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An improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of 
Pb–Pb collisions at √sNN = 5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton 
has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been 
determined from an exponential fit to the dN/d(ct) spectrum. The measured value, τ = 242+34

−38 (stat.) ±
17 (syst.) ps, is compatible with representative theoretical predictions, thus contributing to the solution 
of the longstanding hypertriton lifetime puzzle.

© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Hypernuclei are bound states of nucleons and hyperons and 
they are mainly produced by means of (K −, π−), (π+, K +) and 
(e,e′K +) reactions on stable nuclear targets [1,2]. Hypernuclei are 
particularly interesting because they can be used as experimen-
tal probes for the study of the hyperon-nucleon (Y–N) interaction. 
The knowledge of this interaction has become more relevant in 
recent years due to its connection to the modeling of astrophys-
ical objects like neutron stars [3,4]. In the inner core of neutron 
stars, the creation of hyperons is energetically favored compared 
to a purely nucleonic matter composition [5]. The presence of hy-
perons as additional degrees of freedom leads to a considerable 
softening of the matter equation of state (EOS). The resulting EOS 
inhibits the formation of large mass neutron stars. This is incom-
patible with the observation of neutron stars as heavy as two 
solar masses [3], constituting what is referred to as the “hyperon 
puzzle”. Many attempts were made to solve this puzzle, e.g. by 
introducing three-body forces leading to an additional repulsion 
that can counterbalance the large gravitational pressure and allow 
for larger star masses. To constrain the parameter space of such 
models, a detailed knowledge of the Y–N interaction and of the 
three-body Y–N–N interaction is mandatory, including �, � and �
states. The lifetime of a hypernucleus depends on the strength of 
the Y–N interaction, and therefore a precise determination of the 
lifetime of hypernuclei provides information on the Y–N interac-
tion strength [6,7].

The recent observation of hypernuclei and the determination of 
their lifetimes in experiments with relativistic heavy ion collisions 

� E-mail address: alice -publications @cern .ch.

has triggered a particular interest. All the results published so far 
are related to the lightest hypernucleus, the hypertriton 3

�H, which 
is a bound state formed by a proton, a neutron and a �, and its 
charge conjugate the anti-hypertriton 3

�
H. The results have been 

obtained at the Relativistic Heavy Ion Collider (STAR experiment) 
[8], at the SIS18 (HypHI Collaboration) [9] and at the Large Hadron 
Collider (ALICE Collaboration) [10].

The separation energy of the � in this hypernucleus is only 
about 130 keV [11], which results in an RMS radius (average dis-
tance of the � to the deuteron) of 10.6 fm [12,13]. A very low 
binding energy implies a small change of the wave function of 
the � in a nucleus and hence one can expect the lifetime of 
the hypertriton to be very close to that of the free � hyperon 
(τ� = (263.2 ± 2.0) ps [14]).

Early hypertriton lifetime measurements were done with imag-
ing techniques (i.e. emulsions, bubble chambers) and the results 
are lower than or consistent with the value of the free � life-
time [15–20]. However, most of the measurements performed with 
these techniques are based on very small samples of events, thus 
resulting in a large statistical uncertainty. The recent measure-
ments of the lifetime of (anti-)3

�H produced in ultra-relativistic 
heavy-ion collisions or in relativistic ion fragmentation [21], even 
though affected by statistical and systematic uncertainties bigger 
than 10%, are in agreement among each other and are lower than 
the free � lifetime [9,10,22].

However, the few existing theoretical calculations predict that 
the lifetime of the 3

�H should be very close to the lifetime of 
free �. The most comprehensive 3

�H lifetime calculation is from 
Rayet and Dalitz [23]; they obtained an estimate in the range from 
239.3–255.5 ps. More recent calculations from Congleton [24] and 
Kamada et al. [7] yield a value of 232 ps and 256 ps, respectively. 

https://doi.org/10.1016/j.physletb.2019.134905
0370-2693/© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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This scenario stimulated, in the last years, a new interest from both 
experimentalists and theoreticians for more precise measurements 
of the 3

�H lifetime.
In this letter, the lifetime of the (anti-)3

�H measured in Pb–Pb
collisions at 

√
sNN = 5.02 TeV by the ALICE experiment is pre-

sented. In Section 2, the ALICE detector is briefly described. The 
details of the data sample, analysis technique and systematic un-
certainties are presented in Section 3, where also a new analysis 
approach to crosscheck the results is introduced in the subsec-
tion 3.1. Finally the result is compared with previous measure-
ments and with theoretical predictions in Section 4.

