mππ ), (4)

where fs(Mππ ) is the default peak shape as described above,
fi(Mππ ) is the interference term, and C is a free parameter that
determines the strength of the interference. Using this term
in the peak model enhances the left side of the reconstructed
peak and suppresses the right side of the peak. If one fits
the distorted peak with the regular rBW function, then the
reconstructed mass is shifted toward lower values and the fit
quality is poor due to the distorted tails. We note that the
RHIC [64] and LHC [65] measurements of photoproduction
of ρ0 mesons in ultraperipheral heavy-ion collisions were
performed with this Söding correction included in the peak
model and the reconstructed parameters of ρ0 were found to
be in agreement with vacuum values. In this study, the extrac-
tion of ρ0-meson yields is performed using peak models with
and without the Söding interference term. For the hadronic
interactions the Söding correction is just empirical. The peak
model with the term somewhat better describes the measured
peaks at low momentum and leads to reconstructed meson
masses closer to the accepted vacuum value [1] and is used
by default. The peak model without the interference term is
used in the evaluation of the systematic uncertainties.

In heavy-ion collisions, the shape of the ρ0-meson peak can
also be distorted due to chiral symmetry restoration [10–12]
in the earlier stages of the collisions and due to rescattering,
regeneration, correlations, and interference in the later stages
[24–26]. The relative strengths of these effects are not well
understood and there are no detailed predictions for the pT

and centrality dependence of ρ0 peak modifications that take
all of them into account. In this analysis, we therefore limit
our peak model to the effects discussed in the preceding
paragraphs.

In summary, the default ρ0 peak model used in this anal-
ysis is the product of a relativistic Breit-Wigner function
(with a mass-dependent width), a phase-space factor, a mass-
dependent efficiency correction, and a Söding interference
term. The same peak model, only without the interference
term, is used to fit the f0(980) and f2(1270) peaks.

4. Fit results

The fitting function has 11 free parameters: the masses
and yields of ρ0, f0(980) and f2(1270), the strength of the
interference term for ρ0, and four parameters for the smooth
background function FBG(Mππ ). The width of f0(980) is
limited to be within 40–100 MeV/c2 [1]. Fits are performed in
the mass range 0.45 < Mππ < 1.7 GeV/c2. The lower limit is
selected to include a contribution from K0

S in the fit but reject

contributions from η, η′(958), and φ(1020) mesons, which are
difficult to constrain. The upper limit is set to 1.7 GeV/c2 to
account for tails from the ρ0 and f2(1270) contributions. Most
of the contributions to the fitting function are well separated
in mass, thus reducing the uncertainties of the fit parameters.

Examples of the fits in minimum bias pp and 0–20% and
60–80% central Pb-Pb collisions are shown in Fig. 1 for two
different pT intervals. The χ2/ndof values for the fits are 1.1
(0.9), 0.8 (1.3), and 1.1 (1.2) for pp, 0–20%, and 60–80% Pb-
Pb collisions at low (high) transverse momenta, respectively.
The contributions of the K0

S , ω(782), and K∗(892)0 are fixed to
the measured particle yields corrected for branching ratios and
efficiencies. The smooth remaining background is described
with the function FBG(Mππ ). The remaining contributions
from decays of ρ0, f0(980), and f2(1270) mesons are de-
scribed analytically using the peak model from Sec. II B 3.
All fits in different pT and centrality intervals result in very
reasonable fit probabilities with χ2/ndof values close to unity.
The yields of ρ0 mesons are estimated by integrating the ρ0

fitting function in the mass range from 2mπ to 1.7 GeV/c2. The
signal-to-background ratios for ρ0 gradually increase with
transverse momentum in a range from 10−4 (3 × 10−3) to
10−2 (7 × 10−2) for 0–20% (60–80%) Pb-Pb collisions and
from 2 × 10−2 to 2 × 10−1 for pp collisions.

