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Angular correlations between heavy-flavor decay electrons and charged particles at midrapidity
(jηj < 0.8) are measured in p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The analysis is carried out for the
0%–20% (high) and 60%–100% (low)multiplicity ranges. The jet contribution in the correlation distribution
from high-multiplicity events is removed by subtracting the distribution from low-multiplicity events.
An azimuthal modulation remains after removing the jet contribution, similar to previous observations in
two-particle angular correlation measurements for light-flavor hadrons. A Fourier decomposition of the
modulation results in a positive second-order coefficient (v2) for heavy-flavor decay electrons in the
transverse momentum interval 1.5 < pT < 4 GeV=c in high-multiplicity events, with a significance larger
than 5σ. The results are comparedwith those of charged particles at midrapidity and those of inclusivemuons
at forward rapidity. The v2 measurement of open heavy-flavor particles at midrapidity in small collision
systems could provide crucial information to help interpret the anisotropies observed in such systems.

DOI: 10.1103/PhysRevLett.122.072301

Two-particle angular correlations are a powerful tool
to study the dynamical evolution of the system created
in ultrarelativistic collisions of protons or nuclei. The
differences in the azimuthal angle (Δφ) and in pseudor-
apidity (Δη) between a reference (“trigger”) particle and
other particles produced in the event are considered. The
typical shape of the correlation distribution features a near-
side peak at ðΔφ;ΔηÞ ∼ ð0; 0Þ, originating from cases in
which the trigger particle is produced in a jet, and an away-
side structure centered atΔφ ∼ π and extending over a wide
pseudorapidity range, due to the recoil jet [1]. In nucleus-
nucleus collisions, the correlation distribution also exhibits
pronounced structures on the near and away sides extend-
ing over a large Δη region, commonly referred to as
“ridges” [2]. They can be quantified by the VnΔ coefficient
of a Fourier decomposition of the Δφ distribution, which is
performed after removing the jet contribution. These
coefficients can be factorized into single-particle coeffi-
cients vn related to the azimuthal distribution of the
particles with respect to the nth-order symmetry planes
[3]. In noncentral nucleus-nucleus collisions, the dominant
coefficient is that of the second-order harmonic, referred to
as elliptic flow (v2), and its value is used to characterize the
collective motion of the system. The measurements are well

described by models invoking a hydrodynamic expansion
of the hot and dense medium produced in the collision. This
translates the initial-state spatial anisotropy, due to the
asymmetry of the nuclear overlap region, into a momentum
anisotropy of the particles emerging from the medium [4].
This collective motion is one of the important features of
the quark-gluon plasma (QGP) produced in such collisions.
Surprisingly, the presence of similar long-range ridge

structures and a positive v2 coefficient were also observed
for light-flavor hadrons in high-multiplicity proton-lead (p-
Pb) collisions by the ALICE [5], ATLAS [6], and CMS [7]
Collaborations at the LHC. The pattern of the v2 coefficient
as a function of the particle mass and transverse momentum
is similar in p-Pb and Pb-Pb collisions [8,9]. The PHENIX
and STAR Collaborations at RHIC also measured a positive
v2 coefficient for charged hadrons in high-multiplicity
d-Au and 3He-Au collisions [10–12]. A near-side structure
extended over a large Δη range was also reported for high-
multiplicity proton-proton (pp) collisions by the CMS [13]
and ATLAS [6] Collaborations. The interpretation of a
positive v2 in these small collision systems is currently
highly debated [14]. One possible interpretation is based on
collective effects induced by a hydrodynamical evolution
of the particles produced in the collision [15,16]. Other
approaches include mechanisms involving initial-state
effects, such as gluon saturation within the color-glass
condensate effective field theory [17,18], or final-state
color-charge exchanges [19,20].
Because of their large masses, heavy quarks are pro-

duced in hard scattering processes during the early stages of
hadronic collisions [21]. In heavy-ion collisions, the elliptic
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flow of charm mesons [22–25] and heavy-flavor decay
leptons [26–30] was found to have similar magnitude to
that of charged particles [31], dominated by light-flavor
hadrons. A search for a nonzero v2 in the correlation pattern
of heavy-flavor particles in high-multiplicity p-Pb colli-
sions could provide further insight on the initial- and
final-state origin of the anisotropies in this collision system,
helping in constraining the models that describe the ridge
structures. The production mechanisms of heavy quarks,
involving a large squared four-momentum transfer, are
also different from those of light-flavor quarks. This creates
the possibility to investigate whether the onset of the
anisotropy of the particle azimuthal distribution is
affected by the details of hard scattering and fragmentation
processes.
In this Letter, we present the measurement of v2 for open

