
�D�i�r�e�c�t� �p�h�o�t�o�n� �e�l�l�i�p�t�i�c� �f�l�o�w� �i�n� �P�b�-�P�b� �c�o�l�l�i�s�i�o�n�s� �a�t� "��s�N�N
�=� �2�.�7�6� �T�e�V

�(�A�L�I�C�E� �C�o�l�l�a�b�o�r�a�t�i�o�n�)� �A�c�h�a�r�y�a�,� �S�.�;� �.�.�.�;� �A�n�t�i�
�i���,� �T�o�m�e�;� �.�.�.�;� �E�r�h�a�r�d�t�,� �F�i�l�i�p�;

�.�.�.�;� �G�o�t�o�v�a�c�,� �S�v�e�n�;� �.�.�.�;� �J�e�r�
�i���,� �M�a�r�k�o�;� �.�.�.�;� �.�.�.

�S�o�u�r�c�e� �/� �I�z�v�o�r�n�i�k�:� �P�h�y�s�i�c�s� �L�e�t�t�e�r�s� �B�,� �2�0�1�9�,� �7�8�9�,� �3�0�8� �-� �3�2�2

�J�o�u�r�n�a�l� �a�r�t�i�c�l�e�,� �P�u�b�l�i�s�h�e�d� �v�e�r�s�i�o�n

�R�a�d� �u� �
�a�s�o�p�i�s�u�,� �O�b�j�a�v�l�j�e�n�a� �v�e�r�z�i�j�a� �r�a�d�a� �(�i�z�d�a�v�a�
�e�v� �P�D�F�)

�h�t�t�p�s�:�/�/�d�o�i�.�o�r�g�/�1�0�.�1�0�1�6�/�j�.�p�h�y�s�l�e�t�b�.�2�0�1�8�.�1�1�.�0�3�9

�P�e�r�m�a�n�e�n�t� �l�i�n�k� �/� �T�r�a�j�n�a� �p�o�v�e�z�n�i�c�a�:�h�t�t�p�s�:�/�/�u�r�n�.�n�s�k�.�h�r�/�u�r�n�:�n�b�n�:�h�r�:�2�1�7�:�0�3�2�1�5�4

�R�i�g�h�t�s� �/� �P�r�a�v�a�:�A�t�t�r�i�b�u�t�i�o�n� �4�.�0� �I�n�t�e�r�n�a�t�i�o�n�a�l

�D�o�w�n�l�o�a�d� �d�a�t�e� �/� �D�a�t�u�m� �p�r�e�u�z�i�m�a�n�j�a�:�2�0�2�0�-�1�1�-�3�0

�R�e�p�o�s�i�t�o�r�y� �/� �R�e�p�o�z�i�t�o�r�i�j�:

�R�e�p�o�s�i�t�o�r�y� �o�f� �F�a�c�u�l�t�y� �o�f� �S�c�i�e�n�c�e� �-� �U�n�i�v�e�r�s�i�t�y� �o�f� 

�Z�a�g�r�e�b



Physics Letters B 788 (2019) 505…518
Contents lists available at ScienceDirect

Physics Letters  B

www.elsevier.com/locate/physletb

Dielectron  and heavy-quark  production  in  inelastic  and 

high-multiplicity  proton…proton  collisions  at 
�

s = 13 TeV

.ALICE Collaboration �

a r  t  i  c l  e i  n f  o a b s t  r  a c t

Article history:
Received 23 May 2018
Received in revised form  8 October 2018
Accepted 6 November  2018
Available  online  9 November  2018
Editor: M.  Doser

The measurement  of dielectron  production  is presented  as a function  of invariant  mass and transverse 
momentum  (pT) at midrapidity  (| ye| < 0.8) in  proton…proton  (pp)  collisions  at a centre-of-mass  energy 
of 

�
s = 13 TeV. The contributions  from  light-hadron  decays are calculated  from  their  measured cross 

sections in  pp collisions  at 
�

s = 7 TeV or 13 TeV. The remaining  continuum  stems from  correlated  
semileptonic  decays of heavy-”avour  hadrons. Fitting  the data with  templates  from  two  different  MC 
event  generators, PYTHIA and POWHEG, the charm  and beauty  cross sections at midrapidity  are extracted  
for  the “rst  time  at this  collision  energy:  d� cc̄/ d y|y= 0 = 974 ± 138 (stat.) ± 140 (syst.) ± 214(BR) µb
and d� bb̄/ d y|y= 0 = 79 ± 14 (stat.) ± 11 (syst.) ± 5(BR) µb using  PYTHIA simulations  and d� cc̄/ d y|y= 0 =
1417 ± 184 (stat.) ± 204 (syst.) ± 312(BR) µb and d� bb̄/ d y|y= 0 = 48 ± 14 (stat.) ± 7 (syst.) ± 3(BR) µb
for  POWHEG. These values, whose uncertainties  are fully  correlated  between  the two  generators, 
are consistent  with  extrapolations  from  lower  energies. The different  results  obtained  with  POWHEG 
and PYTHIA imply  different  kinematic  correlations  of the heavy-quark  pairs in  these two  generators. 
Furthermore,  comparisons  of dielectron  spectra in  inelastic  events and in  events collected  with  a 
trigger  on high  charged-particle  multiplicities  are presented  in  various  pT intervals.  The differences  
are consistent  with  the already measured scaling of light-hadron  and open-charm  production  at high  
charged-particle  multiplicity  as a function  of pT. Upper limits  for  the contribution  of virtual  direct  
photons  are extracted  at 90% con“dence  level  and found  to be in  agreement  with  pQCD calculations.

