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Abstract The production rates and the transverse momen-
tum distribution of strange hadrons at mid-rapidity
(|y| < 0.5) are measured in proton-proton collisions at√
s = 13 TeV as a function of the charged particle multi-

plicity, using the ALICE detector at the LHC. The produc-
tion rates of K0

S , �, �, and � increase with the multiplicity
faster than what is reported for inclusive charged particles.
The increase is found to be more pronounced for hadrons
with a larger strangeness content. Possible auto-correlations
between the charged particles and the strange hadrons are
evaluated by measuring the event-activity with charged par-
ticle multiplicity estimators covering different pseudorapid-
ity regions. When comparing to lower energy results, the
yields of strange hadrons are found to depend only on the
mid-rapidity charged particle multiplicity. Several features
of the data are reproduced qualitatively by general purpose
QCD Monte Carlo models that take into account the effect of
densely-packed QCD strings in high multiplicity collisions.
However, none of the tested models reproduce the data quan-
titatively. This work corroborates and extends the ALICE
findings on strangeness production in proton-proton colli-
sions at 7 TeV.

1 Introduction

The production rates of strange and multi-strange hadrons in
high-energy hadronic interactions are important observables
for the study of the properties of Quantum Chromodynamics
(QCD) in the non-perturbative regime. In the simplest case,
strange quarks (s) in proton-proton (pp) collisions can be
produced from the excitation of the sea partons. Indeed, in
the past decades a significant effort has been dedicated to the
study of the actual strangeness content of the nuclear wave
function [1]. In QCD-inspired Monte Carlo generators based
on Parton Showers (PS) [2] the hard (perturbative) interac-
tions are typically described at the Leading Order (LO). In
this picture the s quark can be produced in the hard par-

� e-mail: alice-publications@cern.ch

tonic scattering via flavour creation and flavour excitation
processes as well as in the subsequent shower evolution via
gluon splitting. At low transverse momentum, ss̄ pairs can
be produced via non-perturbative processes, as described for
instance in string fragmentation models, where the produc-
tion of strangeness is suppressed with respect to light quark
production due to the larger strange quark mass [3]. How-
ever, these models fail to quantitatively describe strangeness
production in hadronic collisions [4–6].

An enhanced production of strange hadrons in heavy-ion
collisions was suggested as a signature for the creation of
a Quark-Gluon Plasma (QGP) [7,8]. The main argument in
these early studies was that the mass of the strange quark is
of the order of the QCD deconfinement temperature, allow-
ing for thermal production in the deconfined medium. The
lifetime of the QGP was then estimated to be comparable
to the strangeness relaxation time in the plasma, leading
to full equilibration. Strangeness enhancement in heavy-ion
collisions was indeed observed at the SPS [9] and higher
energies [10,11]. However, strangeness enhancement is no
longer considered an unambiguous signature for deconfine-
ment (see e.g. [12]). Strange hadron production in heavy-ion
collisions is currently usually described in the framework
of statistical-hadronisation (or thermal) models [13,14]. In
central heavy-ion collisions, the yields of strange hadrons
turn out to be consistent with the expectation from a grand-
canonical ensemble, i.e. the production of strange hadrons
is compatible with thermal equilibrium, characterised by a
common temperature. On the other hand, the strange hadron
yields in elementary collisions are suppressed with respect
to the predictions of the (grand-canonical) thermal models.
The suppression of the relative abundance of strange hadrons
with respect to lighter flavours was suggested to be, at least
partially, a consequence of the finite volume, which makes
the application of a grand-canonical ensemble not valid in
hadron-hadron and hadron-nucleus interactions (canonical
suppression) [15–17]. However, this approach cannot explain
the observed particle abundances if the same volume is
assumed for both strange and non-strange hadrons [18] and
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does not describe the system size dependence of the φ meson,
a hidden-strange hadron [19,20].

The ALICE Collaboration recently reported an enhance-
ment in the relative production of (multi-) strange hadrons as
a function of multiplicity in pp collisions at

√
s = 7 TeV [21]

and in p–Pb collisions at
√
sNN = 5.02 TeV [22,23]. In the

case of p-Pb collisions, the yields of strange hadrons relative
to pions reach values close to those observed in Pb–Pb colli-
sions at full equilibrium. These are surprising observations,
because thermal strangeness production was considered to be
a defining feature of heavy-ion collisions, and because none
of the commonly-used pp Monte Carlo models reproduced
the existing data [3,21]. The mechanisms at the origin of this
effect need to be understood, and then implemented in the
state-of-the-art Monte Carlo generators [3].