2. The ALICE apparatus

A detailed description of the ALICE apparatus and data acquisi-
tion framework can be found in [25,26]. The main detectors used 
in this analysis are the V0 detector, the Inner Tracking System 
(ITS) and the Time Projection Chamber (TPC), which are located 
inside a solenoid creating a magnetic field of 0.5 T. The V0 de-
tector [27] consists of two arrays of scintillator counters (V0A and 
V0C), placed around the beam-pipe on both sides of the interac-
tion region. They cover the pseudorapidity ranges 2.8 < η < 5.1 
and −3.7 < η < −1.7, respectively. The V0 detector is used to de-
fine the Minimum Bias (MB) trigger, which is characterized by a 
coincidence signal in the V0A and in the V0C, and to determine 
the centrality of the collisions [28]. The ITS [29] is the closest de-
tector to the interaction point within ALICE. It is composed of six 
layers of silicon detectors, with radii between 3.9 and 43 cm from 
the interaction point. The six layers use three different technolo-
gies: silicon pixel detector (SPD), silicon drift detector (SDD) and 
silicon strip detector (SSD). The ITS has full azimuthal coverage 
0 ≤ ϕ ≤ 2π and covers the pseudorapidity range |η| < 0.9. The TPC 
[30] is a gaseous detector, mainly used for tracking and for particle 
identification (PID) via the specific energy loss (dE/dx), with a to-
tal sensitive volume of 90 m3 filled with a mixture of 88% Ar and 
12% CO2. The reconstructed clusters in TPC and ITS are the starting 
point of the track finder algorithm, which adopts the Kalman fil-
ter technique [31]. These tracks are used to determine the primary 
collision vertex with a precision better than 50 μm in the plane 
transverse to the colliding beams [26].

3. Data sample and analysis technique

In this letter, the lifetime of the (anti-)hypertriton is determined 
by exploiting the 2-body mesonic decay channel with charged pi-
ons, namely 3

�H → 3He + π− and 3
�

H → 3He + π+ . Both 3
�H

and 3
�

H candidates are used for this measurement.
The analysis is performed using the data sample of Pb–Pb colli-

sions at 
√

sNN = 5.02 TeV collected by the ALICE experiment at the 
end of 2015. To ensure a uniform acceptance and reconstruction 
efficiency in the pseudorapidity region |η| < 0.9, only those events 
are selected whose reconstructed primary vertex was within ±10 
cm from the nominal position of the interaction point along the 
beam axis. The analyzed sample contains approximately 90 million 
events in the centrality interval 0-90%.

The 3
�H and 3

�
H identification is based on the topology of their 

weak decays and on the reconstruction of the tracks of their decay 
products, referred to as daughter particles. The weakly decaying 
hypernuclei are reconstructed using the algorithm which was pre-
viously used for the K0

S and � production analyses [32] and which 
is typically adopted for a 2-body weak decay topology. At first, the 
algorithm uses the TPC and ITS clusters to reconstruct the daughter 
tracks and then combines them in order to obtain a V-shaped de-
cay vertex. More details on this algorithm can be found in [26,33].

Table 1
Selection criteria applied for the identification of the daughter 
candidate tracks and for the reconstruction of the hypertriton can-
didate.

Selection criteria

Track selections
|η| < 0.9
Number of TPC clusters > 70
χ2 per TPC cluster < 5
Kink topology Rejected
|nσ | for TPC PID ≤ 3

Daughter candidate selections
π pT (GeV/c) 0.2-1.2
DCA between π± and primary vertex (cm) > 0.1
3He pT (GeV/c) ≥ 1.8
DCAtracks (cm) < 0.7

