Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at $\sqrt{s_{\text{NN}}} = 5.44$ TeV

(ALICE Collaboration) Acharya, S.; ...; Antičić, Tome; ...; Erhardt, Filip; ...; Gotovac, Sven; ...; Jerčić, Marko; ...; ...

Source / Izvornik: Physics Letters B, 2019, 788, 166 - 179

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1016/j.physletb.2018.10.052

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:197651

Rights / Prava: Attribution 4.0 International

Download date / Datum preuzimanja: 2022-07-06
Transverse momentum spectra and nuclear modification factors of charged particles in Xe–Xe collisions at $\sqrt{s_{\text{NN}}} = 5.44$ TeV

ALICE Collaboration *

A R T I C L E I N F O

Article history:
Received 24 May 2018
Received in revised form 26 September 2018
Accepted 24 October 2018
Available online 31 October 2018
Editor: M. Doser

A B S T R A C T

Transverse momentum (p_T) spectra of charged particles at mid-pseudorapidity in Xe–Xe collisions at $\sqrt{s_{\text{NN}}} = 5.44$ TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range $0.15 < p_T < 50$ GeV/c and $|\eta| < 0.8$ is covered. Results are presented in nine classes of collision centrality in the 0–80% range. For comparison, a pp reference at the collision energy of $\sqrt{s} = 5.44$ TeV is obtained by interpolating between existing pp measurements at $\sqrt{s} = 5.02$ and 7 TeV. The nuclear modification factors in central Xe–Xe collisions and Pb–Pb collisions at a similar center-of-mass energy of $\sqrt{s_{\text{NN}}} = 5.02$ TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle multiplicity density ($dN_{\text{ch}}/d\eta$) show a remarkable similarity at $p_T > 10$ GeV/c. The centrality dependence of the ratio of the average transverse momentum (p_T) in Xe–Xe collisions over Pb–Pb collision at $\sqrt{s} = 5.02$ TeV is compared to hydrodynamical model calculations.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Transverse momentum (p_T) spectra of charged particles carry essential information about the high-density deconfined state of strongly-interacting matter commonly denoted as quark–gluon plasma, that is formed in high-energy nucleus–nucleus (A–A) collisions [1]. Relativistic hydrodynamics is able to model the evolution of this medium [2,3].

At low to intermediate p_T, typically in the range of up to 10 GeV/c, charged particle production is governed by the collective expansion of the system, which is observed in the shapes of single-particle transverse-momentum spectra [4,5] and multiparticle correlations [2]. However, there is presently an intense debate as to whether the strikingly similar signatures observed in small collision systems (pp and p–A) are also of hydrodynamical origin [6–14]. A key ingredient of calculations in relativistic hydrodynamics is the initial energy density [2,15,16]. The number of produced particles and the volume of the medium are approximately proportional to the number of nucleons N_{part} that participate in the collision [17–19]. Thus, the particle density per unit volume is roughly independent of N_{part}. As a consequence, particle spectra at small transverse momentum should be similar in nucleus–nucleus collisions, independently of the mass number, when compared at similar values of N_{part} [20].

At high p_T, typically above 10 GeV/c, particles originate from parton fragmentation and are sensitive to the amount of energy loss that the partons suffer when propagating in the medium. In a simplified model, the energy loss depends on the number of scattering centers, which is roughly proportional to the energy density, and on the path length that the parton propagates in the medium [21]. For elastic collisions, the dependence is linear, while for medium induced gluon radiation, it is quadratic [22]. A description of experimental data lies in between those two [23].

For hard processes, the production yield N_{AA} in nucleus–nucleus (A–A) collisions is expected to scale with the average nuclear overlap function (T_{AA}) when compared to the production cross section σ_{pp} in pp collisions. In the absence of nuclear effects, the nuclear modification factor

$$R_{\text{AA}}(p_T) = \frac{1}{T_{\text{AA}}} \cdot \frac{dN_{\text{AA}}(p_T)/dp_T}{d\sigma_{\text{pp}}(p_T)/dp_T}$$

equals unity. The average nuclear overlap function is defined as the average number of binary nucleon–nucleon collisions (N_{coll}) per inelastic nucleon–nucleon cross section and is estimated via a Glauber model calculation [24]. At the Large Hadron Collider (LHC), particle production is observed to be strongly suppressed in Pb–Pb collisions by a factor of up to 7–8 around $p_T = 6–7$ GeV/c with a linear decrease of the suppression factor at higher p_T but still a substantial suppression even above 100 GeV/c [5,25].

The LHC produced for the first time collisions of xenon nuclei at a center-of-mass energy of $\sqrt{s_{\text{NN}}} = 5.44$ TeV during a pilot run with 6 hours of stable beams in October 2017. This allows for studying the dependence of particle production on the collision system size where xenon neatly bridges the gap between data

* E-mail address: alice-publications@cern.ch.

https://doi.org/10.1016/j.physletb.2018.10.052

0370-2693/© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
from pp, p–Pb and Pb–Pb collisions. Here, the atomic mass numbers are \(A = 129 \) for xenon, and \(A = 208 \) for lead with half-density radii of the nuclear-charge distribution of \(r = (5.36 \pm 0.1) \) fm and \((6.62 \pm 0.06) \) fm, respectively [24,26]. The parameters of the nuclear-charge density distribution for \(^{129}\text{Xe}\) are not yet measured but were extrapolated from neighboring isotopes and are thus less precisely known than for \(^{208}\text{Pb}\). While \(^{208}\text{Pb}\) is a spherical nucleus, \(^{129}\text{Xe}\) has a deformation parameter of \(\beta_2 = 0.18 \pm 0.02 \).