III. SIMULATIONS

Monte Carlo simulations are used to evaluate the efficien-
cies for ρ0, K0

S , ω(782), and K∗(892)0 mesons in the π+π−
channel as well as to estimate the mass-dependent efficiency
corrections for ρ0, f0(980), and f2(1270). PYTHIA 6 [44]
and PHOJET [70,71] were used as event generators for pp
collisions, while HIJING [45] was used to simulate Pb-Pb
collisions. Signals from the f0(980) and f2(1270) resonances,
which are not generated by these codes, were injected into the
simulations. The produced particles and their decay products
were traced through the detector materials using GEANT 3
[46]. For each analyzed pT and centrality interval, the effi-
ciencies A × εrec are calculated as the ratio Nrec/Ngen, where
Nrec is the number of reconstructed particles in the π+π−
channel after all event and track selection cuts and Ngen is
the number of generated mesons within |y| < 0.5 decaying in
the ρ0, K0

S , ω(782), f0(980), f2(1270) → π+π−, ω(782) →
π0π+π−, and K∗(892)0 → K±π∓ channels. In general, the
efficiency depends on the shape of the generated particle
pT spectrum. Therefore, the pT spectra of the generated K0

S ,
ω(782), and K∗(892)0 mesons are reweighted to their known
or expected shapes. The efficiencies for ρ0 are tuned itera-
tively so that the shapes of the generated pT spectra approach
the measured shapes.

Examples of efficiencies evaluated for ρ0 mesons in pp
and the most central Pb-Pb collisions as a function of trans-
verse momentum are shown in Fig. 3. The difference in the
efficiencies between pp and Pb-Pb collisions is expected and
is due to the different minimum pT cuts and particle identifi-
cation strategies for daughter particles. In Pb-Pb collisions,
the efficiencies for ρ0 show mild (within 5%) dependence
on collision centrality with a decreasing trend toward more
central collisions.
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2.76 TeV.

IV. YIELD CORRECTIONS

In pp collisions the differential transverse-momentum
spectrum is

d2N

d pT dy
= 1

NMB

εtrig

εvrtx

1

A × εrec

1

BR

Nρ0→ππ

�y�pT
, (5)

where Nρ0→ππ is the ρ0-meson yield measured in a given
rapidity (�y) and transverse-momentum (�pT ) interval, NMB

is the number of analyzed minimum bias events, BR and
A × εrec are the resonance branching ratio and efficiency in
the π+π− decay channel, εtrig = (88.1+5.9

−3.5)% is a trigger ef-
ficiency correction to obtain resonance yields per inelastic pp
collision [41], and εvrtx = 91 ± 2% is a vertex cut efficiency
correction that accounts for the fraction of ρ0 mesons lost
after imposing the z-vertex cut of 10 cm at the stage of event
selection. For the trigger configuration used in this analysis,
the number of ρ0 mesons in nontriggered events is negligible
and no corresponding correction is needed.

For Pb-Pb collisions the trigger and vertex cut efficiency
corrections, εtrig and εvrtx, are set to unity. The number of
minimum bias events NMB is replaced with the number of
events analyzed in a given centrality interval.

V. SYSTEMATIC UNCERTAINTIES

The total systematic uncertainty is dominated by yield
extraction, particle identification, and track selection cuts as
well as by the global tracking efficiency uncertainties as
summarized in Table I.

The yield extraction uncertainty is estimated by varying the
ρ0-meson peak shape, smooth background function, fitting
range, temperature parameter in the phase-space correction,
and the relative contributions of K0

S , ω(782), and K∗(892)0

in the hadronic cocktail. Two peak models, with or without
the interference term, are used to extract the ρ0-meson pa-
rameters from the invariant mass distributions. Fits without
the interference term result in lower but still acceptable fit
probabilities as well as in systematically lower yields and

TABLE I. Relative systematic uncertainties (in %) for ρ0-meson
yields in pp and Pb-Pb collisions at

√
sNN = 2.76 TeV. The single

valued uncertainties are pT and centrality independent. Values given
in ranges correspond to minimum and maximum uncertainties.