� 2018 The Author.  Published by Elsevier B.V. This is an open access article  under  the CC BY license 
(http://creativecommons.org/licenses/by/4.0/ ). Funded by SCOAP3.
1. Introduction

Heavy-”avour  quarks (charm  and beauty)  are copiously  pro-
duced by inelastic  partonic  scatterings  in  high-energy  proton…
proton  (pp)  collisions  at the CERN Large Hadron  Collider  (LHC). 
Their  large masses (mQ) make it  possible to calculate  their  pro-
duction  cross sections with  perturbative  quantum  chromodynam-
ics (pQCD) [1…3]. Hence, experimental  measurements  of heavy-
quark  production  provide  an excellent  test of pQCD in  this  energy 
regime.  Flavour conservation  allows  heavy quarks to be only  pro-
duced in  pairs. Charm hadrons  and their  decay products  re”ect  
the initial  angular  correlation  of the heavy-quark  pairs, whereas in  
the case of decays of beauty  hadrons  the correlation  is weakened  
due to their  large masses. The contribution  from  the simultane-
ous semileptonic  decays of the corresponding  heavy-”avour  hadron  
pairs dominates  the dilepton  yield  in  the intermediate  mass region  
(IMR) 1 < m�� < 3 GeV/ c2. Hence, dielectron  measurements  can be 
used to study  charm  and beauty  production.

� E-mail address: alice -publications  @cern .ch.

The ALICE Collaboration  has reported  charm  and beauty  pro-
duction  cross section  measurements  at midrapidity  (| y| < 0.5) 
in  pp collisions  at centre-of-mass  energies of 

�
s = 2.76 and 

7 TeV [4…10]. The charm  measurement  at 
�

s = 7 TeV is com-
plemented  by ATLAS data extending  to higher  transverse  momen-
tum  (pT) and | y| < 2.1 [11]. Furthermore,  the CMS Collaboration  
has provided  a variety  of charm  and bottom  measurements  at 
midrapidity  at 

�
s = 2.76, 5 and 7 TeV [12…20]. At forward  rapid-

ity  (2 < y < 5), the LHCb Collaboration  has measured charm  and 
beauty  production  cross sections in  pp collisions  at 

�
s = 5, 7, 8 

and 13 TeV [21…24]. These results  are generally  in  good agree-
ment  with  pQCD calculations  at next-to-leading  order  (NLO) in  
the strong  coupling  constant  (� s) with  all-order  resummation  of 
the logarithms  of pT/ mQ (FONLL) [1…3]. Though the measured 
charm  production  cross sections consistently  lie  on the upper  
edge of the systematic  uncertainties  of the theory  calculations.  
Recently, the ALICE Collaboration  has measured the charm  and 
beauty  production  cross sections in  pp collisions  at 

�
s = 7 TeV us-

ing electron…positron pairs (dielectrons)  from  correlated  semilep-
tonic  decays of heavy-”avour  hadrons [ 25]. Such an approach was 
“rst  performed  by the PHENIX Collaboration  in  pp and d…Au col-
lisions  at �

sNN = 200 GeV at the Relativistic  Heavy Ion Collider  

https://doi.org/10.1016/j.physletb.2018.11.009
0370-2693/ � 2018 The Author.  Published by Elsevier B.V. This is an open access article  under  the CC BY license (http://creativecommons.org/licenses/by/4.0/ ). Funded by 
SCOAP3.
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(RHIC) [26…28]. These measurements  have the advantage that  they  
probe the full  pT range of heavy-quark  pairs and contain  comple-
mentary  information  about  the initial  correlation  of charm  quarks, 
i.e. the underlying  production  mechanism,  which  is not  accessible 
in  conventional  single heavy-”avour  measurements.

The measurement  of direct  photons,  i.e. those produced  in  
hard  scatterings  between  incoming  partons  in  hadronic  collisions,  
provides  another  important  test of pQCD. Furthermore,  at pT <
3 GeV/ c, where  the applicability  of perturbation  theory  may be 
questionable,  experimental  data of direct-photon  production  in  pp
collisions  serve as a crucial  reference to establish  the presence 
of thermal  radiation  from  the hot  and dense medium  created in  
heavy-ion  collisions [ 29…32]. The measurement  of real (massless) 
direct  photons  at low  pT is challenging  because of the large back-
ground  of hadron  decay photons.  This background  can be largely  
reduced by measuring  the contribution  of virtual  direct  photons,  
i.e. direct  e+ eŠ pairs, to the dielectron  invariant-mass  spectrum  
above the � 0 mass [29,30].

Proton…proton collisions  in  which  a large number  of charged 
particles  are produced  have recently  attracted  the interest  of the 
heavy-ion  community [ 33,34]. These events exhibit  features that  
are similar  to those observed in  heavy-ion  collisions,  e.g. collec-
tive  effects, such as long-range  angular  correlations [ 35…40] or  
enhanced strangeness production [ 41]. Charged-hadron  pT spec-
tra  in  pp collisions  at 

�
s = 13 TeV show a hardening  with  in-

creasing multiplicity,  an effect  that  arises naturally  from  jets [ 42]. 
Also, heavy-quark  production  is found  to scale faster than  lin-
early  with  the charged-particle  multiplicity  in  pp collisions  at �

s = 7 TeV [43,44]. This motivates  the study  of dielectron  pro-
duction  in  high-multiplicity  pp collisions.  In the low  mass region  
(mee < 1 GeV/ c2), dielectron  measurements  provide  further  in-
sight  into  possible modi“cations  of the light  vector  and pseudo-
scalar meson production  via their  resonance and/or  Dalitz  de-
cays, whereas in  the IMR they  allow  for  complementary  studies 
of the heavy-”avour  production.  At LHC energies, the contribution  
from  open charm  already  dominates  the dielectron  continuum  at 
mee � 0.5 GeV/ c2. Moreover,  if  a thermalised  system were  created 
in  such high-multiplicity  pp collisions,  a signal of thermal  (virtual)  
photons  should  be present.

In this  letter,  “rst  results  of charm  and beauty  production  cross 
sections at midrapidity  in  inelastic  (INEL) and high-multiplicity  
(HM)  pp collisions  at 

�
s = 13 TeV are reported.  The paper is or-

ganised as follows:  the ALICE apparatus  and the data samples used 
in  the analysis are described in  Section 2, the data analysis is dis-
cussed in  Section 3, Section 4 introduces  the cocktail  of known  
hadronic  sources, and the results  are presented  and discussed in  
Section 5.