This article reports transverse momentum spectra of charged particles at mid-pseudorapidity in Xe–Xe collisions at \(\sqrt{s_{\text{NN}}} = 5.44 \) TeV measured with the ALICE apparatus at the LHC in the kinematic range \(0.15 < p_T < 50 \) GeV/c and \(|\eta| < 0.8 \) for nine classes of collision centrality, covering the most central 80% of the hadronic cross section. It is organized as follows: Section 2 describes the experimental setup and data analysis. Systematic uncertainties are discussed in Sect. 3. Results and comparison to model calculations are presented in Sect. 4. A summary is given in Sect. 5.

2. Experiment and data analysis

Collisions of xenon nuclei were recorded at an average instantaneous luminosity of about \(2 \cdot 10^{35} \) cm\(^{-2}\) s\(^{-1}\) and a hadronic interaction rate of 80–150 s\(^{-1}\). A detailed description of the ALICE experimental apparatus can be found elsewhere [27].

2.1. Trigger and event selection

A minimum-bias interaction trigger was optimized for high efficiency on hadronic collisions. It required signals from both forward scintillator arrays covering \(2.8 < \eta < 5.1 \) (VOA) and \(-3.7 < \eta < -1.7 \) (VOC). Additionally, coincidence with signals from two neutron Zero-Degree Calorimeters (ZDC), ZNA and ZNC, at \(|\eta| > 8.7 \) was required in order to remove contamination from electromagnetic processes. Here A and C denote opposite sides of the experiment along the beamline. The offline event selection was optimized to reject beam-induced background. Background events were efficiently rejected by exploiting the timing signals in the two V0 detectors. Parasitic collisions are removed by using the correlation between the sum and the difference in arrival times as measured in each of the neutron ZDCs. In total, \(1.1 \cdot 10^6 \) minimum-bias collisions pass the event selection and were further analyzed.

This analysis is based on tracking information from the Inner Tracking System (ITS) [28] and the Time Projection Chamber (TPC) [29] which are located in the central barrel of ALICE. A solenoidal magnet provides momentum dispersion in the direction transverse to the beam axis. The nominal field strength in the ALICE central barrel is 0.5 T. However, in order to extend particle tracking and identification to the lowest possible momenta, it was reduced to 0.2 T in Xe–Xe collisions.

The ITS is comprised of six cylindrical layers of silicon detectors with radii between 3.9 and 43.0 cm. The two innermost layers, with average radii of 3.9 cm and 7.6 cm, are equipped with Silicon Pixel Detectors (SPD); the two intermediate layers, with average radii of 15.0 cm and 23.9 cm, are equipped with Silicon Drift Detectors (SDD) and the two outermost layers, with average radii of 38.0 cm and 43.0 cm, are equipped with double-sided Silicon Strip Detectors (SSD). The large cylindrical TPC has an active radial range from about 85 to 250 cm and an overall length along the beam direction of 500 cm. It covers the full azimuth in the pseudo-rapidity range \(|\eta| < 0.9 \) and provides track reconstruction with up to 159 points along the trajectory of a charged particle as well as particle identification via the measurement of specific energy loss \(dE/dx \).

The collision vertex is determined using reconstructed particle trajectories in the TPC including hits in the ITS. All collisions with a reconstructed vertex position within \(\pm 10 \) cm along the beam direction from the nominal interaction point are accepted. The collision centrality is defined as the percentile of the hadronic cross section corresponding to the measured charged particle multiplicity. The centrality determination is based on the sum of the amplitudes of the VOA and VOC signals [18,19]. Averaged quantities characterizing a centrality class such as the number of participants \(N_{\text{part}} \), the number of binary collisions \(N_{\text{coll}} \), and the nuclear overlap function \(T_{\text{AA}} \) are calculated as the average over all events in this class by fitting the experimental distribution with a Glauber Monte Carlo model that employs negative binomial distributions to model multiplicity production [18,19] (see Table 1). The analysis is restricted to the 0–80% centrality range in order to ensure that effects of trigger inefficiency and contamination by electromagnetic processes are negligible.