Source pp Pb-Pb

Yield extraction 4–13 7–13
Particle identification 4 5
Tracking and analysis cuts 8–9 10
Total 10–16 14–17

smaller reconstructed masses. This is the only source of
asymmetric systematic uncertainties and it dominates the
total uncertainties at low momentum. The difference in the
extracted yields is ∼10% at low momentum and decreases to
∼1% for 4−6 GeV/c. For the smooth background function, a
fifth-order polynomial has been used instead of the FBG(Mππ )
function described in Sec. II B 1. This polynomial has a larger
number of fit parameters and could provide an alternative
description of the remaining background. The fitting range
cannot be varied at its lower edge: It is difficult to control
the contributions from η, η′(958), and φ(1020) at invariant
mass below 0.45 GeV/c2, but it is necessary to account for K0

S
decays resulting in a peak at 0.5 GeV/c2. Instead, the upper
limit of the fitting range is varied from 1.7 to 1.1 GeV/c2,
thus excluding the f2(1270) from the fit and allowing the
background function to be more flexible in the narrower
fitting range. The temperature parameter in the phase-space
correction is varied by ±25 MeV to cover the variation of
the kinetic freeze-out temperature with multiplicity [60,69].
The normalizations of the K0

S , ω(782), and K∗(892)0 templates
in the cocktail are independently increased and decreased
by the uncertainties of the particle yields and efficiencies
estimated to be ±30%, ±20%, and ±25%, respectively. The
larger variation for K0

S is due to the statistical uncertainties
of the efficiency, which is only 0.5% on average. This results
in negligible variation of the extracted ρ0-meson parameters.
The large variation for ω(782) is dominated by uncertainties in
the determination of the ω/π ratio as described in Sec. II B 2.
The total yield extraction uncertainty varies from 13(10–13)%
at low momentum to 4(8)% at intermediate momentum and
to 6(7–8)% at high transverse momentum in pp (Pb-Pb)
collisions, with rather weak centrality dependence.

The particle identification uncertainty is estimated by vary-
ing the selection criteria used in analysis. Then in pp colli-
sions the meson yields obtained with (−1.5σTPC, 1.5σTPC) and
(−2.0σTPC, 1.0σTPC) particle identification cuts in the TPC are
compared to the default value obtained with a 2σTPC cut. In
Pb-Pb collisions, the particle identification cuts are varied to
be (−1.5σTPC, 1.5σTPC) and (−2.0σTPC, 1.0σTPC) for tracks
that are not matched to the TOF. For tracks with a signal
in the TOF, the alternative particle identification cuts are
(−1.5σTOF, 1.5σTOF) and (−2.0σTOF, 1.0σTOF). In the latter
case a variation of the applied 5σTPC cut gives a negligible
contribution to the systematic uncertainty. As in the case of pp
collisions, the meson yields obtained with the varied particle
identification cuts are compared to the default value. The
resulting uncertainty for the yields is estimated to be 4% in
pp and 5% in Pb-Pb collisions with no centrality dependence.
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Pb-Pb collisions at
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uncertainties are shown as bars and boxes, respectively. The width
of the boxes is varied for visibility. The dashed lines show the ρ0

masses as given in Ref. [1].

The global tracking efficiency uncertainty is defined by
mismatches between the measured data and Monte Carlo in
the probabilities for TPC tracks to be matched to signals in
the ITS [27,36]. The uncertainty for single tracks is doubled
to account for ρ0 mesons, which are reconstructed in a decay
channel with two charged tracks in the final state. The global
tracking uncertainty partially cancels out when ratios of inte-
grated yields, ρ/π , are calculated. The track selection cuts are
varied to estimate the corresponding changes in the fully cor-
rected yields. It is found that the results are sensitive to varia-
tion of the number of crossed rows in the TPC and the primary
vertex proximity cuts in the transverse plane for reconstructed
tracks. The combined systematic uncertainty for the differ-
ential yields is estimated to be 8–9(10)% in pp (Pb-Pb)
collisions, with practically no pT or centrality dependence.

