Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in p-Pb Collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

(ALICE Collaboration) Acharya, S.; ...; Antičić, Tome; ...; Erhardt, Filip; ...; Gotovac, Sven; ...; Jerčić, Marko; ...; ...

Source / Izvornik: Physical Review Letters, 2019, 122

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/physrevlett.122.072301

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:244386

Rights / Prava: Attribution 4.0 International

Download date / Datum preuzimanja: 2021-02-07

Repository / Repozitorij:

Repository of Faculty of Science - University of Zagreb
Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in p-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

S. Acharya et al.*
(ALICE Collaboration)

(Received 7 June 2018; revised manuscript received 16 October 2018; published 22 February 2019)

Angular correlations between heavy-flavor decay electrons and charged particles at midrapidity ($|\eta| < 0.8$) are measured in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The analysis is carried out for the 0%–20% (high) and 60%–100% (low) multiplicity ranges. The jet contribution in the correlation distribution from high-multiplicity events is removed by subtracting the distribution from low-multiplicity events. An azimuthal modulation remains after removing the jet contribution, similar to previous observations in two-particle angular correlation measurements for light-flavor hadrons. A Fourier decomposition of the modulation results in a positive second-order coefficient (v_2) for heavy-flavor decay electrons in the transverse momentum interval $1.5 < p_T < 4$ GeV/c in high-multiplicity events, with a significance larger than 5σ. The results are compared with those of charged particles at midrapidity and those of inclusive muons at forward rapidity. The v_2 measurement of open heavy-flavor particles at midrapidity in small collision systems could provide crucial information to help interpret the anisotropies observed in such systems.

DOI: 10.1103/PhysRevLett.122.072301

Two-particle angular correlations are a powerful tool to study the dynamical evolution of the system created in ultrarelativistic collisions of protons or nuclei. The differences in the azimuthal angle ($\Delta \phi$) and in pseudorapidity ($\Delta \eta$) between a reference (“trigger”) particle and other particles produced in the event are considered. The typical shape of the correlation distribution features a near-side peak at $(\Delta \phi, \Delta \eta) \sim (0, 0)$, originating from cases in which the trigger particle is produced in a jet, and an away-side structure centered at $\Delta \phi \sim \pi$ and extending over a wide pseudorapidity range, due to the recoil jet [1]. In nucleus-nucleus collisions, the correlation distribution also exhibits pronounced structures on the near and away sides extending over a large $\Delta \eta$ region, commonly referred to as “ridges” [2]. They can be quantified by the $V_{n\Delta}$ coefficient of a Fourier decomposition of the $\Delta \phi$ distribution, which is performed after removing the jet contribution. These coefficients can be factorized into single-particle coefficients v_n related to the azimuthal distribution of the particles with respect to the nth-order symmetry planes [3]. In noncentral nucleus-nucleus collisions, the dominant coefficient is that of the second-order harmonic, referred to as elliptic flow (v_2), and its value is used to characterize the collective motion of the system. The measurements are well described by models invoking a hydrodynamic expansion of the hot and dense medium produced in the collision. This translates the initial-state spatial anisotropy, due to the asymmetry of the nuclear overlap region, into a momentum anisotropy of the particles emerging from the medium [4]. This collective motion is one of the important features of the quark-gluon plasma (QGP) produced in such collisions.

Surprisingly, the presence of similar long-range ridge structures and a positive v_2 coefficient were also observed for light-flavor hadrons in high-multiplicity proton-proton (p-p) collisions by the ALICE [5], ATLAS [6], and CMS [7] Collaborations at the LHC. The pattern of the v_2 coefficient as a function of the particle mass and transverse momentum is similar in p-Pb and Pb-Pb collisions [8,9]. The PHENIX and STAR Collaborations at RHIC also measured a positive v_2 coefficient for charged hadrons in high-multiplicity d-Au and 3He-Au collisions [10–12]. A near-side structure extended over a large $\Delta \eta$ range was also reported for high-multiplicity proton-proton (p-p) collisions by the CMS [13] and ATLAS [6] Collaborations. The interpretation of a positive v_2 in these small collision systems is currently highly debated [14]. One possible interpretation is based on collective effects induced by a hydrodynamical evolution of the particles produced in the collision [15,16]. Other approaches include mechanisms involving initial-state effects, such as gluon saturation within the color-glass condensate effective field theory [17,18], or final-state color-charge exchanges [19,20].