2.2. Track selection

Primary charged particles within the kinematic range \(|\eta| < 0.8 \) and \(0.15 < p_T < 50 \) GeV/c are measured. Here, primaries are defined as all charged particles with a proper lifetime \(\tau > 1 \) cm/c that are either produced directly in the primary beam-beam interaction, or from decays of particles with \(\tau < 1 \) cm/c, excluding particles produced in interactions with the detector material [31]. The track selection is optimized for best track quality and minimum contamination from secondary particles. The selection criteria are identical to those of the previous analysis of Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 5.02 \) TeV [5] except for the following changes in the parameterization on the transverse momentum dependence. The geometrical track length in the TPC fiducial volume [25] is \(L/(1 \text{ cm}) < 130 - (p_T/(1 \text{ GeV/c}))^{-0.7} \), and the distance of closest approach to the primary vertex in the transverse plane is \(|D\text{CA}_{\text{min}}/(1 \text{ cm})| < 0.0119 + 0.0049(p_T/(1 \text{ GeV/c}))^{-1} \). These changes reflect differences in particle tracking due to the reduced magnetic field. In order to reject fake tracks that contaminate the spectrum, especially at high \(p_T \), another selection is introduced: the uncertainty in the reconstructed \(p_T \) as estimated from the covariance

Table 1

Averaged values of \(\langle dN_{\text{ch}}/dy \rangle \), \(\langle N_{\text{part}} \rangle \), \(\langle N_{\text{coll}} \rangle \) and \(\langle T_{\text{AA}} \rangle \) for nine centrality classes of Xe–Xe collisions [18,19] at \(\sqrt{s_{\text{NN}}} = 5.44 \) TeV, and \(\langle dN_{\text{ch}}/dy \rangle \) for Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 5.02 \) TeV [30]. The values for \(\langle dN_{\text{ch}}/dy \rangle \) are measured in the range \(|\eta| < 0.5 \).

<table>
<thead>
<tr>
<th>Centrality (%)</th>
<th>(\langle dN_{\text{ch}}/dy \rangle_{\text{Xe–Xe}})</th>
<th>(\langle N_{\text{part}} \rangle)</th>
<th>(\langle N_{\text{coll}} \rangle)</th>
<th>(\langle T_{\text{AA}} \rangle) (mb(^{-1}))</th>
<th>(\langle dN_{\text{ch}}/dy \rangle_{\text{Pb–Pb}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5</td>
<td>1167 ± 26</td>
<td>236 ± 2</td>
<td>949 ± 53</td>
<td>13.9 ± 0.8</td>
<td>1943 ± 54</td>
</tr>
<tr>
<td>5–10</td>
<td>939 ± 24</td>
<td>207 ± 2</td>
<td>737 ± 46</td>
<td>10.8 ± 0.7</td>
<td>1586 ± 46</td>
</tr>
<tr>
<td>10–20</td>
<td>706 ± 17</td>
<td>165 ± 2</td>
<td>511 ± 26</td>
<td>7.5 ± 0.5</td>
<td>1189 ± 31</td>
</tr>
<tr>
<td>20–30</td>
<td>478 ± 11</td>
<td>118 ± 3</td>
<td>303 ± 28</td>
<td>4.4 ± 0.4</td>
<td>786 ± 20</td>
</tr>
<tr>
<td>30–40</td>
<td>315 ± 8</td>
<td>82 ± 3</td>
<td>171 ± 19</td>
<td>2.5 ± 0.3</td>
<td>512 ± 15</td>
</tr>
<tr>
<td>40–50</td>
<td>198 ± 5</td>
<td>55 ± 3</td>
<td>92 ± 11</td>
<td>1.3 ± 0.2</td>
<td>318 ± 12</td>
</tr>
<tr>
<td>50–60</td>
<td>118 ± 3</td>
<td>34 ± 2</td>
<td>46 ± 6</td>
<td>0.7 ± 0.1</td>
<td>183 ± 8</td>
</tr>
<tr>
<td>60–70</td>
<td>65 ± 2</td>
<td>20 ± 2</td>
<td>22 ± 3</td>
<td>0.32 ± 0.04</td>
<td>96 ± 6</td>
</tr>
<tr>
<td>70–80</td>
<td>32 ± 1</td>
<td>11 ± 1</td>
<td>10 ± 1</td>
<td>0.14 ± 0.02</td>
<td>45 ± 3</td>
</tr>
</tbody>
</table>
matrix of the track fit must be less than ten times the standard deviation, when averaged over all tracks at that momentum.

2.3. Corrections

The doubly-differential transverse momentum spectra in Xe–Xe collisions are normalized by the number of events \(N_{\text{ev}} \) in each centrality class, and are given by

\[
\frac{1}{N_{\text{ev}}} \frac{d^2 N_{\text{ch}}}{d \eta d p_T} = \frac{N_{\text{rec}}^{\text{rec}}(\Delta \eta, \Delta p_T)}{N_{\text{ev}}(\Delta \eta) \Delta p_T} \frac{\delta p_T(\Delta p_T)}{\alpha(\Delta p_T) \cdot \epsilon(\Delta p_T)},
\]

where \(N_{\text{rec}}^{\text{rec}} \) is the raw yield of reconstructed primary charged particles in each interval of pseudo-rapidity and transverse momentum \((\Delta \eta, \Delta p_T) \). The symbols \(\alpha(\Delta p_T) \) and \(\epsilon(\Delta p_T) \) are the correction factors for detector acceptance and tracking efficiency, respectively. The correction due to the finite transverse-momentum resolution in the reconstruction of primary charged particles is denoted by \(\delta p_T(\Delta p_T) \). The efficiencies for trigger, event vertex reconstruction and tracking are estimated using Monte Carlo simulations with HIJING [32] as the event generator and GEANT3 [33] for particle propagation and simulation of the detector response. The trigger and vertex selections are fully efficient for the whole centrality range used in the analysis.

