
Analysis of the apparent nuclear modification in
peripheral Pb–Pb collisions at 5.02 TeV

(ALICE Collaboration) Acharya, S.; ...; Antičić, Tome; ...; Erhardt, Filip;
...; Gotovac, Sven; ...; Jerčić, Marko; ...; ...

Source / Izvornik: Physics Letters B, 2019, 793, 420 - 432

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1016/j.physletb.2019.04.047

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:424535

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-11-18

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1016/j.physletb.2019.04.047
https://urn.nsk.hr/urn:nbn:hr:217:424535
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:8597
https://dabar.srce.hr/islandora/object/pmf:8597


Physics Letters B 793 (2019) 420–432
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Analysis of the apparent nuclear modification in peripheral Pb–Pb 

collisions at 5.02 TeV

.ALICE Collaboration �

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 May 2018
Received in revised form 26 March 2019
Accepted 17 April 2019
Available online 23 April 2019
Editor: W.-D. Schlatter

Charged-particle spectra at midrapidity are measured in Pb–Pb collisions at the centre-of-mass energy 
per nucleon–nucleon pair √

sNN = 5.02 TeV and presented in centrality classes ranging from most 
central (0–5%) to most peripheral (95–100%) collisions. Possible medium effects are quantified using the 
nuclear modification factor (RAA) by comparing the measured spectra with those from proton–proton 
collisions, scaled by the number of independent nucleon–nucleon collisions obtained from a Glauber 
model. At large transverse momenta (8 < pT < 20 GeV/c), the average RAA is found to increase from 
about 0.15 in 0–5% central to a maximum value of about 0.8 in 75–85% peripheral collisions, beyond 
which it falls off strongly to below 0.2 for the most peripheral collisions. Furthermore, RAA initially 
exhibits a positive slope as a function of pT in the 8–20 GeV/c interval, while for collisions beyond the 
80% class the slope is negative. To reduce uncertainties related to event selection and normalization, 
we also provide the ratio of RAA in adjacent centrality intervals. Our results in peripheral collisions are 
consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by 
the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. 
This explains the unintuitive observation that RAA is below unity in peripheral Pb–Pb, but equal to unity 
in minimum-bias p–Pb collisions despite similar charged-particle multiplicities.
© 2019 Conseil Européen pour la Recherche Nucléaire. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Transport properties of the Quark-Gluon Plasma (QGP) can 
be extracted from measurements of observables in high-energy 
nucleus–nucleus (AA) collisions, which involve large momentum 
transfers, such as jets originating from hard parton-parton scatter-
ings in the early stage of the collision. While propagating through 
the expanding medium, these hard partons lose energy due to 
medium-induced gluon radiation and collisional energy loss, a pro-
cess known as “jet quenching” [1,2]. Due to the energy loss, the 
rate of high-pT particles is expected to be suppressed relative to 
proton–proton collisions. The effect is typically quantified by the 
nuclear modification factor

RAA = 1

〈Ncoll〉
dNAA

ch /dpT

dNpp
ch /dpT

= 1

〈TAA〉
dNAA

ch /dpT

dσ
pp
ch /dpT

, (1)

defined as the ratio of the per-event yields in AA and pp collisions 
normalized to an incoherent superposition of 〈Ncoll〉 binary pp col-
lisions. The average number of collisions 〈Ncoll〉 is determined from 
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a Monte Carlo Glauber model [3–5] and related to the average nu-
clear overlap 〈TAA〉 = 〈Ncoll〉/σ NN

inel, where σ NN
inel is the total inelastic 

nucleon-nucleon cross section. The yields measured in AA colli-
sions, as well as 〈Ncoll〉, depend on the collision centrality, and RAA
is constructed to be unity in the absence of nuclear effects where 
particle production is dominated by hard processes. The collision 
centrality is expressed in percentiles of the total hadronic cross 
section, with the highest (lowest) centrality 0% (100%) referring to 
the most central (peripheral) collisions with zero (maximal) im-
pact parameter. Experimentally, centrality is typically determined 
by ordering events according to multiplicity or energy deposition 
in a limited rapidity range and by fitting the corresponding distri-
bution with a Glauber-based model of particle production [6].