Because of their large masses, heavy quarks are produced in hard scattering processes during the early stages of hadronic collisions [21]. In heavy-ion collisions, the elliptic

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
flow of charm mesons [22–25] and heavy-flavor decay leptons [26–30] was found to have similar magnitude to that of charged particles [31], dominated by light-flavor hadrons. A search for a nonzero v_2 in the correlation pattern of heavy-flavor particles in high-multiplicity p-Pb collisions could provide further insight on the initial- and final-state origin of the anisotropies in this collision system, helping in constraining the models that describe the ridge structures. The production mechanisms of heavy quarks, involving a large squared four-momentum transfer, are also different from those of light-flavor quarks. This creates the possibility to investigate whether the onset of the anisotropy of the particle azimuthal distribution is affected by the details of hard scattering and fragmentation processes.

In this Letter, we present the measurement of v_2 for open heavy-flavor particles at midrapidity in high-multiplicity p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV via azimuthal correlations of electrons from charm and beauty hadron decays, and charged particles. This result complements our previous studies of hidden charm particles based on the measurement of the correlations between J/ψ mesons at forward rapidity and charged particles at midrapidity in high-multiplicity p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and 8.16 TeV, which found evidences for a positive v_2 of J/ψ mesons [32]. A positive v_2 of muons at forward and backward rapidity, which are predominantly produced by heavy-flavor decays for transverse momentum (p_T) greater than 2 GeV/c, was also measured in high-multiplicity p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [33]. Similar indications of positive v_2 were also reported at midrapidity in high-multiplicity p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV for D^0 mesons by the CMS Collaboration [34] and in preliminary results for D^{*+} mesons [35] and heavy-flavor decay muons [36] by the ATLAS Collaboration.

The data sample used for the analysis was collected by the ALICE experiment [37,38] in 2016 during the LHC p-Pb run at $\sqrt{s_{NN}} = 5.02$ TeV. The center-of-mass reference frame of the nucleon-nucleon collision was shifted in rapidity by 0.465 units in the proton-going direction with respect to the laboratory frame. The events were recorded using a minimum-bias trigger, which required coincident signals in the two scintillator arrays of the V0 detector, covering the full azimuthal angle in the pseudorapidity (η) ranges $2.8 < \eta < 5.1$ (V0-A) and $-3.7 < \eta < -1.7$ (V0-C). Together with the V0 information, signals from the two Zero-Degree Calorimeters were used to reject the beam-induced background. Only events with a primary vertex reconstructed within ± 10 cm from the center of the detector along the beam axis were accepted. About 6×10^8 events, corresponding to an integrated luminosity of $L_{\text{int}} = 295 \pm 11$ μb$^{-1}$, were obtained after these selections. Only events in high- ($0\%–20\%$) and low-multiplicity ($60\%–100\%$) classes, evaluated using the signal amplitude in the V0-A detector [39], were considered.

Electrons with transverse momentum (p_T) in the interval $1.5 < p_T < 6$ GeV/c and $|\eta| < 0.8$ (corresponding to $-1.26 < y_{\text{cms}} < 0.34$, where y_{cms} is the electron rapidity in the center-of-mass reference frame) were selected using similar criteria as discussed in Ref. [40]. Charged tracks were reconstructed using the Inner Tracking System (ITS), comprising six layers of silicon detectors with the innermost two composed of pixel detectors, and the Time Projection Chamber (TPC), a gaseous detector and the main tracking device. Tracks were required to have hits on both pixel layers of the ITS and a distance of closest approach to the primary vertex of less than 1 cm along the beam axis and 0.25 cm in the transverse plane, to reduce the contamination of electrons from photon conversions and particle weak decays [41]. The particle identification employed a selection on the specific ionization energy loss inside the TPC of $-1 < n_{\sigma}^{\text{TOF}} < 3$, where n_{σ} is the difference between the measured and expected detector response signals for electrons normalized to the response resolution. A selection ($-3 < n_{\sigma}^{\text{TOF}} < 3$) was also applied using the Time of Flight (TOF) detector to further separate hadrons and electrons. The electron reconstruction efficiency was calculated using Monte Carlo simulations of events containing $c\bar{c}$ and $b\bar{b}$ pairs generated with PYTHIA 6.4.21 [42] and the Perugia-2011 tune [43], and an underlying p-Pb collision generated using HIJING 1.36 [44]. The generated particles were propagated through the detector using the GEANT3 transport package [45]. With the selections described above, the resulting electron reconstruction efficiency is about 28% (32%) at $p_T = 1.5$ GeV/c (6 GeV/c). The contamination from charged hadrons, estimated as described in Ref. [46], amounts to about 1% (10%) for $1.5 < p_T < 4$ GeV/c ($4 < p_T < 6$ GeV/c).