2. The ALICE detector  and  data  samples

A detailed  description  of the ALICE apparatus  and its  perfor-
mance can be found  in [45…48]. The detectors  used in  this  analysis 
are brie”y  described below.

Trajectories  of charged particles  are reconstructed  in  the ALICE 
central  barrel  with  the Inner  Tracking  System (ITS) and the Time 
Projection  Chamber (TPC) that  reside within  a solenoid,  which  
provides  a homogeneous  magnetic  “eld  of 0.5 T along the beam 
direction.  The ITS consists of six cylindrical  layers of silicon  de-
tectors,  with  radial  distances from  the beam axis between  3.9 cm 
and 43 cm. The two  innermost  layers are equipped  with  Silicon  
Pixel Detectors  (SPD), the two  intermediate  layers are composed of 
Silicon  Drift  Detectors, and the two  outermost  layers are made of 
Silicon  Strip  Detectors. The TPC, main  tracking  device in  the ALICE 
central  barrel,  is a 5 m long cylindrical  gaseous detector  extend-
ing from  85 cm to 247 cm in  radial  direction.  It  provides  up to 

159 spacial points  per track  for  charged-particle  reconstruction  and 
particle  identi“cation  (PID) through  the measurement  of the spe-
ci“c  ionisation  energy loss dE/ dx in  the gas volume.

The PID is complemented  by the Time-Of-Flight  (TOF) system 
located  at a radial  distance of 3.7 m from  the nominal  interac-
tion  point.  It  measures the arrival  time  of particles  relative  to the 
event  collision  time  provided  by the TOF detector  itself  or by the 
T0 detectors,  two  arrays of Cherenkov counters  located  at forward  
rapidities [ 49].

Collision  events are triggered  by the V0 detector  that  comprises  
two  plastic  scintillator  arrays placed on both  sides of the interac-
tion  point  at pseudorapidities  2.8 < � < 5.1 and Š3.7 < � < Š1.7. 
The V0 is also used to reject  background  events like  beam-gas in-
teractions,  collisions  with  de-bunched  protons  or with  mechanical  
structures  of the beam line.

The data samples used in  this  letter  were  recorded  with  ALICE
in  2016 during  the LHC pp run  at 

�
s = 13 TeV. For the minimum-

bias event  trigger  that  is used to de“ne  the data sample for  the 
analysis of inelastic  pp collisions,  coincident  signals in  both  V0 
scintillators  are required  to be synchronous  with  the beam crossing 
time  de“ned  by the LHC clock. Events with  high  charged-particle  
multiplicities  are triggered  on by additionally  requiring  the total  
signal amplitude  measured in  the V0 detector  to exceed a certain  
threshold.  At the analysis level, the 0.036 percentile  of inelastic  
events with  the highest  V0 multiplicity  (V0M)  is selected to de-
“ne  the high-multiplicity  event  class. This value is low  enough 
to avoid  ine�ciencies  due to trigger  threshold  variations  during  
data taking.  Track segments reconstructed  in  the SPD are extrap-
olated  back to the beam line  to de“ne  the interaction  vertex.  
Events with  multiple  vertices  identi“ed  with  the SPD are tagged 
as pile-up  and removed  from  the analysis [ 48]. The vertex  in-
formation  may be improved  based on the information  provided  
by tracks reconstructed  in  the ITS and TPC. To assure a uniform  
detector  coverage within  |� | < 0.8, the vertex  position  along the 
beam direction  is restricted  to ± 10 cm around  the nominal  inter-
action  point.  A total  of 455 × 106 minimum-bias  (MB) pp events  
and 79.2 × 106 high-multiplicity  pp events  are considered  for  fur-
ther  analysis, which  corresponds  to an integrated  luminosity  of 
L MB

int = 7.87 ± 0.40 nbŠ1 and L HM
int = 2.79 ± 0.15 pbŠ1, respec-

tively.  The luminosity  determination  is based on the visible  cross 
section  for  the V0-based minimum-bias  trigger,  measured in  a van 
der Meer scan carried  out  in  2015 [ 50]. A conservative  uncertainty  
of 5% is assigned to this  measurement,  to account  for  possible vari-
ations  of the cross section  between  the two  data-taking  periods.

3. Data analysis

Electron 1 candidates are selected from  charged-particle  tracks 
reconstructed  in  the ITS and TPC in  the kinematic  range |� e| < 0.8
and pT, e > 0.2 GeV/ c. Basic track  quality  criteria  are applied,  
e.g. a su�cient  number  of space points  measured in  the TPC 
and ITS as well  as a good track  “t.  The contribution  from  sec-
ondary  tracks is reduced by requiring  a maximum  distance of 
closest approach (DCA) to the primary  vertex  in  the transverse  
plane (DCAxy < 1.0 cm)  and in  the longitudinal  direction  (DCAz <
3.0 cm). To further  suppress the contribution  from  photon  conver-
sions in  the detector  material,  electron  candidates are required  to 
have a hit  in  the “rst  SPD layer  and no ITS clusters  shared with  
other  reconstructed  tracks.

The electron  identi“cation  is based on the complementary  in-
formation  provided  by the TPC and TOF. The detector  PID response, 

1 The term  •electron• is used for  both  electrons  and positrons  if  not  stated other-
wise.
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Fig. 1. Opposite-sign  spectrum  N+Š , the combinatorial  background  B and the signal S in minimum-bias  (left)  and high-multiplicity  (right)  events. Only statistical  uncertainties  
are shown.
Table 1
Sources of systematic  uncertainties.