In this paper, strangeness production in pp interac-
tions is studied at the highest energy reached at the LHC,√
s = 13 TeV. We present the measurement of the yields and

transverse momentum (pT) distributions of single-strange
(K0

S , �, �) and multi-strange (�−, �
+

, �−, �
+

) particles at
mid-rapidity, |y| < 0.5, with the ALICE detector [24]. The
comparison of the present results with the former ones for pp
and p–Pb interactions allows the investigation of the energy,
multiplicity and system size dependence of strangeness pro-
duction. Schematically, the multiplicity of a given pp event
depends on (i) the number of Multiple Parton Interactions
(MPI), (ii) the momentum transfer of those interactions, (iii)
fluctuations in the fragmentation process. A systematic study
of the biases induced by the choice of the multiplicity esti-
mator along with the specific connections to the underlying
MPI are also discussed in this paper.

The paper is organised as follows. In Sect. 2 we discuss the
data set and detectors used for the measurement; in Sect. 3 we
describe the analysis techniques; in Sect. 4 we cover the eval-
uation of the systematic uncertainties; in Sect. 5 we present
and discuss the results; in Sect. 6 we report our conclusions.

2 Experimental setup and data selection

A detailed description of the ALICE detector and its perfor-
mance can be found in [24,25]. In this section, we briefly out-
line the main detectors used for the measurements presented
in this paper. The ALICE apparatus comprises a central bar-
rel used for vertex reconstruction, track reconstruction and
charged-hadron identification, complemented by specialised
forward detectors. The central barrel covers the pseudora-
pidity region |η| < 0.9. The main central-barrel tracking
devices used for this analysis are the Inner Tracking System
(ITS) and the Time-Projection Chamber (TPC), which are
located inside a solenoidal magnet providing a 0.5 T magnetic
field. The ITS is composed of six cylindrical layers of high-

resolution silicon tracking detectors. The innermost layers
consist of two arrays of hybrid Silicon Pixel Detectors (SPD),
located at an average radial distance r of 3.9 and 7.6 cm from
the beam axis and covering |η| < 2.0 and |η| < 1.4, respec-
tively. The SPD is also used to reconstruct tracklets, short
two-point track segments covering the pseudorapidity region
|η| < 1.4. The outer layers of the ITS are composed of silicon
strips and drift detectors, with the outermost layer having a
radius r = 43 cm. The TPC is a large cylindrical drift detec-
tor of radial and longitudinal sizes of about 85 < r < 250 cm
and −250 < z < 250 cm, respectively. It is segmented in
radial “pad rows”, providing up to 159 tracking points. It
also provides charged-hadron identification information via
specific ionisation energy loss in the gas filling the detec-
tor volume. The measurement of strange hadrons is based
on “global tracks”, reconstructed using information from the
TPC as well as from the ITS, if the latter is available. Further
outwards in radial direction from the beam-pipe and located
at a radius of approximately 4 m, the Time of Flight (TOF)
detector measures the time-of-flight of the particles. It is a
large-area array of multigap resistive plate chambers with
an intrinsic time resolution of 50 ps. The V0 detectors are
two forward scintillator hodoscopes employed for trigger-
ing, background suppression and event-class determination.
They are placed on either side of the interaction region at
z = −0.9 m and z = 3.3 m, covering the pseudorapidity
regions −3.7 < η < −1.7 and 2.8 < η < 5.1, respectively.

The data considered in the analysis presented in this paper
were collected in 2015, at the beginning of Run 2 operations
of the LHC at

√
s = 13 TeV. The sample consists of 50 M

events collected with a minimum bias trigger requiring a hit in
both V0 scintillators in coincidence with the arrival of proton
bunches from both directions. The interaction probability per
single bunch crossing ranges between 2 and 14%.