Contamination from secondary charged particles, i.e. from weak decays and interactions in the detector material, is subtracted from the raw spectrum by employing a data driven method [5]. Reconstructed trajectories of primary charged particles point to the collision vertex, while charged particles from weak decays and particles generated in the detector material preferentially point away from it. In order to distinguish between primary and secondary particles, the distance of closest approach to the collision vertex in radial direction, DCA_{xy}, is used. A multi-template function that consists of templates for primary particles, secondary particles, produced from weak decays and secondary particles from interactions in the detector material is fitted to the DCA_{xy} distributions in each \(p_T \) interval.

The primary charged particle reconstruction efficiency is obtained from the Monte Carlo simulation. As discussed in detail in [5], this efficiency depends on the relative abundances of the various primary particles species. These relative abundances are adjusted in the simulation using a data-driven re-weighting procedure. The particle composition in Xe–Xe collisions is not yet known. However, bulk particle production scales with the average charged particle multiplicity density, \((dN_{\text{ch}}/d\eta) \), independently of the collision system [34]. In Xe–Xe collisions, the weights from existing analyses [35–37,45] with Pb–Pb collisions at \(\sqrt{s_{\text{NN}}}=2.76 \text{ TeV} \) at equivalent values in \((dN_{\text{ch}}/d\eta) \) are applied.

The acceptance times tracking efficiency for charged pions, charged kaons and (anti-)protons for 5% most central Xe–Xe collisions is shown in Fig. 1 as a function of the particle transverse momentum and compared to 10–20% Pb–Pb collisions at \(\sqrt{s_{\text{NN}}}=5.02 \text{ TeV} \). The two centrality classes have similar multiplicity densities. The particular shape with a dip at \(p_T \sim 0.4 \text{ GeV}/c \) arises from the geometrical length selection that is especially visible for pions. This dip corresponds to particles that cross the TPC sector boundaries under small angles. The decrease at low values of \(p_T \) is due to curling trajectories in the magnetic field which do not reach the required minimum track length in the TPC and due to energy loss and absorption in the detector material. In Pb–Pb collisions, the magnetic field was set to \(B = 0.5 \text{ T} \), which results in the dip being positioned around \(1 \text{ GeV}/c \). At large \(p_T \), above \(7 \text{ GeV}/c \), the tracking efficiency is reduced by an increased local track density, i.e. high \(p_T \) particles are preferentially produced within jets, leading to a slight decrease in the track finding performance.

The transverse momentum of primary charged particles is reconstructed from the track curvature as measured by the ITS and the TPC [30]. The finite momentum resolution modifies the reconstructed charged-particle spectrum and is estimated by the corresponding covariance matrix element of the Kalman fit. The relative \(p_T \) resolution, \(\sigma(p_T)/p_T \), depends on the momentum and amounts to approximately 4.5% at \(p_T = 0.15 \text{ GeV}/c \), it shows a minimum of 1.5% around \(p_T = 1.0 \text{ GeV}/c \), and increases linearly for larger \(p_T \), approaching 9.3% at 50 GeV/c. The centrality dependence of the relative \(p_T \) resolution is negligible. To account for the finite \(p_T \) resolution, correction factors to the spectra are determined from an unfolding procedure as described in [5], using Bayesian unfolding at low \(p_T \) and a bin-by-bin correction at large \(p_T \). The \(p_T \) dependent correction factors are applied to the measured \(p_T \) spectrum and depend slightly on collision centrality because of the change in the slope of the spectrum at high \(p_T \). At transverse momenta below 10 GeV/c, \(\delta p_T \) deviates significantly from unity only at the lowest momentum interval of 0.15 < \(p_T < 0.2 \text{ GeV}/c \) where it amounts to 0.5% for all centrality classes, and by up to 3% (4%) in 0–5% (70–80%) central collisions above 10 GeV/c.

The statistical uncertainty of the spectra is dominated by the statistical uncertainty in the raw data. It is largest at the highest momentum interval of 40–50 GeV/c and amounts to 28% (38%) for the 0–5% (30–40%) centrality class while the contribution from the Monte Carlo efficiency is 2% (4%) or less.

2.4. \(pp \) reference at \(\sqrt{s}=5.44 \text{ TeV} \)

The \(p_T \)-differential inelastic cross section in \(pp \) collisions at \(\sqrt{s}=5.44 \text{ TeV} \) is needed to measure the corresponding nuclear modification factor. As there are no measurements of \(pp \) collisions at this energy, a reference is obtained by interpolating \(pp \) references as measured at \(\sqrt{s}=5.02 \text{ TeV} \) and \(\sqrt{s}=7 \text{ TeV} \) assuming a power-law dependence in each \(p_T \) interval, \(d\sigma/dp_T(\sqrt{s}) \propto \sqrt{s}^n \).