Hypertriton candidate selections
cos(θpointing) ≥ 0.995
|y| ≤ 0.8
pT (GeV/c) 2–9

The daughter tracks are selected in the pseudorapidity region 
|η| < 0.9 and are required to have at least 70 clusters out of 159 
in the TPC, in order to guarantee a resolution σ better than 5% on 
track momentum and of about 6% for the dE/dx [26]. Moreover, 
the χ2 per TPC cluster is required to be less than 5 and tracks with 
kink topologies are rejected. The particle identification (PID) of 
the daughters (3He, 3He, π±) is performed following the method 
described in [33], which is used in many analyses of the ALICE 
Collaboration. It is based on the difference between the measured 
and the expected dE/dx for a selected particle species normalized 
to the energy loss resolution in the detector, σ for short, and is re-
ferred to as the nσ method in this letter. In particular, an |nσ | ≤
3 is required, in a track-by-track approach, with respect to the ex-
pected π and 3He specific energy loss in the TPC. The pions can 
be identified up to a momentum of about 1.2 GeV/c, beyond which 
there is considerable contamination from kaons and protons. The 
3He, having a charge of z = 2e, can be identified cleanly up to 7 
GeV/c. The 3He is also produced in the detector material due to 
spallation. These are produced at low transverse momenta, as re-
ported by the ALICE experiment [34]. As a consequence the 3He
candidate is required to have a transverse momentum (pT) greater 
than 1.8 GeV/c, where the spallation processes are negligible.

The 3
�H and 3

�
H candidates are selected by applying topological 

and kinematic selection criteria on the decay products. The dis-
tance of closest approach (DCA) between the two daughter tracks 
and the DCA of π± tracks from the primary vertex are required to 
be lower than 0.7 cm and larger than 0.1 cm respectively. The can-
didates are selected whose cosine of the angle between the total 
momentum of the daughter tracks at the secondary vertex and the 
vector connecting the primary and secondary vertex (pointing an-
gle) is larger than 0.995. Two additional selections on the 3

�H and 
3
�

H rapidity (|y| < 0.8) and transverse momentum (2 < pT < 9 
GeV/c) are applied. All the selection criteria previously described 
have been studied with a dedicated Monte Carlo production, in or-
der to improve the background rejection, and are summarized in 
Table 1.

The sample of 3
�H and 3

�
H candidates is divided in four ct =

MLc/p intervals for the lifetime determination, where c is the 
speed of light, t is the proper time of the candidate, M is the mass 
of the candidate, L is the decay distance and p is the reconstructed 
momentum. The mass M of the hypertriton is obtained from the 
measured values of mass of p, n and � [14] and of the binding 
energy [11], and has been fixed at M = 2.99116 ± 0.00005 GeV/c2. 
The four ct intervals are 4 ≤ ct < 7 cm, 7 ≤ ct < 10 cm, 10 ≤ ct <
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Fig. 1. Invariant mass distribution of (3He, π−) and (3He, π+) for the four ct intervals used to determine the 3
�H and 3

�
H lifetime. The solid blue curve represents the 

function used to perform the fit and the red dashed curve represents the background component.
15 cm and 15 ≤ ct < 28 cm. The corresponding invariant mass dis-
tributions are shown in Fig. 1 and are fitted, in each ct interval, 
with a function which is the sum of a Gaussian, used to interpolate 
the signal, and a second order polynomial, used to describe the 
background. The fit is performed using the maximum-likelihood 
estimate and the fit function is represented as a solid blue line.

From the fit, the mean values μ and the widths σ of each 
distribution are extracted. In particular, the signal width is in the 
range 1.7–2.1 MeV/c2, depending on the ct interval, and is driven 
by the detector resolution. The raw yield of the signal is defined as 
the integral of the Gaussian function in a ± 3σ region around the 
mean value above the background. The significance of the signal in 
the four ct intervals varies in the range 3.1–4.9.

The yield is corrected in each ct bin for the detector accep-
tance, the reconstruction efficiency and the absorption of the 3

�H
(3
�

H) in the detector material. The efficiency×acceptance is deter-

mined with a dedicated Monte Carlo simulation, where the 3
�H and 

3
�

H are injected on top of a HIJING event [35] and are allowed to 
decay into charged two-body and three-body final states. The sim-
ulated particles are propagated through the ALICE detectors using 
the GEANT3 transport code [36] and then reconstructed following 
the same procedure as adopted for the data.