The contamination from beam-induced background is
removed offline by using the timing information in the V0
detectors and taking into account the correlation between
tracklets and clusters in the SPD detector, as discussed in
detail in [25]. The contamination from in-bunch pile-up
events is removed offline excluding events with multiple ver-
tices reconstructed in the SPD. Part of the data used in this
paper were collected in periods in which the LHC collided
“trains” of bunches each separated by 50 ns from its neigh-
bours. In these beam conditions most of the ALICE detectors
have a readout window wider than a single bunch spacing and
are therefore sensitive to events produced in bunch crossings
different from those triggering the collision. In particular, the
SPD has a readout window of 300 ns. The drift speed in the
TPC is about 2.5 cm/µs, which implies that events produced
less than about 0.5µs apart cannot be resolved. Pile-up events
produced in different bunch crossings are removed exploiting
multiplicity correlations in detectors having different readout
windows.
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3 Analysis details

The results are presented for primary strange hadrons.1 The
measurements reported here have been obtained for events
having at least one charged particle produced with pT > 0
in the pseudorapidity interval |η| < 1 (INEL > 0), corre-
sponding to about 75% of the total inelastic cross-section. In
order to study the multiplicity dependence of strange and
multi-strange hadrons, for each multiplicity estimator the
sample is divided into event classes based on the total charge
deposited in the V0 detectors (V0M amplitude) or on the
number of tracklets in two pseudorapidity regions: |η| < 0.8
and 0.8 < |η| < 1.5. The event classes are summarised in
Table 1. Since the measurement of strange hadrons is per-
formed in the region |y| < 0.5, the usage of these three
estimators allows one to evaluate potential biases on parti-
cle production, arising from measuring the multiplicity in
a pseudorapidity region partially overlapping with the one

of the reconstructed strange hadrons (N |η|<0.8
tracklets), or disjoint

from it (V0M and N 0.8<|η|<1.5
tracklets ). In particular, the effect of

fluctuations can be expected to be stronger if the multiplic-
ity estimator and the observable of interest are measured in
the same pseudorapidity region. The usage of two different
non-overlapping estimators allows the study of the effect of a
rapidity gap between the multiplicity estimator and the mea-
surement of interest.

The events used for the data analysis are required to have
a reconstructed vertex in the fiducial region |z| < 10 cm. As
mentioned in the previous section, events containing more
than one distinct vertex are tagged as pile-up and discarded.
For each event class and each multiplicity estimator, the
average pseudorapidity density of primary charged-particles
〈dNch/dη〉 is measured at mid-rapidity (|η| < 0.5) using the
technique described in [27]. The 〈dNch/dη〉 values, corrected
for acceptance and efficiency as well as for contamination
from secondary particles and combinatorial background, are
listed in Table 1. When multiplicity event classes are selected
outside the |η| < 0.8 region, the corresponding charged par-
ticle multiplicity at mid-rapidity is characterized by a large
variance. In the case of the V0M estimator, the variance
ranges between 30 and 70% of the mean dNch/dη for the
highest and lowest multiplicity classes, respectively.

The strange hadrons K0
S , �, �, �−, �

+
, �− and �

+
are

reconstructed at mid-rapidity (|y| < 0.5) with an invariant
mass analysis, exploiting their specific weak decay topology.
The following decay channels are studied [28]:

1 A primary particle [26] is defined as a particle with a mean proper
decay length cτ larger than 1 cm, which is either (a) produced directly
in the interaction, or (b) from decays of particles with cτ smaller than
1 cm, excluding particles produced in interactions with material. Ta
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Table 2 Track, topological and
candidate selection criteria
applied to K0

S , � and �

candidates. DCA stands for
“distance of closest approach”,
PV represents the “primary
event vertex” and θ is the angle
between the momentum vector
of the reconstructed V 0 and the
displacement vector between the
decay and primary vertices. The
selection on DCA between V 0

daughter tracks takes into
account the corresponding
experimental resolution

Toplogical variable K0
S (� and �) selection criteria

V 0 transverse decay radius > 0.50 cm

DCA (Negative/positive track-PV) > 0.06 cm

Cosine of V 0 pointing angle (θV 0 ) > 0.97 (0.995)

DCA between V 0 daughter tracks < 1.0 standard deviations

Track selection K0
S (� and �) selection criteria

Daughter track pseudorapidity interval |η| < 0.8

Daughter track Ncrossedrows ≥ 70

Daughter track Ncrossed/N f indable ≥ 0.8

p inner wall TPC (proton only) > 0.3 GeV/c

TPC dE/dx < 5σ

Out-of-bunch pile-up track rejection Requested for at least one daughter

Candidate selection K0
S (� and �) selection criteria

Rapidity interval |y| < 0.5

Proper lifetime (mL/p) < 20 cm (30 cm)