The selected electrons are composed of signal heavy-flavor decay electrons (HFe), originating from semileptonic decays of open heavy-flavor hadrons, and background electrons. The main background sources are photon conversions ($\gamma \rightarrow e^+e^-$) in the beam vacuum tube, and in the material of the innermost ITS layers, and Dalitz decays of neutral mesons ($\pi^0 \rightarrow e^+e^-$ and $\eta \rightarrow \gamma e^+e^-$), defined as non-heavy-flavor decay electrons (NonHFe) hereafter. Background contributions from other Dalitz decays, or decays of kaons and J/ψ mesons, are negligible in the p_T range studied in the analysis [40] and were not considered. To estimate the background contribution, dielectron pairs were defined by pairing the selected electrons with opposite-charge electron partners to form unlike-signed pairs (ULS) and calculating their invariant mass ($M_{e^+e^-}$). Partner electrons were selected, applying similar but looser track quality and particle identification criteria than those used for selecting signal electrons. The dielectron pairs from NonHFe sources have a small invariant mass, while heavy-flavor decay electrons can form ULS pairs mainly through random combinations with other electrons, resulting in a continuous invariant-mass distribution. The
The combinatorial contribution was estimated from the invariant-mass distribution of like-signed (LS) electron pairs. The NonHF background contribution was then evaluated by subtracting the LS distribution from the ULS distribution in the invariant-mass region $M_{e^-e^+} < 140$ MeV/c^2. More details on the procedure can be found in Refs. [40,47].

The efficiency (ϵ_{NonHF}) of finding the partner electron to identify non-heavy-flavor decay electrons was calculated with the aforementioned Monte Carlo simulations, and is about 60% for $1.5 < p_T^e < 2$ GeV/c, rising to 76% for $4 < p_T^e < 6$ GeV/c.

The number of heavy-flavor decay electrons (N_{HF}) can be expressed as

$$N_{\text{HF}} = N_e - N_{\text{NonHF}} = N_e - \frac{1}{\epsilon_{\text{NonHF}}} (N_{\text{ULS}} - N_{\text{LS}}),$$

where N_{ULS} and N_{LS} are the number of electrons which form unlike-sign and like-sign pairs, respectively, with $M_{e^-e^+} < 140$ MeV/c^2, and N_e is the number of selected electrons.

The two-particle correlation distributions between electrons (trigger) and charged (associated) particles were obtained for three different p_T^e intervals ($1.5 < p_T^e < 2$ GeV/c, $2 < p_T^e < 4$ GeV/c, and $4 < p_T^e < 6$ GeV/c). Associated charged particles with $0.3 < p_T^{\text{ch}} < 2$ GeV/c and $|\eta| < 0.8$ were selected with similar criteria as used for electrons, apart from requiring a hit in at least one, instead of both, of the two pixel layers and not applying any particle identification. The single-track reconstruction efficiency and the contamination from secondary particles [41] were estimated using Monte Carlo simulations of p-Pb collisions produced with the DPMJET 3.0 event generator [48] and GEANT3 [45] for the particle transport. Both were found to be independent of the event multiplicity. With the selections described above, the tracking efficiency varies from 75% to 85% depending on track momentum and primary vertex position, and the contamination of secondary particles varies from 3% to 5.5% with decreasing p_T^{ch}.