Source Minimum bias High multiplicity

Track reconstruction 13% 13%
Electron  identi“cation 2% 2%
Conversion rejection  

(mee < 0.14 GeV/ c2)
2% 2%

Acceptance correction  
factor  (R)

2% 2%

Vertex  distribution  bias … 6%
Multiplicity  dependence 

of tracking  and PID
… 6%

Total 14% 15%

n(� DET
i ), is expressed in  terms  of the deviation  between  the mea-

sured and expected value of the speci“c  ionisation  energy loss in  
the TPC or time-of-”ight  in  the TOF for  a given particle  hypothesis  
i and momentum,  normalised  by the detector  resolution  (� DET). In 
the TPC, electrons  are selected in  the range 

�
�n

�
� TPC

e

� �� < 3 and pi-

ons are rejected  by requiring  n 
�
� TPC

�
�

> 4. Furthermore,  kaons and 
protons  are rejected  with  

�
�n

�
� TPC

K

� �� > 4 and 
�
�n

�
� TPC

p

� �� > 4, unless 
the candidate  is positively  identi“ed  as an electron  in  the TOF, i.e. 
ful“lling  

�
�n

�
� TOF

e

� �� < 3. For particles  that  are outside  
�
�n

�
� TPC

K

� �� < 4

and 
�
�n

�
� TPC

p

� �� < 4 the  TOF information  is only  used to select elec-

tron  candidates with  
�
�n

�
� TOF

e

� �� < 3 if  the track  has an associated 
hit  in  the TOF detector.

Since experimentally  the origin  of each electron  or positron  is 
unknown,  all  electron  candidates are paired  considering  combina-
tions  with  opposite  (N+Š ) but  also same-sign charge (N±± ). Most  
of the electron  pairs arise from  the combination  of two  electrons  
originating  from  different  mother  particles.  These pairs give rise to 
the combinatorial  background  B that  is estimated  via the geomet-
ric  mean of same-sign pairs 

�
N++ NŠŠ within  the same event. 

Opposite- and  same-sign pairs include  correlated  background,  e.g. 
originating  from  � 0 decays with  two  e+ eŠ pairs in  the “nal  
state (� 0 � � (� ) � (� ) � e+ eŠ e+ eŠ ), which  includes  decay chan-
nels with  real photons  and their  subsequent  conversion  in  detector  
material.  Such processes lead to opposite  and same-sign pairs at 
equal rate. The background  estimate  needs to be corrected  for  the 
different  detector  acceptance of opposite  and same-sign pairs. This 
correction  factor  is determined  by dividing  the yields  of uncorre-
lated  opposite  (M+Š ) and same-sign pairs (M±± ) in  mixed  events:  
R = M+Š /( 2

�
M++ MŠŠ ). The dielectron  signal is then  obtained  

as S = N+Š Š B = N+Š Š 2R
�

N++ NŠŠ . The signal S is shown  
together  with  the opposite-sign  spectrum  N+Š and the combinato-
rial  background  B in  Fig. 1 for  minimum-bias  and high-multiplicity  

events. In the mass interval  0.2 < mee < 3 GeV/ c2, the signal-to-
background  ratio  varies in  MB events between  0.3 and 0.04 with  a 
minimum  around  mee � 0.5 GeV/ c2 and is roughly  constant  at 0.2 
in  the IMR [51].  In HM events, the minimum  reaches 0.01 and is 
about  0.08 in  the IMR.

Electron…positron pairs from  photon  conversion  in  the de-
tector  material,  contributing  to the low  mass spectrum  below  
0.14 GeV/ c2, are removed  by using their  distinct  orientation  rel-
ative  to the magnetic  “eld [ 25].

The data are corrected  for  the reconstruction  e�ciencies  us-
ing detailed  Monte  Carlo (MC) simulations.  For this,  pp events  
are generated with  the Monash 2013 tune  of Pythia 8 [52] for  
light-hadron  decays and the Perugia 2011 tune  of Pythia 6.4 for  
heavy-”avour  decays [53] and  the resulting  particles  are prop-
agated through  a detector  simulation  using Geant 3 [54]. The 
choice of the different Pythia versions is motivated  by the fact that  
the Perugia 2011 tune  describes reasonably  well  the transverse  
momentum  spectra of heavy-”avour  hadrons  while  the Monash 
2013 tune  reproduces  many  of the relevant  light-hadron  multi-
plicities [55, 56]. The signal reconstruction  e�ciencies  were  studied  
as a function  of mee and pair  transverse  momentum  pT, ee sepa-
rately  for  the different  e+ eŠ sources: resonance and Dalitz  decays 
of relevant  mesons as well  as correlated  semileptonic  decays of 
charm  and beauty  hadrons. The total  signal reconstruction  e�-
ciency is obtained  by weighting  the e�ciency  of each dielectron  
source by its  expected contribution  and is found  to be about  20%
in 0.7 < mee < 1.2 GeV/ c2 and approaches 30% at lower  and higher  
masses.

Different  aspects of the analysis are considered  as possible 
sources of systematic  uncertainties,  which  are summarised  in  Ta-
ble 1. The systematic  uncertainties  due to the track  reconstruction  
are estimated  by comparing  the e�ciency  of the ITS…TPC matching,  
the requirement  of a hit  in  the “rst  SPD layer, and the requirement  
of no shared ITS clusters  in  MC simulations  and data. The residual  
disagreements  between  data and MC add to a 6.5% uncertainty  on 
the single track  level, which  leads to a 13% uncertainty  for  pairs. 
The MC simulations  were  also checked to reproduce  all  details  of 
the PID selection  within  a systematic  uncertainty  of 2% for  e+ eŠ

pairs. The purity  of the electron  sample is estimated  to be > 93%
over the relevant  pT range, with  a pT-integrated  hadron  contam-
ination  of about  4%. The resulting  hadron  contamination  on the 
dielectron  signal is found  to be negligible.  For mee < 0.14 GeV/ c2, 
a 2% uncertainty  on the conversion  rejection  was estimated  from  
the yield  change when  tightening  the selection  to reject  photon  
conversions.  A 2% uncertainty  on the signal yield  due to the correc-
tion  factor  R is obtained  by repeating  the event  mixing  in  different  
event  classes, de“ned  by the position  of the reconstructed  primary  
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vertex  and by the charged-particle  multiplicity.  The e�ciency  of 
the minimum-bias  trigger  to select inelastic  events with  an e+ eŠ

pair  in  the ALICE acceptance (|� e| < 0.8 and pT, e > 0.2 GeV/ c) is 
estimated  to be (99 ± 1)% from the Monash 2013 tune  of Pythia 8. 
This and the luminosity  uncertainty  of 5% [50] are  global  uncer-
tainties,  which  are not  included  in  the point-to-point  uncertain-
ties. No signi“cant  variation  of systematic  uncertainties  on mass 
or pT, ee is observed in  the analysis, and the same total  uncertainty  
of 14% is assigned as point-to-point  correlated  uncertainties  on the 
differential  dielectron  cross section  in  inelastic  pp collisions.