Competing V 0 rejection 5 MeV/c2 (10 MeV/c2)

MC association (MC only) Identity assumption for V 0 and for daughter tracks

K0
S → π+ + π− B.R. = (69.20 ± 0.05)%

�(�) → p(p) + π−(π+) B.R. = (63.9 ± 0.5)%

�−(�
+
) → �(�) + π−(π+) B.R. = (99.887 ± 0.035)%

�−(�
+
) → �(�) + K−(K+) B.R. = (67.8 ± 0.7)%

In the following, we refer to the sum of particles and anti-
particles, � + �, �− + �

+
and �− + �

+
, simply as �, �

and �.
The details of the analysis have been discussed in earlier

ALICE publications [5,6,18,22]. The tracks retained in the
analysis are required to cross at least 70 TPC readout pads out
of a maximum of 159. Tracks are also required not to have
large gaps in the number of expected tracking points in the
radial direction. This is achieved by checking that the number
of clusters expected based on the reconstructed trajectory
and the measurements in neighbouring TPC pad rows do not
differ by more than 20%.

Each decay product arising from V 0 (K0
S , �, �) and cas-

cade (�−, �
+

, �−, �
+

) candidates is verified to lie within
the fiducial tracking region |η| < 0.8. The specific energy
loss (dE/dx) measured in the TPC, used for the particle iden-
tification (PID) of the decay products, is also requested to be
compatible within 5σ with the one expected for the corre-
sponding particle species’ hypothesis. The dE/dx is evalu-
ated as a truncated mean using the lowest 60% of the val-
ues out of a possible total of 159. This leads to a resolution
of about 6%. A set of “geometrical” selections is applied in
order to identify specific decay topologies (topological selec-
tion), improving the signal/background ratio. The topological
variables used for V 0s and cascades are described in detail

in [6]. In addition, in order to reject the residual out-of-bunch
pile-up background on the measured yields, it is requested
that at least one of the tracks from the decay products of the
(multi-)strange hadron under study is matched in either the
ITS or the TOF detector. The selections used in this paper
are summarised in Table 2 for the V 0s and in Table 3 for the
cascades.

Strange hadron candidates are required to be in the rapid-
ity window |y| < 0.5. K0

S (�) candidates compatible with
the alternative V 0 hypothesis are rejected if they lie within
±5 MeV/c2 (±10 MeV/c2) of the nominal � (K0

S) mass.
A similar selection is applied to the �, where candidates
compatible within ±8 MeV/c2 of the nominal � mass are
rejected. The width of the rejected region was determined
according to the invariant mass resolution of the correspond-
ing competing signal. Furthermore, candidates whose proper
lifetimes are unusually large for their expected species are
also rejected to avoid combinatorial background from inter-
actions with the detector material. The signal extraction is
performed as a function of pT. A preliminary fit is performed
on the invariant mass distribution using a Gaussian plus a lin-
ear function describing the background. This allows for the
extraction of the mean (μ) and width (σG) of the peak. A
“peak” region is defined within ±6(4)σG for V 0s (cascades)
with respect to μ for any measured pT bin. Adjacent back-
ground bands, covering a combined mass interval as wide
as the peak region, are defined on both sides of that central
region. The signal is then extracted with a bin counting proce-
dure, subtracting counts in the background region from those
of the signal region. Alternatively, the signal is extracted by
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Table 3 Track, topological and
candidate selection criteria
applied to charged �−, �

+
, �−

and �
+

candidates. DCA stands
for “distance of closest
approach”, PV represents the
“primary event vertex” and θ is
the angle between the
momentum vector of the
reconstructed V 0 or cascade and
the displacement vector between
the decay and primary vertices.
The selection on DCA between
V 0 daughter tracks takes into
account the corresponding
experimental resolution