The aforementioned transport code does not properly describe 
the interactions of the (anti-)(hyper-)nuclei with the material of 

the apparatus. Thus, a correction factor for the absorption of 3
�H

(3
�

H) and 3He (3He) is estimated, based on the p (p) absorption 
probability measured in the ALICE detector [37]. The usage of this 
experimental measurement offers the advantage of taking auto-
matically into account the cross section and the effective material 
of the detector crossed by a charged particle. The same absorp-
tion probability for protons and neutrons has been assumed and 
the 3He(3He) has been considered as a state of three independent 
p (p) as verified in [10]. The absorption probability, computed as 
the third power of that of one proton, goes from 11% at low pT

to 6% at high pT for 3He while it is constant at 6% for 3He. The 
evaluation of the 3

�H (3
�

H) absorption probability is done follow-
ing the same approach. However, to take into account the small 
� separation energy (B� = 0.13 ± 0.05 MeV [11]), the 3

�H absorp-
tion cross-section is increased by 50% with respect to the one of 
the 3He [38,39], as described in the ALICE measurement in Pb–
Pb collisions at 

√
sNN = 2.76 TeV [10]. This leads to an absorption 

probability between 16% and 9% for 3
�

H as a function of pT while 
it is constant at 9% for 3

�H. The correction factor to be applied is:

k = kabs,3
�H + (1 − kabs,3

�H)kabs,3He (1)

where kabs,3
�H is the probability that the 3

�H is absorbed be-

tween the primary and the secondary vertex while kabs,3He is 
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Fig. 2. Efficiency×acceptance as a function of ct for 3
�H (red square), 3

�
H (blue 

square) and 3
�H+3

�
H (black open circle) in the same ct intervals selected for the 

raw yields extraction.

the probability that the daughter 3He is absorbed between the 
secondary vertex and the TPC inner wall. For each ct interval, 
the efficiency x acceptance has been calculated using the ab-
sorption corrected numbers of reconstructed 3

�H and 3
�

H. Fig. 2
shows the efficiency×acceptance (black marker) which is used 
for the lifetime determination and is obtained by combining 3

�H
and 3

�
H after the absorption correction is applied. This distribu-

tion is also shown separately for 3
�H and 3

�
H and the difference 

is due to the absorption correction which is bigger for the anti-
matter.

The main sources of systematic uncertainties on each ct bin 
used for the lifetime evaluation are the absorption correction, the 
single track efficiency and the uncertainty on the detector material 
budget. The systematic uncertainty on the absorption correction is 
mainly due to the assumption used for the 3

�H (3
�

H) cross-section. 
This uncertainty is evaluated by varying this assumption between 
a lower and an upper limit. The first one is obtained by setting the 
3
�H (3

�
H) cross-section equal to the 3He (3He) absorption cross-

section and the second one as twice the 3He (3He) absorption 
cross-section. This leads to an uncertainty of 5.2% for each ct in-
terval, as reported in Table 2.

The second source of systematic uncertainty is related to the 
material budget description in the simulation. An uncertainty on 
the knowledge of the ALICE detector material budget of 4.5% was 
determined in a previous study [26]. The systematic uncertainty is 
estimated using two dedicated Monte Carlo productions, varying 
the material budget accordingly, and amounts to 1% for the yields 
in all ct intervals.

The systematic uncertainty due to the single-track efficiency 
and the different choices of the track quality selections has been 
investigated [40] and amounts to 4%. For the analysis of the two-
body decay of 3

�H an uncertainty of 8% is assumed in all ct inter-
vals. The summary of the systematic uncertainties is reported in 
Table 2, where the total uncertainty is obtained as sum in quadra-
ture of each contribution of the individual sources.

The corrected dN/d(ct) spectrum is shown in Fig. 3 where the 
blue markers are the corrected yield with their statistical uncer-
tainty, while the box represents the systematic uncertainty.

The lifetime is determined with an exponential fit (red line) and 
the slope results in a proper decay length of cτ = 7.25+1.02

−1.13 (stat.) 
± 0.51 (syst.) cm, corresponding to a lifetime τ = 242+34

−38 (stat.) 
± 17 (syst.) ps. The systematic uncertainty for the lifetime value 

Table 2
Summary of the systematic uncertainties used in the 
lifetime analysis. The total uncertainty assigned in each 
ct interval is the sum in quadrature of the single sources.

Systematic uncertainties

Source Value

Absorption 5.2%
Material budget 1%
Single track efficiency 8%
Total 9.5%

Fig. 3. Corrected dN/d(ct) spectrum fitted with an exponential function (red line) 
used to extract the (3

�H + 3
�

H) lifetime. The bars and boxes represent the statistical 
and systematic uncertainties, respectively.

is determined by assuming the systematic uncertainties in each ct
interval as uncorrelated.