The value of the free parameter \(n \) varies between 0.35 and 1.75, depending on \(p_T \). This approach is a combination of the interpolation method that was used over the full \(p_T \) range in [6] and for

![Fig. 1. Transverse momentum dependence of the acceptance times tracking efficiency for the 5% most central Xe–Xe collisions and comparison to the 10–20% centrality class for Pb–Pb collisions. The two centrality classes have similar multiplicity densities.](image-url)
$p_T < 5 \text{ GeV}/c$ as used in [39]. The statistical uncertainty of the pp reference is interpolated between the references at $\sqrt{s} = 5.02 \text{ TeV}$ and 7 TeV assuming also a power-law dependence and is assigned to the interpolated reference. It amounts to 7.8\% at the momentum interval of 30–50 GeV/c.

As an alternative approach, the scaling of the measured cross section at $\sqrt{s} = 5.02 \text{ TeV}$ to $\sqrt{s} = 5.44 \text{ TeV}$ by using the ratio of spectra at those two energies obtained with the PYTHIA 8 (Monash tune) event generator [40] is studied. The ratio of the pp references at $\sqrt{s} = 5.44 \text{ TeV}$ from the power-law interpolation and at $\sqrt{s} = 5.02 \text{ TeV}$ is shown in Fig. 2 together with results obtained with the alternative method. The spectrum is harder at higher collision energy, with a small change in the total cross section of 4\% below 1 GeV/c and an increase of about 10\% at transverse momenta above 10 GeV/c.

3. Systematic uncertainties

For the total systematic uncertainty, all contributions are added in quadrature and are summarized in Table 2.

The effect of the selection of events based on the vertex position is studied by comparing the fully corrected p_T spectra obtained with alternative vertex selections corresponding to $\pm 5 \text{ cm}$, and $\pm 20 \text{ cm}$. The difference in the fully corrected p_T spectra is less than 0.3\% for central collisions and less than 0.5\% for peripheral collisions.

In order to test the description of the detector response and the track reconstruction in the simulation, all criteria for track selection are varied within the ranges as described in the previous publication [5]. A full analysis is performed by varying one selection criterion at a time. The maximum change in the corrected p_T spectrum is then considered as systematic uncertainty. The overall systematic uncertainty related to track selection is obtained from summing up all individual contributions quadratically and it amounts to 0.6–3.0\%, depending on p_T and centrality.

The systematic uncertainty on the secondary-particle contamination is estimated by varying the fit model using two templates, i.e. for primaries and secondaries, or three templates, i.e. primaries, secondaries from interactions in the detector material and secondaries from weak decays of K^0_L and Λ, as well as varying the fit ranges. The maximum difference between data and the two-component-template fit is summed in quadrature together with the difference between results obtained from the two- and three-component-template fits. The systematic uncertainty due to the contamination from secondaries is decreasing with increasing p_T. It dominates at low p_T with values up to 4\% and is negligible above 2 GeV/c.

The systematic uncertainty on the primary particle composition is taken from [5]. An additional uncertainty is estimated by assuming the particle composition from a neighboring $\langle dN_{d\eta}/d\eta \rangle$ range to the matched one in the Pb–Pb analysis and is added quadratically. The sum peaks around 3 GeV/c with a maximum of 5\% (less than 2\%) for the 0–5\% (70–80\%) centrality class.

In order to estimate the systematic uncertainty due to the tracking efficiency, the track matching between the TPC and the ITS information in data and Monte Carlo is compared after scaling the fraction of secondary particles obtained from the fits to the DCA$_{xy}$ distributions [5]. The difference in the TPC-ITS track matching efficiency between data and simulation is assigned to the corresponding systematic uncertainty (see Table 2). It amounts to 2\% in central collisions, and up to 3.5\% in peripheral collisions.

The material budget in ALICE at $\eta \approx 0$ amounts to (11.4 ± 0.5)\% in radiation lengths for primary charged particles that have sufficient track length in the TPC [38]. A difference in the amount of detector material leads to different amounts of secondary particles that are produced. After the subtraction of the contribution due to secondaries using the three-component DCA$_{xy}$ fits, the differences on the secondary correction factor is negligible. A variation of the material budget within above limits leads to a p_T dependent systematic uncertainty on the tracking efficiency of 0.1–0.3\%.

The uncertainty due to the finite p_T resolution at high p_T is estimated using the azimuthal dependence of the 1/p_T spectra for

![Fig. 2. Ratio of p_T-differential inelastic cross sections in pp collisions at $\sqrt{s} = 5.44 \text{ TeV}$ over 5.02 TeV using a power law interpolation and the event generator PYTHIA 8.](image-url)
positively and negatively charged particles. The relative shift of the spectra for oppositely charged particles along $1/p_T$ determines the size of uncertainty for a given angle. The RMS of the $1/p_T$ shift as distributed over the full azimuth is used as an additional increase of the p_T resolution. For the lowest p_T bin the uncertainty is estimated from the unfolding procedure applied to Monte Carlo simulations. The uncertainty due to the finite p_T resolution is significant only at the lowest and highest momenta bins and amounts to 0.5% at the lowest p_T bin for all centralities and 0.5% (0.9%) for the 0–5% (70–80%) centrality class.