Topological variable � (�) selection criteria

Cascade transverse decay radius R2D > 0.6 (0.5) cm

V 0 transverse decay radius > 1.2 (1.1) cm

DCA (Bachelor-PV) > 0.04 cm

DCA (V 0-PV) > 0.06 cm

DCA (meson V 0 track-PV) > 0.04 cm

DCA (baryon V 0 track-PV) > 0.03 cm

DCA between V 0 daughter tracks < 1.5 standard deviations

DCA (bachelor-V 0) < 1.3 cm

Cosine of cascade pointing angle(θcasc) > 0.97

Cosine of V 0 pointing angle (θV 0 ) > 0.97

V 0 invariant mass window ±0.008 GeV/c2

Track selection � (�) selection criteria

Daughter track pseudorapidity interval |η| < 0.8

Daughter track NT PCclusters ≥ 70

TPC dE/dx < 5σ

Out-of-bunch pile-up track rejection Requested for at least one daughter

Candidate selection � (�) selection criteria

Rapidity interval |y| < 0.5

Proper lifetime (mL/p) < 3 × cτ

Competing cascade rejection (only �) |M(�π) − 1321| > 8 MeV/c2

MC association (MC Only) Identity assumption for cascades and for daughter tracks

fitting the background with a linear function extrapolated
under the signal region. This procedure is used to compute
the systematic uncertainty due to the signal extraction. Exam-
ples of the invariant mass peaks for all particles are shown in
Fig. 1.

Only the � turns out to be affected by a significant con-
tamination from secondary particles, coming from the decay
of charged and neutral �. In order to estimate this contri-
bution we use the measured �− and �

+
spectra, folded

with a pT-binned 2D matrix describing the decay kinematics
and secondary � reconstruction efficiencies. The � → �π

decay matrix is extracted from Monte Carlo (see below for the
details on the generator settings). The fraction of secondary
� particles in the measured spectrum varies between 10 and
20%, depending on pT and multiplicity. Further details on
the uncertainties characterising the feed-down contributions
are provided in the next section.

The raw pT distributions are corrected for acceptance and
efficiency using Monte Carlo simulated data. Events are gen-
erated using the PYTHIA 6.425, (Tune Perugia 2011) [29,30]
event generator, and transported through a GEANT 3 [31]
(v2-01-1) model of the detector. With respect to previ-
ous GEANT 3 versions, the adopted one contains a more
realistic description of (anti)proton interactions. The qual-
ity of this description was cross-checked comparing to the

results obtained with the state-of-the-art transport codes
FLUKA [32,33] and GEANT 4.9.5 [34]. It was found that a
correction factor < 5% is needed for the efficiency of �, �

+
,

�
+

for pT < 1 GeV/c, while the effect is negligible at higher
pT. Events generated using PYTHIA 8.210 (tune Monash
2013) [35,36] and EPOS-LHC (CRMC package 1.5.4) [37]
and transported in the same way are used for systematic stud-
ies, namely to compute the systematic uncertainties arising
from the normalisation and from the closure of the correction
procedure (details provided in the next sections).

The acceptance-times-efficiency changes with pT, satu-
rating at a value of about 40%, 30%, 30% and 20% at
pT � 2, 3, 3 and 4 GeV/c for K0

S , �, � and �, respectively.
These values include the losses due to the branching ratio.
They are found to be independent of the multiplicity class
within 2%, limited by the available Monte Carlo simulated
data. The dependence of the efficiency on the generated pT

distributions was checked for all particle species. It is found
to be relevant only in the case of the �, where large pT bins
are used. This effect is removed by reweighting the Monte
Carlo pT distribution with the measured one using an itera-
tive procedure.

In order to compute 〈pT〉 and the pT-integrated produc-
tion yields, the spectra are fitted with a Tsallis–Lévy [38]
distribution to extrapolate in the unmeasured pT region. The
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Fig. 1 Invariant mass
distributions for K0

S , �, �−, �−
in different V0M multiplicity
and pT intervals. The candidates
are reconstructed in |y| < 0.5.
The grey areas delimited by the
short-dashed lines are used for
signal extraction in the bin
counting procedure. The red
dashed lines represent the fit to
the invariant mass distributions,
shown for drawing purpose only
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systematic uncertainties on this extrapolation procedure are
evaluated using other fit functions, as discussed in Sec. 4.

4 Systematic uncertainties

Several sources of systematic effects on the evaluation of the
pT distributions were investigated. The main contributions
for three representative pT values are summarised in Table 4
for the INEL > 0 data sample.

The stability of the signal extraction method was checked
by varying the widths used to define the “signal” and “back-
ground” regions, expressed in terms of number of σG as
defined in Sect. 3. The raw counts were also extracted with
a fitting procedure and compared to the standard ones com-
puted by the bin counting technique. An uncertainty ranging
between 0.2 and 3.5% depending on pT is assigned to the
signal extraction of the V 0s and cascades based on these
checks.