3.1. Unbinned fit method for lifetime extraction

In order to enforce the result described in Sec. 3, an addi-
tional analysis on the same data sample has been carried out that 
relies on a two-dimensional (invariant mass vs. ct) unbinned fit ap-
proach. The method can be summarized in three steps: i) fit to the 
ct-integrated invariant mass distribution; ii) tune the function used 
to describe the combinatorial background; iii) fit to the ct distribu-
tion with a function which is the sum of three exponentials, one 
to describe the signal and two to describe the background.

The first step is performed with a function that is the sum of 
a Gaussian, for the signal, and a second order polynomial, for the 
background. The mean value μ and the σ are 2.9913 ± 0.0004 
GeV/c2 and 0.0020 ± 0.0005 GeV/c2 respectively and are used 
to define the boundaries of the signal region and the sidebands, 
which correspond to the intervals μ ± 3σ and ± 3σ to ± 9σ
with respect to the mean value, respectively.

The second step consists in fitting the ct distribution of the 
background in the sidebands using a function that is the sum of 
two exponentials. The fit is performed simultaneously in the two 
sideband regions with the ROOFIT package [41]. The result is then 
used as background parameterization for the fit in the signal re-
gion.

The (3
�H + 3

�
H) lifetime measurement is obtained by perform-

ing the unbinned fit to the ct distribution in the signal region. 
The total probability density function used for the fit is the sum 
of the two exponentials (background) and the exponential adopted 
to reproduce the signal. Since the ct distribution is unbinned, the 
efficiency×acceptance correction, evaluated as described in Sec. 3, 
is parametrized with a polynomial plus an exponential and it is 
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Fig. 4. Lifetime value τ determined from the minimization of the log-likelihood ratio 
–log(λ(τ )). The statistical uncertainty is evaluated at a confidence level of 68% (red 
dashed lines) with the log-likelihood ratio (blue line).

used to scale the signal function. The observed signal distribution 
is described as the product of the function used for the signal 
and the efficiency parametrization. Thus, the lifetime is obtained 
with the unbinned maximum-likelihood estimate (MLE) fit to the 
ct distribution, performed in the signal region, leading to a value of 
τ = 240+40

−31 (stat.) ± 18 (syst.) ps, as reported in Fig. 4. The statis-
tical uncertainty of the measurement is assessed by providing the 
interval of the estimated τ [42], at a confidence level of 68%, which 
is represented by the red dashed lines, based on the log-likelihood 
ratio (logλ(τ )), shown as a blue line. The result corresponds to 
a proper decay length cτ = 7.20+1.20

−0.93 (stat.) ± 0.54 (syst.) cm. The 
sources of systematic uncertainties are the same as described in 
Sec. 3 (Table 2) and contribute to a total systematic uncertainty of 
9.5% on the estimated lifetime.

The value obtained with this approach is in good agreement 
within 1σ with the lifetime estimation obtained with the method 
described in Sec. 3, which we consider as the final value for the 3

�H
lifetime. Additional figures and details for the unbinned fit method 
are presented in [43].

4. Discussion and conclusions

Thanks to the large data sample of heavy-ion collisions at √
sNN = 5.02 TeV provided by the LHC and to the excellent tracking 

and particle identification performance of the ALICE apparatus we 
have determined a precise value for the 3

�H lifetime. The measured 
τ = 242+34

−38 (stat.) ± 17 (syst.) ps is shown as a full red diamond 
in Fig. 5 together with other experimental results and theoretical 
estimates.

Early experiments [15–20] were performed with visualizing 
techniques, namely photographic emulsion and 3He filled bubble 
chambers, where the tracks formed due to passage of charged par-
ticles were recorded visually. Most of the results obtained using 
these techniques had large uncertainties due to the limited size 
of the data sample at disposal. Furthermore, these measurements 
prevented a definite conclusion on the agreement with the theo-
retical predictions, which foresee a lifetime close to the value of 
the free � hyperon. It is worthwhile to note that the small bind-
ing energy of the hypertriton makes the � spend most of the time 
far from the deuteron core thereby not affecting the lifetime due 
to Y-N interaction.