Numerous measurements of RAA reported by experiments at 
the Relativistic Heavy-Ion Collider (RHIC) [7–16] and at the Large 
Hadron Collider (LHC) [17–22] revealed that high-pT particle pro-
duction is suppressed strongly in central collisions, and that the 
suppression reduces with decreasing centrality. Furthermore, con-
trol measurements of possible nuclear modification arising from 
the initial state in d–Au and p–Pb collisions [23–28] and with elec-
tromagnetic probes in AA collisions [29–33] (which should not be 
affected by partonic matter) demonstrated that the observed sup-
pression is due to final state interactions, such as parton energy 
loss. Contrary to expectations, RAA was also found to be below 

https://doi.org/10.1016/j.physletb.2019.04.047
0370-2693/© 2019 Conseil Européen pour la Recherche Nucléaire. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://doi.org/10.1016/j.physletb.2019.04.047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:alice-publications@cern.ch
https://doi.org/10.1016/j.physletb.2019.04.047
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2019.04.047&domain=pdf


ALICE Collaboration / Physics Letters B 793 (2019) 420–432 421

unity at high pT in peripheral collisions, reaching an approximately 
constant value of about 0.80 above 3 GeV/c in 80–92% Au–Au col-
lisions at 

√
sNN = 0.2 TeV [16] and about 0.75 above 10 GeV/c

in 70–90% Pb–Pb collisions at 
√

sNN = 5.02 TeV [21]. In a final-
state dominated scenario, such differences relative to unity imply 
a large jet quenching parameter for peripheral collisions, up to an 
order of magnitude larger than for cold nuclear matter [34], and 
consequently raise expectations of the relevance of parton energy 
loss even in small collision systems [35–37]. However, it has been 
pointed out recently [38] that event selection and geometry biases 
— just like those discussed for p–Pb collisions [39] — can cause an 
apparent suppression of RAA in peripheral collisions, even in the 
absence of nuclear effects, while self-normalized coincidence ob-
servables [40,41] are not affected.

The impact parameter of individual NN collisions is correlated 
to the overall collision geometry leading to an NN impact param-
eter bias in the transverse plane [42], for peripheral collisions the 
NN impact parameter is biased towards larger values. Centrality 
classification based on multiplicity can bias the mean multiplic-
ity of individual nucleon–nucleon (NN) collisions, and hence the 
yield of hard processes in AA collisions due to correlated soft and 
hard particle production, amplifying the inherent NN impact pa-
rameter bias. The presence of the multiplicity bias in peripheral 
Pb–Pb collisions was already demonstrated in Ref. [39] showing 
the averaged multiplicity of the Glauber-NBD fit is lower than the 
average number of ancestors times the mean multiplicity of NBD 
(left panel of figure 8 in Ref. [39]). In the present paper, we aim to 
study its relevance on charged-particle spectra in Pb–Pb collisions 
at 

√
sNN = 5.02 TeV, in 20 centrality classes ranging from 0–5% 

to 95–100% collisions. The spectra at midrapidity are measured 
in the range 0.15 < pT < 30 GeV/c except for the 95–100% class, 
where it is 0.15 < pT < 20 GeV/c. Using the charged-particle spec-
tra from pp collisions at the same energy [22], we construct the 
nuclear-modification factor and study the centrality dependence of 
its average at high pT, as well as its slope at low and high pT. 
To reduce uncertainties related to event selection and normaliza-
tion, which are particularly large for peripheral collisions, we also 
provide the ratio of RAA in adjacent centrality intervals, defined as

R+1 ≡ Ri+1 = Ri
AA

Ri+1
AA

= 〈Ncoll〉i+1

〈Ncoll〉i

dNAA,i
ch /dpT

dNAA,i+1
ch /dpT

, (2)

where i + 1 denotes a 5% more central centrality class than i. 
The definition of R+1 corresponds approximately to the change of 
log RAA with centrality, and its value would be constant for an ex-
ponential dependence.

Similar to RAA, we quantify the centrality dependence of the 
average R+1 at high pT, as well as its slope at low and at high pT. 
Where possible, the results are compared to a PYTHIA-based model 
of independent pp collisions without nuclear modification [38]. 
The remainder of the paper is structured as follows: Section 2
describes the experimental setup. Section 3 describes the charged 
particle measurement with emphasis on corrections and uncertain-
ties related to the most peripheral collisions. Section 4 describes 
the results. Section 5 provides a summary of our findings.