The stability of the acceptance and efficiency corrections
was verified by varying all track, candidate and topologi-
cal selection criteria within ranges leading to a maximum
variation of ±10% in the raw signal yield. The results were
compared to those obtained with the default selection criteria

(Sect. 3). Variations not compatible with statistical fluctua-
tions (following the prescription in [39] with a 2σ threshold)
are added to the systematic uncertainty.

The resulting uncertainty from topological and track selec-
tions (except TPC dE/dx) depends on pT and amounts at
most to 4%, 5%, 4% and 6% for K0

S , �, � and �, respec-
tively.

The TPC dE/dx selection is used to reduce the combinato-
rial background in the strange baryon invariant mass distribu-
tion. The uncertainty was evaluated varying the TPC dE/dx
selection requirements between 4 and 7σ and was found to be
at most 1% (3%) for � (� and �). For the K0

S the uncertainty
due to the TPC dE/dx usage was evaluated by comparing
results obtained adopting the default loose PID requirements
(5σ ) with those obtained without applying any PID selection.
The difference is found to be negligible (< 1%).

The systematic uncertainty for the competing decay rejec-
tion was investigated by removing entirely this condition for
� and �. It resulted in a deviation on the pT spectra of at most
4% and 6%, respectively. For the K0

S the systematic uncer-
tainty was evaluated by changing the width of the competing
rejected mass window between 3 and 5.5 MeV/c2 and the
corresponding deviation was found to be at most 1%.
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Table 4 Main sources and values of the relative systematic uncertain-
ties (expressed in %) of the pT-differential yields. These values are
reported for low, intermediate and high pT. The values for the INEL > 0
data sample are shown in the table. Results as a function of multiplicity

are further affected by an uncertainty originating from the multiplic-
ity dependence of the efficiency (2%) and, in the case of the �, of the
feed-down contributions (2%)

Hadron K0
S � + � �− + �

+
�− + �

+

pT (GeV/c) � 0.95 � 4.8 � 9.0 � 0.50 �4.5 �7.3 � 0.80 � 3.2 � 5.8 � 1.3 � 2.8 � 4.7

Signal extraction 0.6 0.6 1.6 1.1 2.4 1.1 0.6 0.4 negl. 2.1 2.1 3.3

Topological and track
selection (but TPC
dE/dx)

0.7 2.7 2.5 2.9 2.6 2.3 4.8 2.6 2.0 5.6 6.0 5.5

TPC dE/dx selection 0.1 negl. negl. 0.7 0.3 1.7 0.4 0.3 0.3 1.7 2.2 1.6

Competing decay rejection 0.1 0.2 1.0 negl. 0.9 5.7 Not applied 1.2 3.1 5.6

Proper lifetime 0.1 negl. negl. 1.1 negl. negl. 0.5 0.8 0.8 3.1 1.8 1.0

Transport code (for
anti-particles)

Not applied 1.8 negl. negl. 1.1 negl. negl. 0.6 negl. negl.

Material budget 1.1 0.5 0.5 8.3 0.8 0.8 5.1 1.2 0.6 3.3 1.5 1.5

Feed-down correction Not applied 2.2 1.3 2.1 Not applied Not applied

Out-of-bunch pile-up track
rejection

1.1 1.5 1.5 1.2 2.4 2.4 1.0 2.5 2.5 3.0 3.0 3.0

Residual in-bunch pile-up 1.6 2.5 2.5 2.0 2.9 2.9 2.0 2.0 2.9 2.0 2.0 2.0

Total 2.4 4.1 4.3 9.6 5.5 7.8 7.5 4.4 4.4 8.6 8.6 9.6

Common
(Nch-independent)

2.3 4.0 3.8 9.2 5.3 7.0 6.8 4.2 4.2 7.7 8.4 7.5

For the strange baryons, the systematic uncertainty related
to the proper lifetime was computed by varying the selection
requirements between 2.5 and 5 cτ . The variation range for
the K0

S was set to 5–15 cτ . The statistically significant devi-
ations were found to be at most 3% for the � and negligible
(< 1%) for all other particles.

An uncertainty related to the absorption in the detector
material was assigned to the anti-baryons, mostly due to the
interactions of anti-proton daughters. It was estimated on
the basis of the comparison of the different transport codes
mentioned in Sect. 3. The uncertainty on the absorption cross
section for baryons and K0

S was found to be negligible.
Furthermore an additional 2% uncertainty is added to

account for possible variations of the tracking efficiency with
multiplicity (Sect. 3).