The $(\Delta \varphi, \Delta \eta)$ correlation distribution between heavy-flavor decay electrons and charged particles is obtained with the equation

$$S_{\text{HF}} = S_e - S_{\text{NonHF}} = S_e - S_{\text{NonHF}}^{\text{ID}} - S_{\text{NonHF}}^{\text{ID}},$$

where S corresponds to $d^2N_{e,ch}(\Delta \eta, \Delta \varphi)/d\Delta \eta d\Delta \varphi$. The correlation distributions for all trigger electrons and for non-heavy-flavor decay trigger electrons are denoted as S_e and S_{NonHF}, respectively. The hadron contamination in S_e is statistically removed by subtracting a scaled dihadron correlation distribution. The S_{NonHF} distribution is evaluated from its two contributions $S_{\text{NonHF}}^{\text{ID}}$ and $S_{\text{NonHF}}^{\text{ID}}$. The former corresponds to correlations from background electron triggers with an identified electron partner, and the latter to the expected contribution from background trigger electrons without an identified partner. The identified background distribution, $S_{\text{NonHF}}^{\text{ID}}$, is evaluated using correlations of trigger electrons paired with unlike-sign and like-sign electrons, with a similar procedure as that used to evaluate N_{NonHF} [see Eq. (1)]. The nonidentified background, $S_{\text{NonHF}}^{\text{ID}}$, is estimated assuming that both identified and nonidentified NonHF triggers have the same correlation distribution, apart from reconstructed partner electrons used to calculate $M_{e^-e^+}$, which are removed from $S_{\text{NonHF}}^{\text{ID}}$ to obtain $S_{\text{NonHF}}^{\text{ID}}$.

The correlation distribution for heavy-flavor decay electrons was corrected for the electron and charged particle reconstruction efficiencies and for the secondary particle contamination. It was also corrected for the limited two-particle acceptance and detector inhomogeneities using the event mixing technique [8]. The mixed-event correlation distribution was obtained by combining electrons in an event with charged particles from other events with similar multiplicity and primary vertex position. The correlation distribution for heavy-flavor decay electrons was divided by the number of heavy-flavor decay trigger electrons N_{HF}, from Eq. (1) corrected by their reconstruction efficiency.

The two-dimensional correlation distribution was projected onto $\Delta \varphi$ for $|\Delta \eta| < 1.2$ and divided by the width of the selected $\Delta \eta$ interval. A baseline term, constant in $\Delta \varphi$, was subtracted from the correlation distributions. Its values, reported in Table I, were calculated as the weighted average of the three lowest points of the distribution, following the “zero yield at minimum” approach [49]. The resulting correlation distributions in the two considered multiplicity classes (0%–20% and 60%–100%) are shown in Fig. 1 for $2 < p_T^e < 4$ GeV/c. An enhancement of the near- and away-side peaks is present in high-multiplicity collisions. To study this feature, the baseline-subtracted correlation distribution obtained in low-multiplicity events was subtracted from the correlation distribution measured in high-multiplicity events, as described in Ref. [5]. This removes the jet-induced correlation peaks, assuming that they are the same in low- and high-multiplicity events. The correlation distribution was restricted to the $(0, \pi)$ range by reflecting the symmetrical points. The resulting distribution, shown in Fig. 2, was fitted with the Fourier decomposition of Eq. (3).

An azimuthal anisotropy, dominated by the second-order term $V_{2\Delta \varphi}^{\text{HF}-ch}$, was found.

$$1 - \frac{1}{N_{\text{HF}}^{\text{ch}}(\Delta \varphi)} \frac{dN_{\text{HF}-ch}(\Delta \varphi)}{d\Delta \varphi} = a[1 + 2V_{1\Delta \varphi}^{\text{HF}-ch} \cos(\Delta \varphi) + 2V_{2\Delta \varphi}^{\text{HF}-ch} \cos(2\Delta \varphi)]$$