2. Experimental setup

The ALICE detector is described in detail in Ref. [43], and a 
summary of its performance can be found in Ref. [44]. Charged-
particle reconstruction at midrapidity is based on tracking infor-
mation from the Inner Tracking System (ITS) and the Time Projec-
tion Chamber (TPC), both located inside a solenoidal magnetic field 
of 0.5 T parallel to the beam axis.

The ITS [45] consists of three sub-detectors, each composed of 
two layers to measure the trajectories of charged particles and to 
reconstruct primary vertices. The two innermost layers are the Sil-
icon Pixel Detectors (SPD), the middle two layers are Silicon Drift 
Detectors (SDD), the outer two layers are Silicon Strip Detectors 
(SSD).

The TPC [46] is a large (90 m3) cylindrical drift detector. It cov-
ers a pseudorapidity range of |η| < 0.9 over full azimuth, providing 
up to 159 reconstructed space points per track. Charged particles 
originating from the primary vertex can be reconstructed down 
to pT ≈ 100 MeV/c. The relative pT resolution depends on mo-
mentum, is approximately 4% at 0.15 GeV/c, 1% at 1 GeV/c and 
increases linearly approaching 4% at 50 GeV/c.

The pp and Pb–Pb collision data at 
√

sNN = 5.02 TeV were 
recorded in 2015. In total, about 110 · 106 pp and 25 · 106 Pb–Pb
events satisfying the minimum bias trigger and a number of offline 
event selection criteria were used in the analysis. The minimum-
bias trigger required a signal in both, the V0-A and V0-C, scin-
tillator arrays, covering 2.8 < η < 5.1 and −3.7 < η < −1.7, re-
spectively [47]. Beam background events were rejected efficiently 
by exploiting the timing signals in the V0 detectors, and in Pb–Pb
collisions also by using the two Zero Degree Calorimeters (ZDCs). 
The latter are positioned close to beam rapidity on both sides of 
the interaction point.

3. Data analysis

The measurements of charged-particle spectra in pp and Pb–Pb
collisions at 

√
sNN = 5.02 TeV are described in detail in Ref. [22].

The collision point or primary event vertex was determined 
from reconstructed tracks. If no vertex was found using tracks, the 
vertex reconstruction was performed using track segments con-
structed from the two innermost layers of the ITS. Events with 
a reconstructed vertex within ±10 cm from the centre of the 
detector along the beam direction are used to ensure a uniform 
acceptance and reconstruction efficiency at midrapidity.

Primary charged particles [48] were measured in the kinematic 
range of |η| < 0.8 and 0.15 < pT < 30 GeV/c. The detector sim-
ulations were performed using the PYTHIA [49] and HIJING [50]
Monte Carlo event generators with GEANT3 [51] for modelling the 
detector response. Track-level corrections include acceptance, ef-
ficiency, purity and pT resolution, which were obtained using an 
improved method tuned on data to reduce the systematic uncer-
tainties related to particle species dependence (see Ref. [22] for 
details). Events are classified in percentiles of the hadronic cross-
section using the sum of the amplitudes of the V0-A and V0-C 
signals (V0M estimator) [6]. The absolute scale of the centrality is 
defined by the range of 0–90% centrality in which a Glauber-based 
multiplicity model is fitted to the V0M distribution. The lower 
centrality limit of 90% of this range with its corresponding V0M 
signal is denoted the anchor point (AP). The multiplicity for each 
particle source is modelled with a negative binomial distribution, 
where the effective number of independent particle production 
sources is described by a linear combination of the number of 
participants (Npart) and collisions (Ncoll). The AP was shifted by 
±0.5%, leading to a systematic uncertainty in the normalization 
of the spectra of up to 6.7% for the 85–90% centrality class. Un-
like previous measurements in Pb–Pb collisions, the analysis was 
not limited to 0–90% most central events, where effects of trig-
ger inefficiency and contamination by electromagnetic processes 
are negligible, but also included the 90–100% most peripheral col-
lisions. The V0M value corresponding to 95% of the hadronic cross 
section was determined by selecting either 95% of the events given 
by the Glauber-NBD parametrization, or the number of events in 
the 0–90% centrality class multiplied by the factor 95/90, where 
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the latter is used as a variation to assess the systematic uncertainty 
of the approach. The difference on the measured yields between 
the two ways was assigned as additional systematic uncertainty. 
For the centrality class 90–95% (95–100%) the combined uncer-
tainty amounts to a fully correlated part of 10.8% (11.7%) on the 
normalization of the spectra and a 2.9% (4.6%) residual effect on 
the shape.