Uncertainties in the determination of centrality percentiles
result in normalization uncertainties for the measured ρ0

yields. The corresponding uncertainties are estimated to be
0.6%, 1.5%, 2.95%, and 5.85% in 0–20%, 20–40%, 40–
60%, and 60–80% central Pb-Pb collisions using the numbers
reported in Ref. [60].

The total systematic uncertainties are calculated as the sum
in quadrature of the different contributions and are summa-
rized in Table I.

VI. RESULTS AND DISCUSSION

A. Particle masses

The dependence of the reconstructed ρ0-meson mass on
transverse momentum in minimum bias pp, 0–20%, and 60–
80% Pb-Pb collisions at

√
sNN = 2.76 TeV is shown in Fig. 4.

The measurements for the 20–40% and 40–60% centrality
intervals are not shown here but are similar to the plotted
results; these are available in the High Energy Physics Data
Repository. The systematic uncertainties, shown with boxes,
account for mass variations from all sources considered in
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FIG. 5. Differential yields of ρ0 as a function of transverse
momentum in inelastic pp collisions at

√
s = 2.76 TeV. The sta-

tistical and systematic uncertainties are shown as bars and boxes,
respectively. The results are compared with model calculations from
PYTHIA6 (Perugia 2011 tune) [74], PYTHIA 8.14 (Monash 2013
tune) [58], and PHOJET [70,71]. The lower panel shows the model-
to-data ratios and the gray shaded region represents the sum in
quadrature of the systematic and statistical uncertainties associated
with the data.

Sec. V. The asymmetric part of the systematic uncertainties
is from the systematically smaller masses extracted for ρ0

mesons using the peak model without the interference term.
Two dashed horizontal lines in Fig. 4 correspond to the ρ0

masses quoted in Ref. [1] for mesons produced in e+e− an-
nihilation and hadronic interactions. The difference between
the values of the masses can be explained by pion scattering
as described in Ref. [72]. For pp collisions, the reconstructed
mass is consistent with the hadroproduced ρ0-meson mass
within uncertainties. In Pb-Pb collisions, central values of
the reconstructed masses are lower by up to 30 MeV/c2 with
no strong dependence on collision centrality. However, rather
large uncertainties prevent any strong conclusions on the mass
shift. The STAR data (not shown) also show a tendency
for lower masses for ρ0 mesons in 40–80% central Au-Au
collisions at

√
sNN = 200 GeV [6].

B. Transverse-momentum spectra

The differential yields measured for ρ0 mesons as a func-
tion of transverse momentum in inelastic pp and centrality
differential Pb-Pb collisions at

√
sNN = 2.76 TeV are shown

in Figs. 5 and 6, respectively. The measurements span a wide
pT range from 0.5 to 11 GeV/c.
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TABLE II. Integrated yields (dN/dy), mean transverse momenta (〈pT 〉), and ρ0/π ratios in pp and centrality differential Pb-Pb collisions
at

√
sNN = 2.76 TeV. For each value the first uncertainty is statistical. For yields the second uncertainty is systematic, but it does not include

the normalization uncertainty associated with the centrality selection in Pb-Pb collisions. The normalization uncertainty in Pb-Pb is reported
as the third uncertainty for the yields. For ρ/π and 〈pT 〉 the second uncertainty is the total systematic uncertainty. The asymmetric part of the
systematic uncertainties comes from the use of the Söding interference term in the fitting function and is correlated between collision systems.