heavy-flavor particles at midrapidity in high-multiplicity p-
Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV via azimuthal correla-
tions of electrons from charm and beauty hadron decays,
and charged particles. This result complements our pre-
vious studies of hidden charm particles based on the
measurement of the correlations between J=ψ mesons at
forward rapidity and charged particles at midrapidity in
high-multiplicity p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and
8.16 TeV, which found evidences for a positive v2 of J=ψ
mesons [32]. A positive v2 of muons at forward and
backward rapidity, which are predominantly produced by
heavy-flavor decays for transverse momentum ðpTÞ greater
than 2 GeV=c, was also measured in high-multiplicity
p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [33]. Similar indica-
tions of positive v2 were also reported at midrapidity in
high-multiplicity p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.16 TeV for
D0 mesons by the CMS Collaboration [34] and in pre-
liminary results for D�þ mesons [35] and heavy-flavor
decay muons [36] by the ATLAS Collaboration.
The data sample used for the analysis was collected

by the ALICE experiment [37,38] in 2016 during the LHC
p-Pb run at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The center-of-mass refer-
ence frame of the nucleon-nucleon collision was shifted in
rapidity by 0.465 units in the proton-going direction with
respect to the laboratory frame. The events were recorded
using a minimum-bias trigger, which required coincident
signals in the two scintillator arrays of the V0 detector,
covering the full azimuthal angle in the pseudorapidity (η)
ranges 2.8 < η < 5.1 (V0-A) and −3.7 < η < −1.7
(V0-C). Together with the V0 information, signals from
the two Zero-Degree Calorimeters were used to reject the
beam-induced background. Only events with a primary
vertex reconstructed within �10 cm from the center of the
detector along the beam axis were accepted. About
6 × 108 events, corresponding to an integrated luminosity
of Lint ¼ 295� 11 μb−1, were obtained after these selec-
tions. Only events in high- (0%–20%) and low-multiplicity
(60%–100%) classes, evaluated using the signal amplitude
in the V0-A detector [39], were considered.

Electrons with transverse momentum (pe
T) in the interval

1.5 < pe
T < 6 GeV=c and jηj < 0.8 (corresponding to

−1.26 < yecms < 0.34, where yecms is the electron rapidity
in the center-of-mass reference frame) were selected using
similar criteria as discussed in Ref. [40]. Charged tracks
were reconstructed using the Inner Tracking System (ITS),
comprising six layers of silicon detectors with the inner-
most two composed of pixel detectors, and the Time
Projection Chamber (TPC), a gaseous detector and the
main tracking device. Tracks were required to have hits on
both pixel layers of the ITS and a distance of closest
approach to the primary vertex of less than 1 cm along the
beam axis and 0.25 cm in the transverse plane, to reduce the
contamination of electrons from photon conversions and
particle weak decays [41]. The particle identification
employed a selection on the specific ionization energy
loss inside the TPC of −1 < nTPCσ < 3, where nσ is the
difference between the measured and expected detector
response signals for electrons normalized to the response
resolution. A selection (−3 < nTOFσ < 3) was also applied
using the Time of Flight (TOF) detector to further separate
hadrons and electrons. The electron reconstruction effi-
ciency was calculated using Monte Carlo simulations of
events containing cc̄ and bb̄ pairs generated with PYTHIA

6.4.21 [42] and the Perugia-2011 tune [43], and an under-
lying p-Pb collision generated using HIJING 1.36 [44]. The
generated particles were propagated through the detector
using the GEANT3 transport package [45]. With the selec-
tions described above, the resulting electron reconstruction
efficiency is about 28% (32%) at pe

T ¼ 1.5 GeV=c
(6 GeV=c). The contamination from charged hadrons,
estimated as described in Ref. [46], amounts to about
1% (10%) for 1.5 < pe

T < 4 GeV=c (4 < pe
T < 6 GeV=c).