The uncertainty due to the centrality determination is estimated by changing the fraction of the visible cross section (90.0 ± 0.5%). The uncertainty is estimated from the variation of the resulting p_T spectra and amounts to ~0.1% and ~3.2% for central (0–5%) and peripheral (70–80%) collisions, respectively.

The systematic uncertainty of the pp reference at $\sqrt{s} = 5.44$ TeV has two contributions, which are added quadratically. For each p_T interval, the systematic uncertainty of the pp references at $\sqrt{s} = 5.02$ TeV and $\sqrt{s} = 7$ TeV are interpolated to $\sqrt{s} = 5.44$ TeV by using a power-law. This corresponds to interpolating between the upper and lower boundaries of the experimental data points as given by their systematic uncertainties. It assumes full correlation of systematic uncertainties at both energies.

The difference between the interpolated reference and the one using the PYTHIA 8 event generator is assigned as the other contribution to the systematic uncertainty in the pp reference, in each p_T interval. The systematic uncertainty in the pp reference has a minimum of 2.2% around 1 GeV/c and reaches its maximum of 7.7% at the highest momentum bin.

4. Results

The transverse momentum spectra of charged particles in Xe–Xe collisions are shown in the top panel of Fig. 3 for nine centrality classes together with the interpolated pp reference spectrum at $\sqrt{s} = 5.44$ TeV. The latter is obtained from the interpolated p_T-differential cross section by dividing it by the interpolated inelastic nucleon-nucleon cross section of (68.4 ± 0.5) mb at $\sqrt{s} = 5.44$ TeV [24]. In the most-peripheral collisions, the p_T spectrum is similar to that of pp collisions and exhibits a power law behavior that is characteristic of hard-parton scattering and vacuum fragmentation. With increasing collision centrality, the p_T differential cross section is progressively depleted above 5 GeV/c.

Systematic uncertainties are shown in the bottom panel. At momenta between 0.4 and 10 GeV/c, the systematic uncertainty is dominated by the contribution from tracking and amounts to about 2–3%. It is almost independent of p_T above 10 GeV/c with a value of 1.4% (2.1%) for the 0–5% (70–80%) centrality class.

In order to determine the nuclear modification factor R_{AA}, the interpolated p_T-differential pp cross section is scaled by the average nuclear overlap function $\langle T_{AA} \rangle$. The resulting nuclear modification factor as a function of transverse momentum is shown in Fig. 4 for nine centrality classes and compared to results from Pb–Pb collisions [5]. The overall normalization uncertainties for R_{AA} are indicated by vertical bars around unity. The uncertainties of the pp reference and the centrality determination are added in quadrature. The latter is larger for Xe–Xe collisions than for Pb–Pb because of the less precisely known nuclear-charge-density distribution of the deformed 124Xe and the resulting larger relative uncertainty in $\langle T_{AA} \rangle$ [18,19]. The nuclear modification factor exhibits a strong centrality dependence with a minimum around $p_T = 6–7$ GeV/c and an almost linear rise above. In particular, in the 5% most central Xe–Xe collisions, at the minimum, the yield is suppressed by a factor of about 6 with respect to the scaled pp reference. The nuclear modification factor reaches a value of 0.6 at the highest measured transverse-momentum interval of 30–50 GeV/c. For comparison, the nuclear modification factor R_{AA} in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV is shown in Fig. 3 as open circles for the same centrality classes as Xe–Xe. In both collision systems, a similar p_T dependence of R_{AA} is observed. In Pb–Pb collisions, the suppression of high-momentum particles is apparently stronger for the same centrality class but still in agreement with Xe–Xe collisions within uncertainties.

Nuclear modification factors from Xe–Xe and Pb–Pb collisions and their ratios at similar ranges of $(dN_{ch}/d\eta)$ are shown in Fig. 5. In 5% most central Xe–Xe collisions, the nuclear modification factor is remarkably well matched by 10–20% central Pb–Pb collisions over the entire p_T range. In the 30–40% Xe–Xe (40–50% Pb–Pb) centrality class, again agreement is found within uncertainties. These findings of matching nuclear modification factors at similar ranges of $(dN_{ch}/d\eta)$ are in agreement with results from the study of fractional momentum loss of high-p_T partons at RHIC and LHC energies [41].

A comparison of the nuclear modification factors as a function of $(dN_{ch}/d\eta)$ in Xe–Xe and Pb–Pb collisions for three different regions of p_T (low, medium, and high) is shown in Fig. 6. A remarkable similarity in R_{AA} is observed between Xe–Xe collision at $\sqrt{s_{NN}} = 5.44$ TeV and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV when compared at identical ranges in $(dN_{ch}/d\eta)$, for $(dN_{ch}/d\eta) > 400$. This holds both at low momentum where the hydrodynamical expansion of the medium dominates the spectrum and at high momentum, where parton energy loss inside the
Fig. 4. Nuclear modification factor in Xe–Xe at $\sqrt{s_{NN}} = 5.44$ TeV (filled circles) and Pb–Pb collisions [5] at $\sqrt{s_{NN}} = 5.02$ TeV (open circles) for nine centrality classes. The vertical lines (brackets) represent the statistical (systematic) uncertainties. The overall normalization uncertainty is shown as a filled box around unity.