where $S_{\text{NonHF}}^{\text{ID}}$.
The measured $V_{2\Delta}$ in high-multiplicity events does not exclude the possibility of having a $V_{2\Delta}$ contribution in the low-multiplicity events, as described in Ref. [6]. The systematic uncertainties on the azimuthal correlation distribution can originate from (i) potential biases in the procedure employed to select electron candidates and estimate the hadron contamination, (ii) removal of the background electrons not produced in heavy-flavor hadron decays, and (iii) choice of the associated particle selection. A systematic uncertainty related to the electron reconstruction efficiency arises from imprecisions in the description of the detector response. It was studied by varying the electron selection in the ITS and TPC. The uncertainty affecting the removal of the hadron contamination was estimated by varying the particle identification criteria in the TPC (n_e^{TPC}). A total uncertainty of less than 0.5% was estimated from these sources. The uncertainty related to the efficiency of finding the partner electron and to the stability of the S_NonHF distribution was studied by varying the selection for partner tracks and pair invariant mass, resulting in an uncertainty of less than 0.5%. The uncertainty on the associated track reconstruction efficiency, obtained by varying the associated track selection criteria and by comparing the probabilities of track prolongation from TPC to ITS in data and simulations, was estimated to be 3% [50]. A systematic effect due to the contamination of the associated particles by secondaries comes from residual discrepancy between Monte Carlo simulations and data in the relative abundances of particle species and was studied by varying the selection on the distance of closest approach to the primary vertex. It was quantified to be 1% (correlated in $\Delta \phi$), with an additional 1% (correlated) for $|\Delta \phi| < 1$. Combining the uncertainties from all the above sources results in a 3% total systematic uncertainty (correlated in $\Delta \phi$) and an additional 1% (also correlated) for $|\Delta \phi| < 1$.

The systematic uncertainties from the above mentioned sources are also present in the $V_{2\Delta}$ for low- and high-multiplicity collisions, the $\Delta \eta$ integration region was modified by excluding central intervals of $|\Delta \eta| < 0.26$, varying $\Delta \eta$ from 0.2 to 0.6. The observed variation on $V_{2\Delta}$ was 11%–15%, depending on the electron p_T interval, and was taken as the systematic uncertainty from the jet subtraction. The stability of the

Table I. Results for $V^{HF_{-ch}}_{2\Delta}$ and baselines in high- (b_{LM}) and low-multiplicity (b_{LM}) collisions.

<table>
<thead>
<tr>
<th>p_T^e (GeV/c)</th>
<th>$V^{HF_{-ch}}_{2\Delta}$ ± stat ± syst</th>
<th>b_{LM} ± stat ± syst (rad$^{-1}$)</th>
<th>b_{LM} ± stat ± syst (rad$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 < p_T^e < 2</td>
<td>(38 ± 8 ± 6) \times 10$^{-4}$</td>
<td>1.235 ± 0.006 ± 0.037</td>
<td>4.312 ± 0.008 ± 0.129</td>
</tr>
<tr>
<td>2 < p_T^e < 4</td>
<td>(40 ± 7 ± 5) \times 10$^{-4}$</td>
<td>1.294 ± 0.008 ± 0.038</td>
<td>4.330 ± 0.007 ± 0.129</td>
</tr>
<tr>
<td>4 < p_T^e < 6</td>
<td>(19 ± 19 ± 3) \times 10$^{-4}$</td>
<td>1.433 ± 0.022 ± 0.043</td>
<td>4.754 ± 0.020 ± 0.142</td>
</tr>
</tbody>
</table>

![Figure 1](image1.png)

FIG. 1. Azimuthal correlations between heavy-flavor decay electrons and charged particles, for high-multiplicity p-Pb collisions, after subtracting the baseline (see text for details) for $2 < p_T^e < 4$ GeV/c and $0.3 < p_T^{ch} < 2$ GeV/c.

![Figure 2](image2.png)

FIG. 2. Best fit [Eq. (3)] to the azimuthal correlation distribution between heavy-flavor decay electrons and charged particles, for high-multiplicity p-Pb collisions after subtracting the jet contribution based on low-multiplicity collisions. The distribution is shown for $2 < p_T^e < 4$ GeV/c and $0.3 < p_T^{ch} < 2$ GeV/c. The figure shows only statistical uncertainty.

072301-4
$V^{HF_{ch}}$ value against the variation of the $\Delta \eta$ range suggests a long-range nature of the observed anisotropy. The inclusion of a $V^{HF_{ch}}_{2\Delta}$ term in the fit function, in Eq. (3), affects the $V^{HF_{ch}}_{2\Delta}$ estimation by less than 0.5%. Combining the different uncertainty sources results in a total systematic uncertainty on $V^{HF_{ch}}_{2\Delta}$ of 13%–16% depending on p_T.