The trigger and event-vertex reconstruction efficiency and the 
related systematic uncertainties for peripheral Pb–Pb collisions 
were estimated from simulations using HIJING and PYTHIA includ-
ing single- and double-diffractive processes, but ignoring possible 
differences from nuclear effects. The V0M distribution in the sim-
ulations was reweighted with the measured V0M distribution. The 
combined efficiency was found to be 0.985 ± 0.015 for the 90–95% 
and 0.802 ± 0.057 for the 95–100% centrality classes, respectively, 
while fully efficient for more central collisions. In addition, in the 
most peripheral bin a pT-dependent signal loss of up to 14.7% 
at low pT is corrected for. To account for diffractive processes in 
this correction and its systematic uncertainty, two limiting sce-
narios have been considered: a) the signal loss is assumed to be 
as in pp collisions in the V0M range of the 95–100% bin; b) only 
the fraction of events with a single nucleon–nucleon collision are 
corrected for assuming the signal loss from minimum-bias pp col-
lisions.

Contamination of the peripheral bins by electromagnetic inter-
actions was studied in the data by removing all events with small 
energy deposits in the neutron ZDCs. The resulting change of the 
spectrum with the requirements of at least a five-neutron equiva-
lent energy in both neutron ZDCs amounts to 5% for the 95–100% 
centrality class, 3% for the 90-95% class and 2% for the 80-85% and 
85-90% classes and is assigned as systematic uncertainty. To ac-
count for contamination of the trigger from events without recon-
structed vertex, those events are removed from the analysis and 
the resulting change is assigned as systematic uncertainty on the 
normalization (6.8% in the 95–100% class and 0.5% in the 90–95% 
class).

Systematic uncertainties related to vertex selection, track selec-
tion, secondary-particle contamination, primary-particle composi-
tion, pT resolution, material budget and tracking efficiency were 
estimated as described in Ref. [22] and are assigned as bin-by-bin 
uncertainties. The systematic uncertainties related to the central-
ity selection were estimated by a comparison of the pT spectra 
when the limits of the centrality classes are shifted due to an un-
certainty of ±0.5% in the fraction of the hadronic cross section 
used in the analysis. They are split into two parts: one part that is 
fully correlated between the pT bins assigned as a normalization 
uncertainty plus an additional part taking into account residual 
differences in the spectral shape assigned as a bin-by-bin uncer-
tainty. The overall normalization uncertainty of RAA contains the 
uncertainty related to the centrality selection, the uncertainty of 
Ncoll, the uncertainty of the trigger efficiency, the uncertainty of 
the trigger contamination and the normalization uncertainty of the 
pp reference spectrum added in quadrature. Note that most uncer-
tainties are correlated to a large extent between adjacent centrality 
bins leading to reduced uncertainties in R+1.

Ordering events according to multiplicity introduces a bias rel-
ative to using the impact parameter in Glauber-based particle pro-
duction models. It is expected that part of the bias introduced by 
the ordering can be cancelled in RAA, when Ncoll is also obtained 
in the same way as in the data. The difference relative to averag-
ing over impact parameter is quantified in Fig. 1, which shows the 
ratio of 〈Ncoll〉 by slicing either in multiplicity (estimated using 
the V0M amplitude) 

〈
Nmult

coll

〉
or impact parameter 

〈
Ngeo

coll

〉
, as car-

ried out so far at the LHC. The difference is below 5% up to 80% 

Fig. 1. Ratio of number of collisions determined by slicing in multiplicity (Nmult
coll ) 

divided by the number of collisions determined directly from the impact parame-
ter (Ngeo

coll ).

Table 1
Summary of the average Npart , Ncoll , TAA for all centrality classes obtained by slicing 
the V0M amplitude distribution instead of the impact parameter. All uncertainties 
listed are systematic uncertainties. Statistical uncertainties are negligible.