Collision system dN/dy 〈pT 〉 (GeV/c) ρ0/π

Inelastic pp 0.235 ± 0.003+0.032
−0.041 0.901 ± 0.006+0.039

−0.045 0.126 ± 0.002+0.015
−0.020

Pb-Pb, 0–20% 42.90 ± 2.59+6.04
−6.91 ± 0.26 1.191 ± 0.031+0.095

−0.096 0.076 ± 0.005+0.009
−0.011

Pb-Pb, 20–40% 21.01 ± 0.91+2.90
−3.40 ± 0.32 1.162 ± 0.023+0.064

−0.067 0.083 ± 0.004+0.009
−0.012

Pb-Pb, 40–60% 8.67 ± 0.45+1.26
−1.44 ± 0.26 1.143 ± 0.028+0.064

−0.067 0.089 ± 0.005+0.011
−0.013

Pb-Pb, 60–80% 2.74 ± 0.13+0.41
−0.46 ± 0.16 1.083 ± 0.024+0.070

−0.072 0.101 ± 0.005+0.012
−0.015

In Fig. 5, the pT spectrum in pp collisions is compared to
model calculations from PYTHIA 8.14 (Monash 2013 tune)
[58,73], PHOJET [70,71], and PYTHIA 6 (Perugia 2011 tune)
[74]. PYTHIA and PHOJET are event generators which simu-
late hadronization using the Lund String fragmentation model
[75]. The lower panel of the figure shows the model-to-data
ratios as lines and the total uncertainty of the ρ0 measurement
with a grey band. In general, these models tend to overesti-
mate ρ0-meson production at low momentum, pT < 1 GeV/c.
PHOJET underestimates ρ0-meson production at intermediate
momentum, and the best agreement with data is provided by
PYTHIA 6 Perugia 2011.

In Fig. 6 the production spectra of ρ0 in pp and Pb-
Pb collisions are shown. The spectra are fit with a Lévy-
Tsallis function [76] in the transverse-momentum range pT <

7 GeV/c to estimate the meson yields outside of the mea-
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60%, and 60–80% central Pb-Pb collisions at

√
sNN = 2.76 TeV. The

statistical and systematic uncertainties are shown as bars and boxes,
respectively.

sured range (pT < 0.5 GeV/c). The fits are used to calculate
the integrated yields (dN/dy) and mean transverse momenta
(〈pT 〉) following a procedure described in Refs. [27,36]. The
dN/dy and 〈pT 〉 values are evaluated using the data in the
measured range and the fit function at lower momentum.
The fraction of the total integrated yield in the extrapolated
region varies from 30% in pp collisions to 20(25)% in central
(peripheral) Pb-Pb interactions. Alternative fitting functions,
such as Boltzmann-Gibbs blast-wave [77], mT -exponential,
and power-law functions, are used to fit the measured spectra
in different pT ranges and evaluate systematic uncertainties
for dN/dy and 〈pT 〉 from the extrapolation. The resulting
values of dN/dy and 〈pT 〉 are summarized in Table II along
with their statistical and systematic uncertainties.

C. pT -integrated particle ratios

The collision energy dependence of the ρ0/π ratio is pre-
sented in Fig. 7 [6]. The ALICE result in pp collisions at

√
s =

2.76 TeV obtained using charged pion yields from Ref. [47] is
in good agreement with lower energy measurements and with
thermal model predictions for pp collisions at

√
s = 200 GeV

[78],
√

s = 2.76 TeV [79], and
√

s = 7 TeV [80].
The left panel of Fig. 8 shows the ρ0/π ratio measured

as a function of 〈dNch/dη〉1/3 at midrapidity [39] in pp and
Pb-Pb collisions at

√
sNN = 2.76 TeV. In Pb-Pb collisions

〈dNch/dη〉1/3 is used as a proxy for the system size [90].
The charged pion yields are taken from Ref. [60]. The bars
represent the statistical uncertainties and the total systematic
uncertainties are shown with open boxes. The part of the
systematic uncertainties related to the interference term in the
ρ0-meson peak model is correlated between points and addi-
tion of this term shifts the points in a similar way in pp and
Pb-Pb collisions. The uncorrelated systematic uncertainties
are shown with shaded boxes.

The measured ρ0/π ratio in Pb-Pb collisions is compared
to predictions from a grand-canonical thermal model with a
chemical freeze-out temperature of 156 MeV [91]. The model
is consistent with data only in peripheral collisions. The ρ0/π

ratio shows a suppression from pp to peripheral Pb-Pb and
then to central Pb-Pb collisions by about 40%. An analogous
suppression was previously observed for short-lived K∗(892)0

mesons (τ ∼ 4.2 fm/c) measured in the K∗(892)0 → K±π∓
decay channel at RHIC and the LHC: The K∗0/K ratio was
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similarly suppressed in central heavy-ion collisions with re-
spect to its value in pp collisions [27,28]. The suppression was
explained by rescattering of the K∗(892)0 daughter particles
in the dense hadron gas phase between chemical and kinetic
freeze-out. A similar explanation may apply for ρ0 mesons,
which have a lifetime three times shorter than K∗(892)0 and a
higher probability to decay before kinetic freeze-out.