Fig. 5. Comparison of nuclear modification factors in Xe–Xe collisions (filled circles) and Pb–Pb collisions (open circles) for similar ranges in $\langle dN_{ch}/d\eta \rangle$ for the 0–5% (left) and 30–40% (right) Xe–Xe centrality classes. The vertical lines (brackets) represent the statistical (systematic) uncertainties.

medium drives the spectral shape. At $\langle dN_{ch}/d\eta \rangle < 400$, the values of R_{AA} still agree within rather large uncertainties although no definitive conclusion can be drawn because, in particular, event selection and geometry biases could affect the spectrum in peripheral A–A collisions [42].

In a simplified radiative energy loss scenario when assuming identical thermalization times [43,44], the average energy loss $\langle \Delta E \rangle$ is proportional to the density of scattering centers in the medium, which in turn is proportional to the energy density ε, and to the square of the path length L of the parton in the medium, $\langle \Delta E \rangle \propto \varepsilon \cdot L^2$ [22]. The energy density can be estimated from the average charged-particle multiplicity density [45] per transverse area, $\varepsilon \propto \langle dN_{ch}/d\eta \rangle / A_T$. In central collisions, the initial transverse area A_T is related to the radius r of the colliding nuclei, $A_T = \pi \cdot r^2$ [22]. Therefore, the comparison of the measured R_{AA} values in the two colliding systems could enable a test of the path length dependence of medium-induced parton energy loss [46].

To further address bulk production, the average transverse momentum $\langle p_T \rangle$ in the range from 0–10 GeV/c is derived. The spectra are extrapolated down to $p_T = 0$ by fitting a Hagedorn function [47] in the range 0.15 GeV/c < p_T < 1 GeV/c. The relative fraction of the extrapolated particle yield amounts to 8% (11%) for the 0–5% (70–80%) centrality class. Statistical uncertainties in $\langle p_T \rangle$ are negligible. Systematic uncertainties are estimated by varying each source of systematic uncertainty in the spectra at a time, by varying the fit range to 0.15 GeV/c < p_T < 0.5 GeV/c, and by changing the interpolation range to 0–0.2 GeV/c. All contributions are then added quadratically. The relative systematic uncertainty is $1.8\% (1.3\%)$ for the 0–5% (70–80%) centrality class.

The average transverse momentum is presented in the top panel of Fig. 7 for Xe–Xe collisions at $\sqrt{s} = 5.44$ TeV (squares) and Pb–Pb collisions at $\sqrt{s} = 5.02$ TeV (diamonds) for nine centrality classes. An increase of $\langle p_T \rangle$ with centrality is visible in both col-
Fig. 6. Comparison of the nuclear modification factor in Xe–Xe and Pb–Pb collisions integrated over identical regions in p_T as a function of $\langle dN_{ch}/d\eta \rangle$. The vertical brackets indicate the quadratic sum of the total systematic uncertainty in the measurement and the overall normalization uncertainty in $<T_{AA}>$. The horizontal bars reflect the RMS of the distribution in each bin. The dashed lines show results from power-law fits to the data and are drawn to guide the eye.

Fig. 7. Average transverse momentum in the p_T-range 0–10 GeV/c for Xe–Xe collisions at $\sqrt{s} = 5.44$ TeV (squares) and Pb–Pb collisions at $\sqrt{s} = 5.02$ TeV (diamonds) for nine centrality classes (top) and their ratios (bottom). The vertical brackets indicate systematic uncertainties. The hatched areas show results from hydrodynamical calculations by Giacalone et al. [43].

The ALICE collaboration would like to thank G. Giacalone, J. Noronha-Hostler, M. Luzum, and J.-Y. Oliitrault for providing the results of their hydrodynamical calculations prior to publication.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alighanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science and Education, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics
References