The selected electrons are composed of signal heavy-
flavor decay electrons (HFe), originating from semileptonic
decays of open heavy-flavor hadrons, and background
electrons. The main background sources are photon con-
versions (γ → eþe−) in the beam vacuum tube, and in the
material of the innermost ITS layers, and Dalitz decays of
neutral mesons (π0 → γeþe− and η → γeþe−), defined as
non-heavy-flavor decay electrons (NonHFe) hereafter.
Background contributions from other Dalitz decays, or
decays of kaons and J=ψ mesons, are negligible in the pT
range studied in the analysis [40] and were not considered.
To estimate the background contribution, dielectron pairs
were defined by pairing the selected electrons with
opposite-charge electron partners to form unlike-signed
pairs (ULS) and calculating their invariant mass (Meþe−).
Partner electrons were selected, applying similar but looser
track quality and particle identification criteria than those
used for selecting signal electrons. The dielectron pairs
from NonHFe sources have a small invariant mass, while
heavy-flavor decay electrons can form ULS pairs mainly
through random combinations with other electrons, result-
ing in a continuous invariant-mass distribution. The
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combinatorial contribution was estimated from the invari-
ant-mass distribution of like-signed (LS) electron pairs. The
NonHFe background contribution was then evaluated by
subtracting the LS distribution from the ULS distribution in
the invariant-mass region Meþe− < 140 MeV=c2. More
details on the procedure can be found in Refs. [40,47].
The efficiency (εNonHFe) of finding the partner electron to
identify non-heavy-flavor decay electrons was calculated
with the aforementioned Monte Carlo simulations, and is
about 60% for 1.5 < pe

T < 2 GeV=c, rising to 76% for
4 < pe

T < 6 GeV=c.
The number of heavy-flavor decay electrons (NHFe) can

be expressed as

NHFe¼Ne−NNonHFe¼Ne−
1

εNonHFe
ðNULSe−NLSeÞ; ð1Þ

where NULSe and NLSe are the number of electrons which
form unlike-sign and like-sign pairs, respectively, with
Meþe− < 140 MeV=c2, and Ne is the number of selected
electrons.
The two-particle correlation distributions between elec-

trons (trigger) and charged (associated) particles were
obtained for three different pe

T intervals (1.5 < pe
T <

2 GeV=c, 2 < pe
T < 4 GeV=c, and 4 < pe

T < 6 GeV=c).
Associated charged particles with 0.3 < pch

T < 2 GeV=c
and jηj < 0.8 were selected with similar criteria as used for
electrons, apart from requiring a hit in at least one, instead
of both, of the two pixel layers and not applying any
particle identification. The single-track reconstruction effi-
ciency and the contamination from secondary particles [41]
were estimated using Monte Carlo simulations of p-Pb
collisions produced with the DPMJET 3.0 event generator
[48] and GEANT3 [45] for the particle transport. Both were
found to be independent of the event multiplicity. With the
selections described above, the tracking efficiency varies
from 75% to 85% depending on track momentum and
primary vertex position, and the contamination of secon-
dary particles varies from 3% to 5.5% with decreasing pch

T .
The ðΔφ;ΔηÞ correlation distribution between heavy-

flavor decay electrons and charged particles is obtained
with the equation

SHFe ¼ Se − SNonHFe

¼ Se − SIDNonHFe − SnonIDNonHFe

¼ Se − SIDNonHFe −
�

1

εNonHFe
− 1

�
SID�NonHFe; ð2Þ

where S corresponds to d2Ne-chðΔη;ΔφÞ=dΔηdΔφ. The
correlation distributions for all trigger electrons and for
non-heavy-flavor decay trigger electrons are denoted as Se
and SNonHFe, respectively. The hadron contamination in Se
is statistically removed by subtracting a scaled dihadron
correlation distribution. The SNonHFe distribution is

evaluated from its two contributions SIDNonHFe and
SnonIDNonHFe. The former corresponds to correlations from
background electron triggers with an identified electron
partner, and the latter to the expected contribution from
background trigger electrons without an identified partner.
The identified background distribution, SIDNonHFe, is evalu-
ated using correlations of trigger electrons paired with
unlike-sign and like-sign electrons, with a similar pro-
cedure as that used to evaluate NNonHFe [see Eq. (1)]. The
nonidentified distribution, SnonIDNonHFe, is estimated assuming
that both identified and nonidentified NonHFe triggers
have the same correlation distribution, apart from recon-
structed partner electrons used to calculate Meþe− , which
are removed from SIDNonHFe to obtain SID�NonHFe.
The correlation distribution for heavy-flavor decay

electrons was corrected for the electron and charged
particle reconstruction efficiencies and for the secondary
particle contamination. It was also corrected for the limited
two-particle acceptance and detector inhomogeneities
using the event mixing technique [8]. The mixed-event
correlation distribution was obtained by combining elec-
trons in an event with charged particles from other events
with similar multiplicity and primary vertex position.
The correlation distribution for heavy-flavor decay elec-
trons was divided by the number of heavy-flavor decay
trigger electrons [NHFe, from Eq. (1)] corrected by their
reconstruction efficiency.
The two-dimensional correlation distribution was pro-

jected onto Δφ for jΔηj < 1.2 and divided by the width of
the selected Δη interval. A baseline term, constant in Δφ,
was subtracted from the correlation distributions. Its values,
reported in Table I, were calculated as the weighted average
of the three lowest points of the distribution, following the
“zero yield at minimum” approach [49]. The resulting
correlation distributions in the two considered multiplicity
classes (0%–20% and 60%–100%) are shown in Fig. 1 for
2 < pe