The measured results are also compared with EPOS3
[26] calculations. EPOS3 models the evolution of heavy-ion
collisions, with initial conditions described by the Gribov-
Regge multiple-scattering framework. The high-density core
of the collision is simulated using 3+1-dimensional viscous
hydrodynamics and is surrounded by a corona in which
decaying strings hadronize. After the core hadronizes, the

evolution of the full system is simulated using the ultrarel-
ativistic quantum molecular dynamics approach (UrQMD)
[92,93], which includes rescattering and regeneration effects.
Calculations were performed with and without a hadronic
cascade modeled with UrQMD. Without UrQMD, no
significant system size dependence is predicted for the ratio.
When UrQMD is enabled, the measured evolution of the ρ0/π

ratio with multiplicity is well reproduced in Pb-Pb collisions
(cf. Fig. 8, left panel). This suggests that the observed
suppression of the ρ0 indeed originates from rescattering of
its daughter particles in the hadronic phase. EPOS3 was also
successful in description of K∗0/K ratio in Pb-Pb collision
[26,36]. Under assumption that all suppression for ρ0 is from
hadronic phase effects, the same lifetime of the hadronic
phase is needed to suppress K∗0 and ρ0.

In the right panel of Fig. 8 the obtained values of mean
〈pT 〉 in pp and Pb-Pb collisions are reported as a function of
the multiplicity. The 〈pT 〉 values estimated for ρ0 by EPOS3
in Pb-Pb collisions show an increase as a function of the
multiplicity. The calculation with UrQMD reproduces the
measured values in Pb-Pb collisions reasonably well, while
the calculation without UrQMD significantly underestimates
the data.

D. pT -differential particle ratios

The ρ0/π ratios measured in pp and Pb-Pb collisions
(in the 0–20% and 60–80% centrality intervals) at

√
sNN =

2.76 TeV as a function of transverse momentum are shown
in Figs. 9 and 10, respectively. The pT spectra for pions are
obtained from Refs. [60,61].

The ratio in pp collisions is compared to the same model
calculations as in Fig. 5. As for the pT spectra, the models
overestimate ρ0/π ratio at low momenta, pT < 1 GeV/c. At
higher momentum, the predictions of the event generators
differ by tens of percentages, with PYTHIA 8.14 Monash
2013 [58] and PHOJET [70,71] providing the best description
of the data. The mT -scaling curve shown in the figure is
obtained in the same way as in Fig. 2. It is normalized to
ρ0/π = 0.88 at high momentum, which is obtained from
the fit to data points at pT > 4 GeV/c. The curve very well

FIG. 8. ρ0/π ratio (left) and 〈pT 〉 (right) at midrapidity (|y| < 0.5) in pp and 0–20%, 20–40%, 40–60%, 60–80% central Pb-Pb collisions at√
sNN = 2.76 TeV as a function of 〈dNch/dη〉1/3. Statistical uncertainties are shown as bars. The total and uncorrelated systematic uncertainties

are shown with open and shaded boxes, respectively. The widths of the boxes are fixed to arbitrary values for better visibility. The measurements
are compared to EPOS3 [26] calculations. The ρ0/π ratio is also compared to grand-canonical thermal model [91] prediction shown with the
red horizontal line.
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FIG. 9. ρ0/π ratio in pp collisions at
√

s = 2.76 TeV as a
function of transverse momentum. The statistical and systematic
uncertainties are shown as bars and boxes, respectively. The results
are compared with model calculations from PYTHIA Perugia 2011
[74], PYTHIA 8.14 Monash 2013 [58], and PHOJET [70,71].

reproduces the measurement results in the whole range of
measurements. We also note that the ρ0/π ratio measured in
pp collisions at

√
s = 2.76 TeV is very close to the ω/π ratio

measured at lower energies and presented in Fig. 2. This is
consistent with PYTHIA, which predicts very weak energy
dependence of the ρ0/π and ω/π ratios, with ρ0/ω ∼ 1.05 in
the measured pT range.