The analysis of the high-multiplicity  data has additional  sys-
tematic  uncertainties.  First, no dedicated  high-multiplicity  MC sim-
ulation  was performed.  In such events the vertex  distribution  is 
biased more  than  in  MB events by the asymmetric  pseudorapid-
ity  coverage of the two  V0 detectors.  The change of the detector  
acceptance with  vertex  position  could  lead to a difference  in  the 
number  of reconstructed  electrons  of up to 3%, which  results  in  an 
uncertainty  of 6% for  e+ eŠ pairs. Second, a possible multiplicity  
dependence of the reconstruction  and PID e�ciency  is covered by 
an uncertainty  of 6% [57]. Added in  quadrature,  this  amounts  to a 
total  uncertainty  of 15%.

4. Cocktail  of  known  hadronic  sources

The dielectron  spectrum  measured in  pp collisions  at 
�

s =
13 TeV is compared  with  the expectations  from  all  known  hadron  
sources, i.e. the hadronic  cocktail,  contributing  to the dielectron  
spectrum  in  the ALICE central  barrel  acceptance (|� e| < 0.8 and 
pT, e > 0.2 GeV/ c). A fast MC simulation  is used to estimate  the 
contribution  from  � 0, � , � � , 	 , 
 and � decays in  pp collisions,  as 
detailed  in [25].

Following  the approach outlined  in [ 58], the pion  pT-spectrum  
at 

�
s = 13 TeV is approximated  by scaling the pT-spectrum  of 

charged hadrons [ 42] by  the pion-to-hadron  ratio  measured at �
s = 7 TeV [59,60]. The difference  with  respect to the same 

procedure  based on the pion-to-hadron  ratio  measured at 
�

s =
2.76 TeV [59,61] is  smaller  than  1% at low  pT and reaches 5% at 
high  pT. The charged hadron  pT-spectra  at 

�
s = 13 TeV are nor-

malised  to INEL> 0 events, i.e. inelastic  collisions  that  produce  at 
least one charged particle  in  |� | < 1, rather  than  INEL events. This 
is corrected  taking  the 21% difference  in  the pT integrated  dNch/ d�
values for  these two  event  classes [42]. A conservative  uncertainty  
of 10% is assigned on this  extrapolation.

A “t  of the obtained  charged-pion  pT-spectrum  with  a modi-
“ed  Hagedorn function  is then  taken  as proxy  for  the neutral-pion  
pT-distribution.  The simulated  cross section  per unit  rapidity  of 
the � 0 is d� / d y|y= 0 = 155.2 mb. For the � meson a “t  of the 
measured � / � 0 ratio  in  pp collisions  at 

�
s = 7 TeV is used [62]. 

The Monash 2013 tune  of Pythia 8 describes the 	 / � 0 and 
 / � 0

ratios  measured in  pp collisions  at 
�

s = 2.76 and 7 TeV, respec-
tively [ 55,56]. Therefore, MC simulations  obtained  with  this  tune  
at 

�
s = 13 TeV are used to obtain  the 	 / � 0 and 
 / � 0 ratios.  

Based on the � / � 0, 	 / � 0 and 
 / � 0 data, the ratios  at high  pT

are 0.5 ± 0.1, 1.0 ± 0.2 and 0.85 ± 0.17, respectively.  The � � and 
� mesons are generated assuming mT scaling, replacing  pT with  �

m2 Š m2
� + (pT/ c)2 [63].  For the mT scaling, particle  yields  are 

normalised  at high  pT relative  to the � 0 yield:  0.40 ± 0.08 for  � �

(from Pythia 6 calculations)  and 0.13 ± 0.04 for  � [64]. The de-
tector  response, including  momentum  and angular  resolutions,  as 
well  as Bremsstrahlung  effects obtained  from  full  MC simulations,  
is applied  to the decay electrons  as a function  of pT, e, � e and the 
azimuth  � e. This results  in  a mass resolution  of approximately  1%. 
The following  sources of systematic  uncertainties  were  evaluated:  
the input  parameterisations  of the measured spectra as a func-
tion  of pT (� ± , � / � 0 and 
 / � 0), the branching  fractions  of all  

included  decay modes, the mT scaling parameters  and the resolu-
tion  smearing.  For the high-multiplicity  cocktail,  the input  hadron  
pT-distributions  are adjusted  according  to the measured modi“-
cations of the charged-hadron  pT spectra [ 42]. The uncertainties  
of the cocktail  from  light-hadron  decays are about  ± 15%, reach-
ing up to + 50% in the region  dominated  by the � meson due to 
uncertainties  in  the extrapolation  to low  pT. The multiplicity  de-
pendence has an uncertainty  that  varies between  about  12% at low  
pT and 40% at high  pT.