Centrality class
〈
Npart

〉 〈Ncoll〉 〈TAA〉 (mb−1)

0–5% 382.3 ± 2.4 1752 ± 28 25.92 ± 0.37
5–10% 329.1 ± 5.0 1367 ± 37 20.22 ± 0.52
10–15% 281.1 ± 5.2 1080 ± 26 15.98 ± 0.36
15–20% 239.4 ± 5.2 850 ± 26 12.57 ± 0.37
20–25% 202.7 ± 4.6 662 ± 25 9.79 ± 0.36
25–30% 170.8 ± 3.1 513 ± 16 7.58 ± 0.22
30–35% 142.5 ± 3.0 390 ± 13 5.77 ± 0.18
35–40% 118.0 ± 2.1 293.4 ± 7.4 4.34 ± 0.11
40–45% 96.3 ± 2.0 215.2 ± 6.4 3.184 ± 0.095
45–50% 77.5 ± 1.5 154.8 ± 4.0 2.290 ± 0.066
50–55% 61.29 ± 0.86 109.0 ± 1.8 1.612 ± 0.033
55–60% 47.43 ± 0.59 74.1 ± 1.4 1.096 ± 0.026
60–65% 35.84 ± 0.67 49.2 ± 1.2 0.728 ± 0.020
65–70% 26.19 ± 0.56 31.6 ± 1.1 0.468 ± 0.018
70–75% 18.60 ± 0.40 19.89 ± 0.77 0.294 ± 0.012
75–80% 12.78 ± 0.32 12.19 ± 0.46 0.1803 ± 0.0075
80–85% 8.50 ± 0.23 7.22 ± 0.30 0.1068 ± 0.0048
85–90% 5.45 ± 0.11 4.12 ± 0.13 0.0609 ± 0.0021
90–95% 3.31 ± 0.19 2.18 ± 0.16 0.0323 ± 0.0024
95–100% 2.24 ± 0.11 1.223 ± 0.096 0.0181 ± 0.0014

centrality, and then increases strongly up to 40% for more periph-
eral classes. The average quantities for a centrality class, such as 
the number of participants Npart, the number of binary collisions 
Ncoll and the nuclear overlap function TAA, were obtained by av-
eraging over the V0M multiplicity intervals, and are summarized 
in Table 1. For the calculation of RAA and R+1 we use only those 
multiplicity averaged quantities. As before [5,6], the uncertainties 
on the mean were obtained by changing the various ingredients 
of the Glauber MC model by one standard deviation. The result-
ing relative uncertainties on the mean are below 6%, however in 
particular for peripheral collisions the widths of the respective dis-
tributions are significantly larger.

The charged particle multiplicity dNch/dη and the average 
transverse momentum 〈pT〉 for all centrality intervals are listed in 
Table 2, values given for dNch/dη and 〈pT〉>0 are extrapolated to 
pT = 0 using a modified Hagedorn function fitted to the data, as 
described in Ref. [52].
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Fig. 2. Nuclear-modification factor versus pT for charged particles at midrapidity in Pb–Pb collisions at √sNN = 5.02 TeV for 5%-wide centrality classes. The filled, coloured 
markers are for the five most peripheral classes, with the corresponding global uncertainties denoted close to pT = 0.1 GeV/c. Vertical error bars denote statistical uncer-
tainties, while the boxes denote the systematic uncertainties. For visibility, the uncertainties are only drawn for the peripheral classes.
Table 2
Summary of the average dNch/dη and 〈pT〉 in |η| < 0.8 for all centrality classes. 
While 〈pT〉>0.15 is averaged over the measured range 0.15 < pT < 10 GeV/c, 〈pT〉>0

is extrapolated to pT = 0. All uncertainties listed are systematic uncertainties. Sta-
tistical uncertainties are negligible.