T < 4 GeV=c. An enhancement of the near- and
away-side peaks is present in high-multiplicity collisions.
To study this feature, the baseline-subtracted correlation
distribution obtained in low-multiplicity events was sub-
tracted from the correlation distribution measured in high-
multiplicity events, as described in Ref. [5]. This removes
the jet-induced correlation peaks, assuming that they are the
same in low- and high-multiplicity events. The correlation
distribution was restricted to the ð0; πÞ range by reflecting
the symmetrical points. The resulting distribution, shown in
Fig. 2, was fitted with the Fourier decomposition of Eq. (3).
An azimuthal anisotropy, dominated by the second-order
term VHFe-ch

2Δ , was found.

1

Δη
1

NHFe

dNHFe-chðΔφÞ
dΔφ

¼ a½1þ 2VHFe-ch
1Δ cosðΔφÞ þ 2VHFe-ch

2Δ cosð2ΔφÞ� ð3Þ
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The measured VHFe-ch
2Δ in high-multiplicity events does

not exclude the possibility of having a VHFe-ch
2Δ contribution

in the low-multiplicity events, as described in Ref. [6].
The systematic uncertainties on the azimuthal correlation

distribution can originate from (i) potential biases in the
procedure employed to select electron candidates and
estimate the hadron contamination, (ii) removal of the
background electrons not produced in heavy-flavor hadron
decays, and (iii) choice of the associated particle selection.
A systematic uncertainty related to the electron reconstruc-
tion efficiency arises from imprecisions in the description
of the detector response. It was studied by varying the
electron selection in the ITS and TPC. The uncertainty
affecting the removal of the hadron contamination was
estimated by varying the particle identification criteria in
the TPC (nTPCσ ). A total uncertainty of less than 0.5% was
estimated from these sources. The uncertainty related to the
efficiency of finding the partner electron and to the stability
of the SNonHFe distribution was studied by varying the
selection for partner tracks and pair invariant mass, result-
ing in an uncertainty of less than 0.5%. The uncertainty on
the associated track reconstruction efficiency, obtained by
varying the associated track selection criteria and by
comparing the probabilities of track prolongation from
TPC to ITS in data and simulations, was estimated to be
3% [50]. A systematic effect due to the contamination of
the associated particles by secondaries comes from residual

discrepancy between Monte Carlo simulations and data in
the relative abundances of particle species and was studied
by varying the selection on the distance of closest
approach to the primary vertex. It was quantified to be
1% (correlated in Δφ), with an additional 1% (correlated)
for jΔφj < 1. Combining the uncertainties from all the
above sources results in a 3% total systematic uncertainty
(correlated in Δφ) and an additional 1% (also correlated)
for jΔφj < 1.
The systematic uncertainties from the above mentioned

sources are also present in the VHFe-ch
2Δ . The uncertainty

related to the electron selection and the identification of
non-heavy-flavor decay electrons on VHFe-ch

2Δ were quanti-
fied to be about 2%–3% and 5%, respectively. The
contamination of the associated particles by secondaries
leads to a 3% systematic uncertainty. In order to test
whether the observed Δφ modulation and the nonzero
VHFe-ch
2Δ could originate from a residual jet contribution,

due to possible differences between the jet structures in
low- and high-multiplicity collisions, the Δη integration
region was modified by excluding central intervals of
jΔηj < Δηgap, varying Δηgap from 0.2 to 0.6. The observed
variation on VHFe-ch

2Δ was 11%–15%, depending on the
electron pT interval, and was taken as the systematic
uncertainty from the jet subtraction. The stability of the
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FIG. 2. Best fit [Eq. (3)] to the azimuthal correlation distribu-
tion between heavy-flavor decay electrons and charged particles,
for high-multiplicity p-Pb collisions after subtracting the jet
contribution based on low-multiplicity collisions. The distribu-
tion is shown for 2 < pe

T < 4 GeV=c and 0.3 < pch
T < 2 GeV=c.

The figure shows only statistical uncertainty.