The Perugia 2011 tune  of Pythia 6.4, which  includes  NLO 
parton  showering  processes, is used to estimate  the contri-
butions  of correlated  semileptonic  decays of open charm  and 
beauty  hadrons [ 53,65]. As an alternative,  the NLO event  gener-
ator Powheg is also considered [ 66…69]. The resulting  same-sign 
spectrum  is subtracted  from  the opposite-sign  distribution  as in  
the data analysis. Detector  effects are implemented  as for  the 
light-hadron  cocktail.  The spectra are normalised  to cross sec-
tions  at midrapidity  that  are based on FONLL [1…3] extrapolations  
of the ALICE measurements  at 7 TeV [8…10]. Following  the de-
scription  in [70],  this  leads to cross sections per unit  rapidity  
of d� cc/ d y|y= 0 = 1296+ 172

Š162 µb and d� bb/ d y|y= 0 = 68+ 15
Š16 µb at 

�
s = 13 TeV. The quoted  uncertainties  take into  account  both  the 

measured uncertainty  and the FONLL extrapolation  uncertainties.  
The latter  (dominated  by scale uncertainties  but  also including  PDF 
and mass uncertainties)  are considered  to be fully  correlated  be-
tween  the two  energies [71].  For the high-multiplicity  cocktail,  the 
open charm  contribution  is weighted  as a function  of pT according  
to the measured enhancement  of D mesons with  pT > 1 GeV/ c at �

s = 7 TeV [43]. The same weights  are applied  to the open beauty  
contribution  as no signi“cant  difference  between  the production  
of D mesons and J /
 from  beauty-hadron  decays is observed [ 43]. 
For electrons  originating  from  charm  or beauty  hadrons  with  
pT < 1 GeV/ c, the same weight  as for  1 < pT < 2 GeV/ c is assumed 
in  the absence of a measurement.  This leads to an uncertainty  on 
the multiplicity  dependence of about  40% at low  pT decreasing to 
20% at high  pT.

The J /
 contribution  is simulated  with Pythia 6.4 and nor-
malised  to the cross section  at 

�
s = 13 TeV, extrapolated  with  

FONLL [9] from  the measurement  at 
�

s = 7 TeV by the ALICE Col-
laboration [72].  In the high-multiplicity  cocktail,  the J /
 is scaled 
according  to a dedicated,  pT-integrated  measurement [ 44]. The 

( 2S) contribution  is normalised  to the J /
 based on a cross sec-
tion  ratio  of � 
( 2S)� e+ eŠ / � J/
 � e+ eŠ = (1.59 ± 0.17)% [73].

5. Results

The dielectron  cross sections are reported  within  the ALICE 
central  barrel  acceptance |� e| < 0.8 and pT, e > 0.2 GeV/ c, i.e. 
without  correction  to full  phase space. The result,  integrated  over 
pT, ee < 6 GeV/ c, is shown  as a function  of mee in  the left  panel 
of Fig. 2. The data are compared  with  the expectation  from  the 
hadronic  decay cocktail,  using Pythia for  the heavy-”avour  com-
ponents,  and found  to be in  agreement  within  uncertainties.  Good 
agreement  between  data and cocktail  calculations  is also found  as 
a function  of pT, ee, which  is shown  for  three  mee intervals  in  the 
right  panel of Fig. 2.

Figs. 3 and 4 show the ratios  of the dielectron  spectra in  
high-multiplicity  over inelastic  events as a function  of mee for  
different  pT, ee intervals.  To account  for  the trivial  scaling with  
charged-particle  multiplicity,  the ratio  is scaled by the factor  
dNch/ d� (HM)/ �dNch/ d� (INEL)�  = 6.27 ± 0.22, where  dNch/
d� (HM) = 33.29 ± 0.39 and �dNch/ d� (INEL)�  = 5.31 ± 0.18 are 
the charged-particle  multiplicities  in  |� ch| < 0.5 measured in  high-
multiplicity  and inelastic  pp collisions,  respectively [ 42]. In this  ra-
tio,  the multiplicity-independent  uncertainties  cancel and the total  
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Fig. 2. The dielectron  cross section in inelastic  pp collisions  at � s = 13 TeV as a function  of invariant  mass (left)  and of pair  transverse momentum  in different  mass intervals  
(right).  The global  scale uncertainty  on the pp luminosity  (5%) is not  shown.  The statistical  and systematic  uncertainties  of the data are shown  as vertical  bars and boxes. 
The expectation  from  the hadronic  decay cocktail  is shown  as a band, and the bottom  left  plot  shows the ratio  data to cocktail  together  with  the cocktail  uncertainty.
Fig. 3. Ratio of dielectron  spectra in HM and INEL events scaled by the charged-
particle  multiplicity.  The statistical  and systematic  uncertainties  of the data are 
shown  as vertical  bars and boxes. The expectation  from  the hadronic  decay cock-
tail  calculation  is shown  as a grey band.

systematic  uncertainty  reduces to 9%. The ratio  is in  good agree-
ment  with  the hadronic  decay cocktail  calculations  over the whole  
measured mee and pT, ee range. This is the “rst  measurement  sen-
sitive  to the production  of � 0, � , 
 and � in  high-multiplicity  
pp collisions.  The result  con“rms  the hypothesis  that  these light  
mesons have the same multiplicity  dependence as a function  
of mT, which  was used in  the construction  of the high-multiplicity  
hadron  cocktail.  From the agreement  between  data and cocktail  
in  the high- pT range (3 < pT, ee < 6 GeV/ c), which  is dominated  
by open beauty, it  can be also concluded  for  the “rst  time  that  
the open beauty  production  has a multiplicity  dependence sim-
ilar  to that  of open charm. This puts  additional  constraints  on 
mechanisms  used to describe heavy-”avour  production  in  high-
multiplicity  pp collisions,  such as multiple  parton  interactions,  
percolation  or hydrodynamic  models.