The values of $V^{HF_{ch}}_{2\Delta}$ obtained from the fits are reported in Table I. The measured $V^{HF_{ch}}_{2\Delta}$ is larger than zero with a significance of 4.6σ for the $2 < p_T^e < 4$ GeV/c range. The significance for $V^{HF_{ch}}_{2\Delta} > 0$ in the interval $1.5 < p_T^e < 4$ GeV/c, considering statistical and systematic uncertainties, is about 6σ.

Assuming its factorization in single-particle v_2 coefficients [8], $V^{HF_{ch}}_{2\Delta}$ can be expressed as the product of the second-order Fourier coefficients of the heavy-flavor decay electron ($v_2^{HF_{e}}$) and charged particle (v_2^{ch}) azimuthal distributions, hence $v_2^{HF_{e}} = V^{HF_{ch}}_{2\Delta} / v_2^{ch}$. The v_2^{ch} value in the range $0.3 < p_T^{ch} < 2$ GeV/c was obtained from the weighted average of the values measured in smaller p_T^{ch} ranges in Ref. [8], providing $v_2^{ch} = 0.0594 \pm 0.0010$ (stat) ± 0.0059 (syst). The obtained $v_2^{HF_{e}}$ values are reported in Fig. 3 and compared to v_2 of charged particles, dominated by light-flavor hadrons, and to inclusive muons at large rapidity, mostly originating from heavy-flavor hadron decays for $p_T > 2$ GeV/c. The heavy-flavor decay electron v_2 is lower than v_2^{ch}, though the uncertainties are large, and the p_T interval of electron parents (heavy-flavor hadrons) is considerably broader than the range addressed in the light-flavor hadron measurement. The v_2 values for heavy-flavor electrons and inclusive muons are similar, although a direct comparison is not straightforward, given the different rapidities and the contamination in the muon sample for $p_T^\mu > 2$ GeV/c. The $v_2^{HF_{e}}$ in p-Pb collisions has similar magnitude to that measured in noncentral Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [29]. The significance for $v_2^{HF_{e}} > 0$ is 5.1σ for $1.5 < p_T^e < 4$ GeV/c, providing very strong indications for the presence of long-range anisotropies for heavy-flavor particles in high-multiplicity p-Pb collisions.

In summary, we report the measurement of v_2 for open heavy-flavor particles at midrapidity in high-multiplicity p-Pb collisions. The analysis was carried out via a Fourier decomposition of the azimuthal correlation distribution between heavy-flavor decay electrons and charged particles. After removing the jet contribution and fitting the high-multiplicity correlation distributions, a $V_{2\Delta}$-like modulation was obtained, qualitatively similar to the one observed for charged particles [5]. The measured heavy-flavor decay electron v_2 is positive with a significance of more than 5σ in the $1.5 < p_T^e < 4$ GeV/c range. Its values are possibly lower than charged particle v_2 [5], and similar to inclusive muon v_2 at large rapidity [33]. Complementing previous results for light-flavor hadrons [5], this measurement provides new information on the behavior of heavy-flavor hadrons to understand the azimuthal anisotropies observed in small collision systems.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid Centres and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: the A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL) and the State Committee of Science and World Federation of Scientists (WFS), Armenia; the Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; the Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; the Ministry of Science & Technology of China (MSTC), the National Natural Science Foundation of China (NSFC), and the Ministry of Education of China (MOEC), China; the Ministry of Science and Education, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research/Natural Sciences, the Carlsberg Foundation, and the Danish National Research Foundation (DNRF), Denmark; the Helsinki Institute of Physics (HIP), Finland; the Commissariat à l’Energie Atomique (CEA), the Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), and the
Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; the General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; the National Research, Development and Innovation Office, Hungary; the Department of Atomic Energy (DAE), Department of Science and Technology (DST), and the University Grants Commission, Government of India (UGC), and the Council of Scientific and Industrial Research (CSIR), India; the Indonesian Institute of Science, Indonesia; Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; the Institute for Innovative Science and Technology, the Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI, and the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; the Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; the Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and the National Research Foundation of Korea (NRF), Republic of Korea; the Ministry of Education and Scientific Research, Institute of Atomic Physics, and the Romanian National Agency for Science, Technology and Innovation, Romania; the Joint Institute for Nuclear Research (JINR), the Ministry of Education and Science of the Russian Federation, and the National Research Centre Kurchatov Institute, Russia; the Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; the National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; the Swedish Research Council (VR) and the Knut & Alice Wallenberg Foundation (KAW), Sweden; the European Organization for Nuclear Research, Switzerland; the National Science and Technology Development Agency (NSDTA), the Suranaree University of Technology (SUT), and the Office of the Higher Education Commission under NRU project of Thailand, Thailand; the Turkish Atomic Energy Agency (TAEK), Turkey; the National Academy of Sciences of Ukraine, Ukraine; the Science and Technology Facilities Council (STFC), United Kingdom; and the National Science Foundation of the United States of America (NSF) and the United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