<table>
<thead>
<tr>
<th>Institute/University</th>
<th>Location/Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFN, Sezione di Padova, Padova, Italy</td>
<td>INFN, Sezione di Roma, Rome, Italy</td>
</tr>
<tr>
<td>INFN, Sezione di Trieste, Trieste, Italy</td>
<td>INHA University, Incheon, Republic of Korea</td>
</tr>
<tr>
<td>Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Saclay, Université Paris-Saclay, Orsay, France</td>
<td>Institute for Nuclear Research, Academy of Sciences, Moscow, Russia</td>
</tr>
<tr>
<td>Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands</td>
<td>Institute for Theoretical and Experimental Physics, Moscow, Russia</td>
</tr>
<tr>
<td>Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia</td>
<td>Institute of Physics, Bhubaneswar, India</td>
</tr>
<tr>
<td>Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic</td>
<td>Institute of Space Science (ISS), Bucharest, Romania</td>
</tr>
<tr>
<td>Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany</td>
<td>Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico</td>
</tr>
<tr>
<td>Instituto de Física, Universidad Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil</td>
<td>Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico</td>
</tr>
<tr>
<td>IThemba LABS, National Research Foundation, Somerset West, South Africa</td>
<td>Joint Institute for Nuclear Research (JINR), Dubna, Russia</td>
</tr>
<tr>
<td>Korea Institute of Science and Technology Information, Daejeon, Republic of Korea</td>
<td>KTO Karayay University, Ronya, Turkey</td>
</tr>
<tr>
<td>Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France</td>
<td>Lawrence Berkeley National Laboratory, Berkeley, CA, United States</td>
</tr>
<tr>
<td>Lund University Department of Physics, Division of Particle Physics, Lund, Sweden</td>
<td>Nagasaki Institute of Applied Science, Nagasaki, Japan</td>
</tr>
<tr>
<td>National Women's University (NWU), Nara, Japan</td>
<td>National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece</td>
</tr>
<tr>
<td>National Centre for Nuclear Research, Warsaw, Poland</td>
<td>National Institute of Science Education and Research, HBNI, Jatni, India</td>
</tr>
<tr>
<td>National Nuclear Research Center, Baku, Azerbaijan</td>
<td>National Research Centre Kurchatov Institute, Moscow, Russia</td>
</tr>
<tr>
<td>Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark</td>
<td>NIKHEF, National Institute for subatomic physics, Amsterdam, Netherlands</td>
</tr>
<tr>
<td>NRC Kurchatov Institute IHEP, Protvino, Russia</td>
<td>Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom</td>
</tr>
<tr>
<td>Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Práhy, Czech Republic</td>
<td>Oak Ridge National Laboratory, Oak Ridge, TN, United States</td>
</tr>
<tr>
<td>Petersburg Nuclear Physics Institute, Gatchina, Russia</td>
<td>Petersburg Nuclear Physics Institute, Gatchina, Russia</td>
</tr>
<tr>
<td>Physics Department, Faculty of science, University of Zagreb, Zagreb, Croatia</td>
<td>Physics Department, Panjab University, Chandigarh, India</td>
</tr>
<tr>
<td>Physics Department, University of Jammu, Jammu, India</td>
<td>Physics Department, University of Rajasthan, Jaipur, India</td>
</tr>
<tr>
<td>Physics Institute, Eberhard-Karls-Universität Tübingen, Tübingen, Germany</td>
<td>Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany</td>
</tr>
<tr>
<td>Physik Department, Technische Universität München, Munich, Germany</td>
<td>Research Division and Extreme Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany</td>
</tr>
<tr>
<td>Rudjer Boskovic Institute, Zagreb, Croatia</td>
<td>Russian Federal Nuclear Center (VFEB), Sarov, Russia</td>
</tr>
<tr>
<td>Saha Institute of Nuclear Physics, Kolkata, India</td>
<td>School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom</td>
</tr>
<tr>
<td>Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru</td>
<td>Shanghai Institute of Applied Physics, Shanghai, China</td>
</tr>
<tr>
<td>Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria</td>
<td>SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France</td>
</tr>
<tr>
<td>Sunanaree University of Technology, Nakhom Ratchasima, Thailand</td>
<td>Technical University of Košice, Košice, Slovakia</td>
</tr>
<tr>
<td>Technische Universität München, Excellence Cluster ‘Universe’, Munich, Germany</td>
<td>The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland</td>
</tr>
<tr>
<td>The University of Texas at Austin, Austin, TX, United States</td>
<td>Universidad Autómat de Sinaloa, Culiacán, Mexico</td>
</tr>
<tr>
<td>Universidad de São Paulo (USP), São Paulo, Brazil</td>
<td>Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil</td>
</tr>
<tr>
<td>Universidade Federal do ABC, Santo André, Brazil</td>
<td>University College of Southeast Norway, Tonsberg, Norway</td>
</tr>
<tr>
<td>University of Cape Town, Cape Town, South Africa</td>
<td>University of Houston, Houston, TX, United States</td>
</tr>
<tr>
<td>University of Jyväskylä, Jyväskylä, Finland</td>
<td>University of Liverpool, Department of Physics Oliver Lodge Laboratory, Liverpool, United Kingdom</td>
</tr>
<tr>
<td>University of Tennessee, Knoxville, TN, United States</td>
<td>University of the Witwatersrand, Johannesburg, South Africa</td>
</tr>
<tr>
<td>University of Tokyo, Tokyo, Japan</td>
<td>University of Tsukuba, Tsukuba, Japan</td>
</tr>
<tr>
<td>Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France</td>
<td>Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France</td>
</tr>
<tr>
<td>Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France</td>
<td>Université Paris-Saclay Centre d’Études de Saclay (CEA), IRFU, Department de Physique Nucléaire (DPhN), Saclay, France</td>
</tr>
</tbody>
</table>

178
135 Università degli Studi di Pavia, Pavia, Italy
136 Università di Brescia, Brescia, Italy
137 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
138 Variable Energy Cyclotron Centre, Kolkata, India
139 Warsaw University of Technology, Warsaw, Poland
140 Wayne State University, Detroit, MI, United States
141 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
142 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
143 Yale University, New Haven, CT, United States
144 Yonsei University, Seoul, Republic of Korea

1 Dipartimento DET del Politecnico di Torino, Turin, Italy.
8 M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.
80 Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
11 Institute of Theoretical Physics, University of Wroclaw, Poland.