The recent determination of the lifetime τ of (anti-)3
�H of 

182+89
−45 (stat.) ± 27 (syst.) ps, measured for the first time in Au–

Au collisions via two-body decay by the STAR experiment at RHIC 
[8], revived the interest for a more precise determination of the 
lifetime. The HypHI Collaboration at GSI reported a value of τ =
183+42

−32 (stat.) ± 37 (syst.) ps [9], which was obtained by studying 
the projectile fragmentation of 6Li at 2 AGeV on a carbon target. 
Very recently, the ALICE experiment at the LHC measured a life-
time value τ = 181+54

−38 (stat.) ± 33 (syst.) ps [10] using the data 
from Pb–Pb collisions at 

√
sNN = 2.76 TeV and the invariant mass 

analysis of the two-body decay channel. The average value of all 
results available up to 2016 was τ = 215+18

−16 ps [10], much lower 
than the theoretical estimates, motivating the need for a measure-
ment with improved precision. The STAR Collaboration performed 
a new analysis [22] combining the two-body and the three-body 
decay channels using the data sample of the RHIC beam energy 
scan, resulting in an even lower value of τ = 142+24

−21 (stat.) ± 29 
(syst.) ps. The ALICE Collaboration exploited the data collected in 
Pb–Pb collisions at 

√
sNN = 5.02 TeV to carry out a new analysis 

of the two-body decay channel, reported in this letter. These two 
most recent values are reported in Fig. 5. The new measurement 
by STAR yields a very low value as compared to the lifetime of the 
free �, while the result presented in this paper is in agreement 
with the theoretical predictions and it is characterized by an im-
proved precision with respect to previous experiments. This value 
is also in agreement with the previous ALICE result [10] obtained 
by analyzing the data sample of Pb–Pb collisions at 

√
sNN = 2.76

TeV.
Besides the experimental results, the theoretical predictions for 

the 3
�H lifetime are reported in Fig. 5 for comparison with the 

data. The calculation performed by Dalitz and Rayet [23], repre-
sented with a dot-long dashed cyan line, took into account the 
phase space factors and the Pauli principle, including also correc-
tions to account for final state pion scattering and the non-mesonic 
weak decay channel. More recently, a prediction for the 3

�H life-
time quite close to the one of the free � hyperon was published 
by Congleton [24] (dashed green line in Fig. 5), obtained using 
updated values for N–N and Y–N potentials. The prediction by Ka-
mada et al. [7] (dotted-dashed blue line) was performed with a 
rigorous determination of the hypernucleus wave function and of 
the three nucleons scattering states, thus finding a value of 256 ps, 
which is the closest to the free � lifetime value. Recently, Garcilazo 
and Gal performed a calculation [44] using the wave function gen-
erated by solving three-body Faddeev equations and adding the 
final-state interactions of the pions. Their prediction of 213 ps is 
shown as a dotted purple line.

A statistical combination of all the experimental results, includ-
ing the most recent values determined by the STAR and ALICE 
experiment, leads to a world average of τ = 206+15

−13 ps for the 
3
�H lifetime and is represented with an orange band in Fig. 5. The 
method used for this evaluation is the same as described in [10]. 
Furthermore world averages were calculated grouping the mea-
surements on the basis of the experimental techniques, obtaining 
τvisual = 224+23

−20 ps and τHI = 189+22
−20 ps for the visualizing tech-

niques and the heavy-ion experiments, respectively. These values 
are consistent and in agreement, also with the world average, and 
this suggests that the results are not affected by the technique 
used for the measurement.

Despite the addition of two recent high precision measure-
ments of the 3

�H lifetime, one well below and the other closer 
to the theoretical predictions, the situation has hardly changed 
with the current world average, now more than 3 σ below the 
lifetime of the free � hyperon. In the future a very large data 
sample will be collected with heavy-ion collisions during LHC Run 
3 (2021-2023) and Run 4 (2027-2029) [45]. At the end of Run 4, 
ALICE expects to reduce the statistical uncertainty on the lifetime 
down to 1% and significantly improve the systematic uncertainty, 
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Fig. 5. Collection of the 3
�H lifetime measurements obtained with different experimental techniques. The vertical lines and boxes are the statistical and systematic uncertain-

ties respectively. The orange band represents the average of the lifetime values and the lines at the edge correspond to 1σ uncertainty. The dashed-dotted lines are four 
theoretical predictions.
which at present is 9.5%. Furthermore, it would be beneficial in 
view of a more solid comparison with the theoretical predictions, 
to have new measurements performed at lower energies at RHIC 
and SIS and by using different experimental techniques at the 
J-PARC and MAMI facilities. A measurement of the lifetime to a 
precision of a few percent will guide and constrain the theoretical 
input leading to a more precise determination of the Y-N interac-
tion, eventually contributing to solving the hyperon puzzle.
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