Centrality class dNch/dη 〈pT〉>0.15 (GeV/c) 〈pT〉>0 (GeV/c)

0–5% 1910 ± 49 0.729 ± 0.010 0.681 ± 0.010
5–10% 1547 ± 40 0.731 ± 0.010 0.683 ± 0.010
10–15% 1273 ± 30 0.732 ± 0.009 0.683 ± 0.009
15–20% 1048 ± 25 0.733 ± 0.009 0.683 ± 0.009
20–25% 863 ± 19 0.730 ± 0.009 0.678 ± 0.008
25–30% 703 ± 16 0.727 ± 0.009 0.676 ± 0.008
30–35% 568 ± 13 0.723 ± 0.008 0.671 ± 0.008
35–40% 453 ± 11 0.719 ± 0.008 0.666 ± 0.008
40–45% 356.6 ± 8.4 0.710 ± 0.008 0.657 ± 0.008
45–50% 275.1 ± 6.8 0.704 ± 0.008 0.650 ± 0.007
50–55% 208.5 ± 5.6 0.695 ± 0.008 0.640 ± 0.008
55–60% 154.1 ± 4.5 0.687 ± 0.008 0.631 ± 0.007
60–65% 111.4 ± 3.5 0.676 ± 0.007 0.619 ± 0.007
65–70% 78.0 ± 2.8 0.667 ± 0.007 0.609 ± 0.007
70–75% 53.1 ± 2.1 0.659 ± 0.007 0.599 ± 0.007
75–80% 34.9 ± 1.6 0.650 ± 0.008 0.589 ± 0.007
80–85% 22.0 ± 1.4 0.636 ± 0.014 0.575 ± 0.013
85–90% 12.87 ± 0.98 0.612 ± 0.014 0.551 ± 0.013
90–95% 6.46 ± 0.78 0.574 ± 0.017 0.516 ± 0.015
95–100% 2.71 ± 0.51 0.524 ± 0.031 0.471 ± 0.028

4. Results

Fig. 2 presents the nuclear-modification factor, given in Eq. (1), 
versus pT for charged particles at midrapidity in Pb–Pb collisions 
at 

√
sNN = 5.02 TeV for 5%-wide centrality classes. The focus of the 

presented analysis is mainly on the peripheral classes, which for 
convenience are displayed in filled, coloured symbols with their 
corresponding global uncertainties of about 10–20% denoted at 
pT∼ 0.1 GeV/c. As usual, if not otherwise stated, vertical error bars 
denote statistical uncertainties, while the boxes denote the system-
atic uncertainties.

From central to peripheral collisions RAA increases, which in 
particular above about 10 GeV/c can be understood as the pro-
gressive reduction of medium-induced parton energy loss. Further-
more, the shape is similar from the most central up to the 80–85% 

centrality class, namely an increase at low pT, a maximum around 
2–3 GeV/c, related to radial flow, then a decrease with a local 
minimum at about 7 GeV/c, followed by a mild increase. Above 
80–85% centrality, the evolution is different as already at low pT
the slope is negative and RAA decreases monotonously with in-
creasing pT. The change in behaviour seems to occur in the 75–85% 
interval, since the 80–85% RAA values appear to be the same or 
even lower than those of the 75–80% interval. For the most pe-
ripheral classes, the reduction of the nuclear modification factor 
with increasing pT is qualitatively similar to the one observed for 
low multiplicity p–Pb [39] collisions, indicating that the underly-
ing bias towards more peripheral collisions with a reduced rate of 
hard scatterings per nucleon–nucleon collisions is the same. If in-
stead of using Nmult

coll , we had used Ngeo
coll in the normalization of 

RAA, the results for peripheral collisions above 80% would be even 
lower, namely by the ratio quantified in Fig. 1.