TABLE I. Results for VHFe-ch
2Δ and baselines in high- (bHM) and low-multiplicity (bLM) collisions.

pe
T (GeV=c) VHFe-ch

2Δ � stat � syst bLM � stat � syst (rad−1) bHM � stat� syst (rad−1)

1.5 < pe
T < 2 ð38� 8� 6Þ × 10−4 1.235� 0.006� 0.037 4.312� 0.008� 0.129

2 < pe
T < 4 ð40� 7� 5Þ × 10−4 1.294� 0.008� 0.038 4.330� 0.007� 0.129

4 < pe
T < 6 ð19� 19� 3Þ × 10−4 1.433� 0.022� 0.043 4.754� 0.020� 0.142
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FIG. 1. Azimuthal correlations between heavy-flavor decay
electrons and charged particles, for high-multiplicity and low-
multiplicity p-Pb collisions, after subtracting the baseline (see text
for details) for 2 < pe

T < 4 GeV=c and 0.3 < pch
T < 2 GeV=c.
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VHFe-ch
2Δ value against the variation of the Δη range suggests

a long-range nature of the observed anisotropy. The
inclusion of a VHFe-ch

3Δ term in the fit function, in Eq. (3),
affects the VHFe-ch

2Δ estimation by less than 0.5%. Combining
the different uncertainty sources results in a total systematic
uncertainty on VHFe-ch

2Δ of 13%–16% depending on pe
T .

The values ofVHFe-ch
2Δ obtained from the fits are reported in

Table I. The measured VHFe-ch
2Δ is larger than zero with a

significance of 4.6σ for the 2 < pe
T < 4 GeV=c range. The

significance for VHFe-ch
2Δ > 0 in the interval 1.5 < pe

T <
4 GeV=c, considering statistical and systematic uncertain-
ties, is about 6σ.
Assuming its factorization in single-particle v2 coeffi-

cients [8], VHFe-ch
2Δ can be expressed as the product of the

second-order Fourier coefficients of the heavy-flavor
decay electron (vHFe2 ) and charged particle (vch2 ) azimuthal
distributions, hence vHFe2 ¼ VHFe-ch

2Δ =vch2 . The vch2 value in
the range 0.3 < pch

T < 2 GeV=c was obtained from the
weighted average of the values measured in smaller pch

T
ranges in Ref. [8], providing vch2 ¼0.0594�0.0010ðstatÞ�
0.0059ðsystÞ. The obtained vHFe2 values are reported in
Fig. 3 and compared to v2 of charged particles, dominated
by light-flavor hadrons, and to inclusive muons at large
rapidity, mostly originating from heavy-flavor hadron
decays for pμ

T > 2 GeV=c. The heavy-flavor decay elec-
tron v2 is lower than vch2 , though the uncertainties are large,
and the pT interval of electron parents (heavy-flavor
hadrons) is considerably broader than the range addressed
in the light-flavor hadron measurement. The v2 values for
heavy-flavor electrons and inclusive muons are similar,
although a direct comparison is not straightforward, given
the different rapidities and the contamination in the muon
sample for pμ

T < 2 GeV=c. The vHFe2 in p-Pb collisions has
similar magnitude to that measured in noncentral Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV [29]. The significance for

vHFe2 > 0 is 5.1σ for 1.5 < pe
T < 4 GeV=c, providing very

strong indications for the presence of long-range anisot-
ropies for heavy-flavor particles in high-multiplicity p-Pb
collisions.
In summary, we report the measurement of v2 for open

heavy-flavor particles at midrapidity in high-multiplicity
p-Pb collisions. The analysis was carried out via a Fourier
decomposition of the azimuthal correlation distribution
between heavy-flavor decay electrons and charged par-
ticles. After removing the jet contribution and fitting
the high-multiplicity correlation distributions, a V2Δ-like
modulation was obtained, qualitatively similar to the one
observed for charged particles [5]. The measured heavy-
flavor decay electron v2 is positive with a significance of
more than 5σ in the 1.5 < pe

T < 4 GeV=c range. Its values
are possibly lower than charged particle v2 [5], and similar
to inclusive muon v2 at large rapidity [33]. Complementing
previous results for light-flavor hadrons [5], this measure-
ment provides new information on the behavior of heavy-
flavor hadrons to understand the azimuthal anisotropies
observed in small collision systems.
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26Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
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73iThemba LABS, National Research Foundation, Somerset West, South Africa

74Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
75Joint Institute for Nuclear Research (JINR), Dubna, Russia

76Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
77KTO Karatay University, Konya, Turkey

78Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
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