[45] Rene Brun et al., GEANT Detector Description and Simulation Tool, CERN Program Library, Long Write-up, W5013 (CERN, Geneva, 1994).

California Polytechnic State University, San Luis Obispo, California, USA
Central China Normal University, Wuhan, China
Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
Chicago State University, Chicago, Illinois, USA
China Institute of Atomic Energy, Beijing, China
Chonbuk National University, Jeonju, Republic of Korea
Comenius University, Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
Creighton University, Omaha, Nebraska, USA
Department of Physics, Aligarh Muslim University, Aligarh, India
Department of Physics, Pusan National University, Pusan, Republic of Korea
Department of Physics, Sejong University, Seoul, Republic of Korea
Department of Physics, University of California, Berkeley, California, USA
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics and Technology, University of Bergen, Bergen, Norway
Dipartimento di Fisica dell’Università “La Sapienza” and Sezione INFN, Rome, Italy
Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
Dipartimento di Fisica “E.R. Caianiello” dell’Università and Gruppo Collegato INFN, Salerno, Italy
Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
Dipartimento Interateneo di Fisica “M. Merlin” and Sezione INFN, Bari, Italy
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Faculty of Science, P.J. Šafárik University, Košice, Slovakia
Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Gangneung-Wonju National University, Gangneung, Republic of Korea
Gauhati University, Department of Physics, Guwahati, India
Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
Helsinki Institute of Physics (HIP), Helsinki, Finland
High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
Hiroshima University, Hiroshima, Japan
Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Indian Institute of Technology Bombay (IIT), Mumbai, India
Indian Institute of Technology Indore, Indore, India
Indonesian Institute of Sciences, Jakarta, Indonesia
INFN, Laboratori Nazionali di Frascati, Frascati, Italy
INFN, Sezione di Bari, Bari, Italy
INFN, Sezione di Bologna, Bologna, Italy
INFN, Sezione di Cagliari, Cagliari, Italy
INFN, Sezione di Catania, Catania, Italy
INFN, Sezione di Padova, Padova, Italy
INFN, Sezione di Roma, Rome, Italy
INFN, Sezione di Torino, Turin, Italy
INFN, Sezione di Trieste, Trieste, Italy
Inha University, Incheon, Republic of Korea
Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
Universidade Federal do ABC, Santo Andre, Brazil
University College of Southeast Norway, Tonsberg, Norway
University of Cape Town, Cape Town, South Africa
University of Houston, Houston, Texas, USA
University of Jyväskylä, Jyväskylä, Finland
University of Liverpool, Liverpool, United Kingdom
University of Tennessee, Knoxville, Tennessee, USA
University of the Witwatersrand, Johannesburg, South Africa
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Université Paris-Saclay Centre d’Études de Saclay (CEA), IRFU, Department de Physique Nucléaire (DPhN), Saclay, France
Università degli Studi di Foggia, Foggia, Italy
Università degli Studi di Pavia, Pavia, Italy
Università di Brescia, Brescia, Italy
Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, Michigan, USA
Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
Yonsei University, New Haven, Connecticut, USA
Yonsei University, Seoul, Republic of Korea

†Deceased.
‡Dipartimento DET del Politecnico di Torino, Turin, Italy.
§M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
¶Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
‖Institute of Theoretical Physics, University of Wroclaw, Poland.