To quantify these observations we provide in Fig. 3 the av-
erage RAA at high pT (within 8 < pT < 20 GeV/c), which in-
creases smoothly from most central up to 70–75% centrality and 
drops strongly beyond the 80–85% centrality class. The data are 
compared to the high pT limit of a PYTHIA-based model (HG-
PYTHIA) [38], which for every binary nucleon–nucleon collision 
superimposes a number of PYTHIA events incoherently without 
nuclear modification. The essential feature of the model is that 
particle production per nucleon–nucleon collision originates from 
a fluctuating number of multiple partonic interactions depending 
on the nucleon–nucleon impact parameter. Despite the fact that 
HG-PYTHIA is a rather simple approach, for 75–80% and more 
peripheral collisions, it describes the average RAA relatively well 
suggesting that the apparent suppression for peripheral collisions 
is not caused by parton energy loss, but rather by the event selec-
tion criteria imposed to determine the centrality of the collisions. 
The data are significantly lower than the model calculation for 
the most peripheral centrality classes, possibly due to a significant 
contribution of diffraction, which is not modelled in HG-PYTHIA. 
The slope of a linear fit to RAA performed for 8 < pT < 20 GeV/c, 
the region where the RAA in central collisions rises after its min-
imum, is shown in Fig. 4 as a function of centrality. This high-pT
slope is positive and initially increasing mildly before decreas-
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Fig. 3. Average RAA for 8 < pT < 20 GeV/c versus centrality percentile in Pb–Pb col-
lisions at √sNN = 5.02 TeV compared to predictions from HG-PYTHIA [38]. Vertical 
error bars denote statistical uncertainties, while the boxes denote the systematic 
uncertainties.

ing with decreasing centrality up to about 80% centrality, beyond 
which it is close to zero, and then even is negative in the highest 
centrality class. At low to intermediate pT (within 0.4–1.2 GeV/c), 
the regime which is strongly influenced by the hydrodynamic ex-
pansion, the RAA exhibits another rise. The slope extracted in the 
pT range 0.4–1.2 GeV/c is also shown in Fig. 4. The RAA at low 
and high pT is consistent with being linearly dependent on pT in 
the chosen fit ranges, resulting χ2/NDF are below unity. While the 
absolute values of the slopes are very different (note the normali-
sation), the shape of the centrality dependence of the slope at low 
pT is remarkably similar to that extracted at high pT. This hints 
at a close correlation between these two regimes, possibly induced 
by the geometry or density dependence of parton energy loss on 

Fig. 4. Slope of RAA at low pT (in 0.4 < pT < 1.2 GeV/c) and at high pT (in 8 < pT <

20 GeV/c) scaled by factor 15 for visibility versus centrality percentile in Pb–Pb
collisions at √sNN = 5.02 TeV. Vertical error bars denote statistical uncertainties, 
while the boxes denote the systematic uncertainties.

the one hand and collective expansion on the other hand. In pe-
ripheral collisions, in particular above 90% centrality, the low pT
slope is negative, indicating that the very peripheral events are in-
creasingly softer.

In order to study the shape evolution of RAA in more detail, 
we compute the ratio of adjacent centrality intervals, as given by 
Eq. (2). In this way a large part of the global uncertainties as well 
as of the systematic uncertainties cancel. Fig. 5 presents R+1 ver-
sus pT for charged particles at midrapidity in Pb–Pb collisions at √

sNN = 5.02 TeV for 5%-wide centrality classes. As for RAA the pe-
ripheral collisions are displayed in colour, with their corresponding 
global uncertainties, which are significantly smaller than for RAA
except for the most peripheral class, denoted around 0.1 on the 
Fig. 5. R+1 versus pT for charged particles at midrapidity in Pb–Pb collisions at √sNN = 5.02 TeV. R+1 is defined as the ratio of Ncoll normalized spectra for a given centrality 
class relative to the 5% more central class, see Eq. (2). The filled, coloured markers are for the 5 most peripheral classes, with the corresponding global uncertainties denoted 
close to pT = 0.1 GeV/c on the pT-axis. Vertical error bars denote statistical uncertainties, while the boxes denote the systematic uncertainties. For visibility, the uncertainties 
are only drawn for the peripheral classes.
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Fig. 6. Average R+1 for 8 < pT < 20 GeV/c versus centrality percentile in Pb–Pb col-
lisions at √sNN = 5.02 TeV compared to predictions from HG-PYTHIA [38]. Vertical 
error bars denote statistical uncertainties, while the boxes denote the systematic 
uncertainties.

Fig. 7. Slope of R+1 at low pT (in 0.4 < pT < 1.2 GeV/c) and at high pT (in 
8 < pT < 20 GeV/c) versus centrality percentile in Pb–Pb collisions at √sNN = 5.02
TeV. Vertical error bars denote statistical uncertainties, while the boxes denote the 
systematic uncertainties.

abscissa. The ratio is found to be nearly identical for 0–5% central 
to 70–75% peripheral collisions (14 curves) within 10%. In addition, 
in this centrality range, the ratio is only slightly pT-dependent, al-
though explained typically by distinct mechanism (radial flow at 
low pT and energy loss at high pT). For more peripheral collisions, 
however, the R+1 changes significantly and reduces to about 0.4
for most peripheral collisions. While the quenching power of the 
medium apparently only gradually changes for about 75% of the 
Pb–Pb cross-section, the sudden drop for more than 75% peripheral 
collisions can hardly be explained by an increase in quenching.