The ρ0/π ratio measured in peripheral Pb-Pb collisions
is very similar to that in pp collisions, as can be seen by
comparing Fig. 9 and the right panel of Fig. 10. However, in

central Pb-Pb collisions the ratio is significantly suppressed
at low momentum (pT < 2 GeV/c). This means that the
suppression of the pT -integrated ρ0/π ratio reported earlier is
due to the suppression of low-pT particle production in central
Pb-Pb collisions. It is important to note that the pT -dependent
suppression of the ρ0/π ratio is reproduced by EPOS3 cal-
culations when the hadronic cascade simulated with UrQMD
is taken into account. For pT < 2 GeV/c, EPOS3 without
UrQMD overestimates the ratio by 30–40%. This may serve
as another indication that ρ0-meson suppression is due to
daughter particle rescattering in the hadronic phase.

E. Nuclear modification factors

The nuclear modification factor RAA is used to study
medium-induced effects in heavy-ion collisions. The RAA is
the ratio of the yield of a particle in nucleus-nucleus collisions
to its yield in pp collisions. This ratio is scaled by the number
of binary nucleon-nucleon collisions in each centrality class,
which is estimated from Glauber model calculations [94,95].
For each pT bin,

RAA = 1

〈Ncoll〉
dNAA/d pT

dNpp/d pT
. (6)

The nuclear modification factors measured in 0–20% and
60–80% central Pb-Pb collisions at

√
sNN = 2.76 TeV for

charged pions, charged kaons, (anti)protons [61], and ρ0

mesons are reported in Fig. 11. (RAA values for the other
centrality classes are available in the High Energy Physics
Data Repository.) One can see that in Pb-Pb collisions, pro-
duction of all hadrons is suppressed by a similar amount at
high transverse momenta of pT > 8 GeV/c and there is no
dependence of the suppression on particle mass or quark
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FIG. 10. ρ0/π ratio in 0–20% (left panel) and 60–80% (right panel) central Pb-Pb collisions at
√

sNN = 2.76 TeV. The statistical and
systematic uncertainties are shown as bars and boxes, respectively. The measurements are compared to EPOS3 [26] calculations performed
with and without a hadronic cascade modeled with UrQMD [92,93]. In the lower panels, the model to data ratio is reported. Bars indicate
statistical uncertainty of calculations whereas the gray shaded boxes represent the square root of sum of squares of statistical and systematic
uncertainties associated with data.
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FIG. 11. Nuclear modification factors RAA measured for charged pions, charged kaons, (anti)protons [61], and ρ0 mesons in 0–20% (left
panel) and 60–80% (right panel) central Pb-Pb collisions at

√
sNN = 2.76 TeV. The statistical and systematic uncertainties are shown as bars

and boxes, respectively. The boxes at unity correspond to scaling uncertainties.

content within uncertainties. This observation, also confirmed
by measurements for K∗(892)0 and φ(1020) mesons [36],
rules out models that predict a species-dependent suppression
of light hadrons and puts additional constraints on parton en-
ergy loss and fragmentation models [96–98]. There is a clear
species dependence of RAA at intermediate transverse momen-
tum, which is likely to be a result of an interplay between dif-
ferent effects such as radial flow, low-pT suppression, species-
dependent pT shapes of the pp reference spectra [27,36].