In the intermediate  mass region  (1.03 < mee < 2.86 GeV/ c2), 
which  is dominated  by open heavy-”avour  decays, the data are “t-
ted simultaneously  in  mee and pT, ee (for  pT, ee < 6 GeV/ c) with
Pythia and Powheg templates  of open charm  and beauty  produc-
tion,  keeping  the light-”avour  and J /
 contributions  “xed,  which  
introduces  negligible  uncertainties  on the heavy-”avour  cross sec-
tion.  The Pythia and Powheg least-square  “ts  of dielectron  spectra 
in  inelastic  events projected  over pT, ee and mee are shown  in  the 

left  and right  panels of Fig. 5, respectively.  The resulting  cross 
sections are summarised  in  Table 2. The “rst  uncertainty  is the 
statistical  uncertainty  resulting  from  the “ts  and the second is 
the systematic  uncertainty,  which  is determined  by moving  the 
data points  coherently  upward  and downward  by their  system-
atic uncertainties  and repeating  the “ts.  The branching  fraction  of 
charm-hadron  decays to electrons  is taken  as (9.6 ± 0.4)% [74]. An 
additional  uncertainty  of 9.3% is added in  quadrature  to account  
for  differences  in  the � c/ D0 ratio  measured by ALICE in  pp colli-
sions at 

�
s = 7 TeV, which  is 0.543 ± 0.061 (stat.) ± 0.160 (syst.)

for  pT > 1 GeV/ c [75],  and the LEP average of 0.113 ± 0.013 ±
0.006 [ 76]. This translates  into  a 22% uncertainty  at the pair  level. 
The branching  fraction  of beauty  hadrons  decaying into  electrons,  
including  via intermediate  charm  hadrons, is (21.53 ± 0.63)% [74], 
which  leads to a 6% uncertainty  on the dielectron-based  cross sec-
tion  measurement.  Like the statistical  and systematic  uncertainties,  
these branching  fraction  uncertainties  are fully  correlated  between  
the Pythia and Powheg based results.

The results  are consistent  with  extrapolations  from  lower  ener-
gies based on pQCD calculations  discussed in  the previous  section. 
There is a strong  anti-correlation  between  the “tted  charm  and 
beauty  cross sections. The sizeable difference  in  the cross sections 
between  the two  MC event  generators  are comparable  to what  is 
observed at 

�
s = 7 TeV [25]. The different  cross sections obtained  

from  “ts  with Pythia and Powheg simulations  are caused by ac-
ceptance differences  of e+ eŠ pairs from  heavy-”avour  hadron  de-
cays in  these two  event  generators  because of different  kinematic  
correlations  of the heavy quark  pairs, in  particular  in  rapidity.  The 
fraction  of e+ eŠ pairs that  fall  into  the ALICE acceptance and the 
intermediate  mass region  originating  from  cc pairs at midrapid-
ity  is 14% in Pythia and 10% in Powheg.  This points  to important  
differences  in  the heavy quark  production  mechanisms  between  
the two  generators. It  should  be stressed that  single heavy-”avour  
measurements  appear insensitive  to these differences  as the cross 
sections obtained  from  such measurements  agree between Pythia
and Powheg based extrapolations [ 7,11,22]. Therefore, dielectrons  
provide  complementary  information  on heavy-”avour  production  
that,  if  properly  modelled,  should  lead to consistent  cross sections 
with Pythia and Powheg.

Table 2 also summarises  the corresponding  cross sections for  
the high-multiplicity  data. In case of Pythia,  the measured charm  
cross section  translates  into  an enhancement  of 1.86 ± 0.40 (stat.) ±
0.40 (syst.) relative  to the charged-particle  multiplicity  increase. 
This is consistent  with  the modelled  multiplicity  dependence used 
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Fig. 4. Ratio of dielectron  spectra in HM and INEL events scaled by the charged-particle  multiplicity  in different  pT, ee intervals.  The statistical  and systematic  uncertainties  of 
the data are shown  as vertical  bars and boxes. The expectation  from  the hadronic  decay cocktail  calculation  is shown  as a grey band.

Fig. 5. Projection  of the heavy-”avour  dielectron  “t  (grey line)  in inelastic  pp collisions  at � s = 13 TeV onto the dielectron  mass (left)  and pT, ee (right)  using the Pythia and
Powheg event  generators. The lines show the charm  (red)  and beauty  (magenta)  contributions  after  the “t.  The global  scale uncertainty  on the pp luminosity  (5%) is not  
shown.  The statistical  and systematic  uncertainties  of the data are shown  as vertical  bars and boxes. The “ts  with Pythia and Powheg result  in a � 2/ ndf of  57.8/ 66 and 
52.6/ 66, respectively.
as input  for  the cocktail  in  Figs. 3 and 4. For the beauty  cross sec-
tion  the observed enhancement  is 1.63 ± 0.50 (stat.) ± 0.35 (syst.). 
This is consistent  with  the multiplicity  dependence observed for  
open charm, but  a scaling with  charged-particle  multiplicity  can-
not  be excluded.

The fraction  of real direct  photons  to inclusive  photons  can be 
extracted  from  the dielectron  spectrum  at small  invariant  masses 
assuming the equivalence  between  this  fraction  and the ratio  
of virtual  direct  photons  to inclusive  photons.  The data are “t-
ted minimising  the � 2, in  bins of pT, ee, with  the sum of the 
light-”avour  cocktail  ( fLF(mee)), open heavy-”avour  contribution  

( fHF(mee)) and a virtual  direct  photon  component  ( fdirect (mee)), 
whose shape is described by the Kroll…Wada equation [ 77,78]
in  the quasi-real  virtual  photon  regime  (pT, ee 	 mee). The nor-
malisation  of the open heavy-”avour  component  is “xed  to the 
measured open charm  and beauty  cross sections presented  above, 
using the Pythia simulations  for  the nominal  “t.  As systematic  
uncertainty  estimate,  the Powheg simulation  is used instead. The 
light-”avour  cocktail  and virtual  direct  photon  templates  are nor-
malised  independently  to the data in  mee < 0.04 GeV/ c2, i.e. in  
a mass window  in  which  both  Dalitz  decays and direct  pho-
tons have the same 1/ mee dependence. The direct-photon  frac-
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Table 2
Heavy-”avour  cross sections in inelastic  and high-multiplicity  pp collisions  at �

s = 13 TeV. The 22% 
(6%) branching  fraction  uncertainty  for  charm  (beauty)  decays into  electrons  is not  listed.  Like statistical  
and systematic  uncertainties,  it  is fully  correlated  between  the Pythia and Powheg based results.