The evolution of the R+1 at high pT with centrality is charac-
terized by taking the average R+1 for 8 < pT < 20 GeV/c, shown 
in Fig. 6. The average is about 1.14, slightly decreasing with de-
creasing centrality and beyond 75% centrality falls strongly, similar 
to predictions from HG-PYTHIA. An approximate constant value for 

R+1 up to about 60% centrality implies an exponential dependence 
on centrality.

Fig. 7 shows the slope of a linear fit to the low momentum re-
gion (0.4–1.2 GeV/c) and the high-momentum region (8 < pT <

20 GeV/c) of R+1. In the chosen fit ranges, the R+1 can be fit-
ted by a linear function with χ2/NDF < 1. At low momentum, 
the slope of R+1 exhibits a mild centrality dependence, related 
to the reduced strength of radial flow, dropping strongly for pe-
ripheral collisions above 80%, as expected from ordering events ac-
cording to multiplicity. At high momentum, the slope is non-zero, 
−0.0031 ± 0.0006, and within the uncertainties not dependent on 
centrality.

5. Summary

Charged-particle spectra at midrapidity were measured in Pb–
Pb collisions at a centre-of-mass energy per nucleon pair of √

sNN = 5.02 TeV and presented in centrality classes ranging from 
the most central (0–5%) to the most peripheral (95–100%) colli-
sions. Measurements beyond the 90% peripheral collisions at the 
LHC are presented for the first time. For a consistent treatment 
of the most peripheral collisions the number of binary collisions 
was calculated from a Glauber model in intervals of multiplicity 
rather than in impact parameter (Fig. 1). Possible medium effects 
were quantified by comparing the measured spectra with those 
from proton–proton collisions normalized by the number of in-
dependent nucleon–nucleon collisions obtained from a Glauber 
model (Fig. 2). At large transverse momenta (8 < pT < 20 GeV/c), 
the average RAA increases from about 0.15 in the 0–5% most cen-
tral collisions to a maximum value of about 0.8 in the 75–85% 
peripheral collisions, beyond which it strongly falls off to be-
low 0.2 for the most peripheral collisions (Fig. 3). Furthermore, 
RAA initially exhibits a positive slope as a function of pT in the 
8–20 GeV/c interval, while for collisions beyond the 80% class 
the slope is negative (Fig. 4). The shape of the slope extracted 
at low pT, within 0.4–1.2 GeV/c, is remarkably similar, indicating 
that there may be a close correlation between these two regimes. 
To reduce uncertainties related to event selection and normaliza-
tion, the ratio of RAA in adjacent centrality intervals was mea-
sured (Fig. 5). Up to about 60% peripheral collisions, this ratio is 
fairly constant, even as a function of pT. It then starts to decrease 
and finally, for centralities beyond 75%, it falls off strongly (Fig. 6) 
with its slopes at low and high momentum varying only mildly or 
not at all except for the most peripheral centrality intervals (Fig. 7).

The trends observed in peripheral collisions are consistent 
with a simple PYTHIA-based model without nuclear modification, 
demonstrating that biases caused by the event selection and col-
lision geometry can lead to an apparent suppression in peripheral 
collisions. This explains the contradictory and hard to reconcile ob-
servation that RAA is below unity in peripheral Pb–Pb, but equal 
to unity in minimum-bias p–Pb collisions despite similar charged-
particle multiplicities. With a correct treatment of the biases a 
smooth transition between Pb–Pb and minimum-bias p–Pb colli-
sions is expected without the need to involve parton energy loss 
in peripheral collisions. Without such treatment, the measurement 
and interpretation of RAA in peripheral collisions, in particular 
above 80% centrality, have complications similar to p–Pb collisions, 
where the observable was named Q pPb [39] to distinguish it from 
the unbiased nuclear modification factor.
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