VII. CONCLUSIONS

We have measured the production of ρ0 mesons in min-
imum bias pp and centrality differential Pb-Pb collisions at√

sNN = 2.76 TeV. These measurements were performed in a
wide pT range from 0.5 to 11 GeV/c in the hadronic decay
channel ρ0 → π+π−. The invariant mass distributions are
well described by a hadronic cocktail, assuming the same
ρ0-meson peak shape in pp and central heavy-ion collisions.
However, alternative peak models for ρ0 mesons are not ruled
out by data. The reconstructed masses of ρ0 mesons are
consistent with the hadroproduced mass of ρ0 within uncer-
tainties. In pp collisions, the transverse-momentum spectrum
for pT > 1 GeV/c is rather well reproduced by PYTHIA
8.14 Monash 2013 and PYTHIA 6 Perugia 2011, while
a better agreement is observed for PYTHIA 8.14 Monash
2013 and PHOJET for the pT -differential ρ0/π ratio. In
Pb-Pb collisions, the measured yields for the ρ0 meson are
suppressed at low momentum (pT < 2 GeV/c). The ratio
of integrated yields, ρ0/π , decreases by ∼40% from pp to
central Pb-Pb collisions, similarly to what was previously
observed for the K∗0/K− ratio and explained by rescattering
of the daughter particles in the hadron-gas phase. The relative
suppression of the pT -integrated and pT -differential ρ0/π

ratios is well reproduced by EPOS3 calculations, provided
that the hadronic cascade is modeled with UrQMD. This
suggests that the observed centrality-dependent suppression

of ρ0 production occurs due to rescattering of daughter pions
in the hadronic phase between chemical and kinetic freeze-
out, with the rescattering being most important at low pT .
However, suppression of ρ0-meson production may also occur
due to significant line-shape modifications not accounted for
in the peak model used in this analysis. The development of
a realistic model of the ρ0-meson peak shape in heavy-ion
collisions would be an important subject for theoretical stud-
ies. Once available, the model predictions can be compared
to the “vacuum shape” results for ρ0 reported in this paper
and implications for the measured yields due to possible line-
shape modifications can be inferred and discussed.
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L. Kreis,104 M. Krivda,108,66 F. Krizek,94 M. Krüger,70 E. Kryshen,96 M. Krzewicki,41 A. M. Kubera,19 V. Kučera,94,61
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L. Pinsky,124 S. Pisano,52 D. B. Piyarathna,124 M. Płoskoń,80 M. Planinic,97 F. Pliquett,70 J. Pluta,139 S. Pochybova,142

P. L. M. Podesta-Lerma,118 M. G. Poghosyan,95 B. Polichtchouk,91 N. Poljak,97 W. Poonsawat,113 A. Pop,48 H. Poppenborg,141

S. Porteboeuf-Houssais,131 V. Pozdniakov,76 S. K. Prasad,4 R. Preghenella,54 F. Prino,59 C. A. Pruneau,140 I. Pshenichnov,63

M. Puccio,28 V. Punin,106 J. Putschke,140 S. Raha,4 S. Rajput,99 J. Rak,125 A. Rakotozafindrabe,134 L. Ramello,34 F. Rami,133

R. Raniwala,100 S. Raniwala,100 S. S. Räsänen,45 B. T. Rascanu,70 V. Ratza,44 I. Ravasenga,33 K. F. Read,127,95 K. Redlich,85,d

A. Rehman,24 P. Reichelt,70 F. Reidt,36 X. Ren,7 R. Renfordt,70 A. Reshetin,63 J.-P. Revol,11 K. Reygers,102 V. Riabov,96

T. Richert,64,81 M. Richter,23 P. Riedler,36 W. Riegler,36 F. Riggi,30 C. Ristea,69 S. P. Rode,50 M. Rodríguez Cahuantzi,2

K. Røed,23 R. Rogalev,91 E. Rogochaya,76 D. Rohr,36 D. Röhrich,24 P. S. Rokita,139 F. Ronchetti,52 E. D. Rosas,71 K. Roslon,139

P. Rosnet,131 A. Rossi,57,31 A. Rotondi,135 F. Roukoutakis,84 C. Roy,133 P. Roy,107 O. V. Rueda,71 R. Rui,27 B. Rumyantsev,76

A. Rustamov,87 E. Ryabinkin,88 Y. Ryabov,96 A. Rybicki,116 S. Saarinen,45 S. Sadhu,138 S. Sadovsky,91 K. Šafařík,36
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