Pythia Powheg

d� cc/ d y|y= 0 974 ± 138 (stat.) ± 140 (syst.) µb 1417 ± 184 (stat.) ± 204 (syst.) µb

d� bb/ d y|y= 0 79 ± 14 (stat.) ± 11 (syst.) µb 48 ± 14 (stat.) ± 7 (syst.) µb

d� cc/ d y|HM
y= 0 4.14 ± 0.67 (stat.) ± 0.66 (syst.) µb 5.95 ± 0.91 (stat.) ± 0.95 (syst.) µb

d� bb/ d y|HM
y= 0 0.29 ± 0.07 (stat.) ± 0.05 (syst.) µb 0.17 ± 0.07 (stat.) ± 0.03 (syst.) µb
Table 3
Upper limits  at 90% C.L. on the direct-photon  fractions  in comparison  with  the 
expectation  in inelastic  pp collisions  based on a NLO pQCD calculation  for  a fac-
torisation  and renormalisation  scale choice of µ  = pT [80].

Data sample 1 < pT, ee < 2 2 < pT, ee < 3 3 < pT, ee < 6
GeV/c GeV/c GeV/c

Minimum bias 0.057 0.072 0.023
High multiplicity 0.060 0.083 0.055

pQCD 0.003 0.007 0.013

tion  r is then  extracted  by “tting  the data in  the mass interval  
0.14 < mee < 0.32 GeV/ c2, i.e. above the � 0 mass to suppress the 
most  dominant  hadron  background,  with  the following  expression:  
d� / dmee = r f dir (mee) + (1 Š r) fLF(mee) + fHF(mee).

No signi“cant  direct  photon  contribution  is observed in  neither  
the inelastic  nor  the high-multiplicity  events [ 51]. Upper  limits  at 
90% con“dence  level  (C.L.) are extracted  with  the Feldman…Cousins 
method [ 79] and  summarised  in  Table 3 together  with  predictions  
from  perturbative  QCD calculations  for  inelastic  events [ 80]. The 
current  uncertainties  prevent  any conclusions  on the scaling of 
direct-photon  production  with  charged-particle  multiplicity.

6. Summary  and  conclusion

We have presented  the “rst  measurement  of dielectron  pro-
duction  at midrapidity  (| ye| < 0.8) in  proton…proton  collisions  at �

s = 13 TeV. The dielectron  continuum  can be well  described by 
the expected contributions  from  decays of light- and  heavy-”avour  
hadrons. The charm  and beauty  cross sections are extracted  for  
the “rst  time  at midrapidity  at 

�
s = 13 TeV and are consistent  

with  extrapolations  from  lower  energies based on pQCD calcula-
tions.  The differences  observed between Powheg and Pythia imply  
different  kinematic  correlations  of the heavy-quark  pairs in  these 
two  event  generators. Therefore  dielectrons  are uniquely  sensitive  
to the heavy quark  production  mechanisms.  The comparison  of 
the dielectron  spectra in  inelastic  events and in  events with  high  
charged-particle  multiplicities  does not  reveal modi“cations  of the 
spectrum  beyond  the already  established  ones of light  and open 
charm  hadrons. The upper  limits  on the direct-photon  fractions  are 
consistent  with  predictions  from  perturbative  quantum  chromody-
namics calculations.
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C.M. Mitu 68, N. Mohammadi 34, A.P. Mohanty 63, B. Mohanty 85, M. Mohisin Khan 17,iv , 
D.A. Moreira De Godoy 142 , L.A.P. Moreno44, S. Moretto 29, A. Morreale 113 , A. Morsch 34, T. Mrnjavac 34, 
V. Muccifora 51, E. Mudnic 35, D. Mühlheim 142, S. Muhuri 139 , M. Mukherjee 3, J.D. Mulligan 144 , 
M.G. Munhoz 120 , K. Münning 42, M.I.A. Munoz 79, R.H. Munzer 69, H. Murakami 130 , S. Murray 73, 
L. Musa 34, J. Musinsky 65, C.J. Myers125 , J.W. Myrcha 140 , B. Naik 48, R. Nair 84, B.K. Nandi 48, 
R. Nania53,10, E. Nappi 52, A. Narayan 48, M.U. Naru 15, A.F. Nassirpour 80, H. Natal da Luz 120 , 
C. Nattrass128 , S.R. Navarro44, K. Nayak 85, R. Nayak48, T.K. Nayak139 , S. Nazarenko106, 
R.A. Negrao De Oliveira 69,34, L. Nellen 70, S.V. Nesbo36, G. Neskovic 39, F. Ng125 , M. Nicassio 104 , 
J. Niedziela 140,34, B.S. Nielsen88, S. Nikolaev 87, S. Nikulin 87, V. Nikulin 96, F. Noferini 10,53, 
P. Nomokonov 75, G. Nooren 63, J.C.C. Noris44, J. Norman 78, A. Nyanin 87, J. Nystrand 22, H. Oh 145 , 
A. Ohlson 102 , J. Oleniacz140 , A.C. Oliveira Da Silva 120 , M.H. Oliver 144 , J. Onderwaater 104 , 
C. Oppedisano58, R. Orava43, M. Oravec 115 , A. Ortiz Velasquez 70, A. Oskarsson80, J. Otwinowski 117 , 
K. Oyama81, Y. Pachmayer102 , V. Pacik88, D. Pagano138 , G. Paíc 70, P. Palni6, J. Pan141 , A.K. Pandey48, 
S. Panebianco135 , V. Papikyan 1, P. Pareek49, J. Park60, J.E. Parkkila126 , S. Parmar98, A. Passfeld142 , 
S.P. Pathak125 , R.N. Patra139 , B. Paul58, H. Pei6, T. Peitzmann 63, X. Peng6, L.G. Pereira71, 
H. Pereira Da Costa135 , D. Peresunko 87, E. Perez Lezama69, V. Peskov69, Y. Pestov4, V. Petrá�cek 37, 
M. Petrovici 47, C. Petta28, R.P. Pezzi71, S. Piano59, M. Pikna 14, P. Pillot 113 , L.O.D.L. Pimentel88, 
O. Pinazza53,34, L. Pinsky 125 , S. Pisano51, D.B. Piyarathna 125 , M. P›oskoń 79, M. Planinic 97, F. Pliquett 69, 
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