The uncertainty due to approximations in the description
of the detector material was estimated with a Monte Carlo
simulation where the material budget was varied within its
uncertainty [25]. The assigned systematic uncertainty ranges
between 8% at low pT to about 1% at high pT.

The � pT spectrum is affected by an uncertainty coming
from the feed-down correction, due to the uncertainties on
the measured � spectrum and on the multiplicity dependence
of the feed-down fraction. Furthermore the contribution from
neutral �0 was taken into account by assuming �±/�0 = 1
or using the ratio provided by the Monte Carlo (using the
reference PYTHIA 6 sample described in the previous sec-
tion). The difference between these two estimates was taken

into account in the calculation of the total uncertainty due
to the feed-down correction, which ranges from 2% to 4%
depending on pT and multiplicity.

The systematic uncertainty due to the out-of-bunch pile-
up rejection was evaluated by changing the matching scheme
with the relevant detectors, considering the following con-
figurations: matching of at least one decay track with the
ITS (TOF) detector below (above) 2 GeV/c of the recon-
structed (multi-) strange hadron; ITS matching of at least one
decay track in the full pT range. Half of the maximum differ-
ence between these configurations and the standard selection
was taken as the systematic uncertainty, which was found to
increase with transverse momentum and to saturate at high
pT, reaching a maximum value of 2.4% (3%) for V 0s (cas-
cades).

The effect of a possible residual contamination from in-
bunch pile-up events was estimated varying the pile-up rejec-
tion criteria and dividing the data sample in three groups with
an average interaction probability per bunch crossing of 3%,
6%, 13%, respectively. The resulting uncertainty is larger at
low multiplicity, and ranges between 1% (3%) for the K0

S to
2% (3%) for the baryons in high-(low-)multiplicity events.

Several additional consistency checks have been per-
formed which are described in the following. The analysis
has been repeated separately for events with positive and
negative z-vertex position, as well as considering candidates
reconstructed in positive and negative rapidity windows. The
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Fig. 2 Transverse momentum distribution of K0
S , �, �, and �, for

multiplicity classes selected using the V0 detector. Statistical and total
systematic uncertainties are shown by error bars and boxes, respec-
tively. In the bottom panels ratios of multiplicity dependent spectra to
INEL > 0 are shown. The systematic uncertainties on the ratios are

obtained by considering only contributions uncorrelated across multi-
plicity. The spectra are scaled by different factors to improve the vis-
ibility. The dashed curves represent Tsallis–Lévy fits to the measured
spectra

resulting pT-spectra were found to be statistically compatible
with the standard analysis.

In order to ensure that the estimated systematic uncertain-
ties are not affected by statistical fluctuations, two checks

were performed. First of all, the threshold used to consider a
variation statistically significant was varied between one and
three standard deviations. Then, the analysis was repeated
with wider pT bins. These checks showed that statistical fluc-
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Fig. 3 Transverse momentum distribution of K0
S , �, �, and �, for

multiplicity classes selected using the tracklets in |η| < 0.8. Statistical
and total systematic uncertainties are shown by error bars and boxes,
respectively. In the bottom panels ratios of multiplicity dependent spec-
tra to INEL > 0 are shown. The systematic uncertainties on the ratios

are obtained by considering only contributions uncorrelated across mul-
tiplicity. The spectra are scaled by different factors to improve the vis-
ibility. The dashed curves represent Tsallis–Lévy fits to the measured
spectra

tuations in the systematic uncertainty analysis are well under
control.

The results related to the 〈pT〉 and pT-integrated yields
for all particles but the K0

S are further affected by an uncer-

tainty coming from the extrapolation to zero pT. The default
extrapolation is performed using a Lévy–Tsallis distribution.
As confirmed by a χ2 analysis, this function describes the

123



167 Page 10 of 26 Eur. Phys. J. C (2020) 80 :167

)c (GeV/
T

p
2 4 6 8 10 12 14

]
-1 )c

) [
(G

eV
/

yd Tp
/(d

N2 d
ev

N
1/

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

)9I (x 2
)8II (x 2
)7III (x 2
)6IV (x 2
)5V (x 2
)4VI (x 2
)3VII (x 2
)2VIII (x 2

IX (x 2)

XTsallis-Lévy fit

 = 13 TeVsALICE pp, 

 multiplicity classes| < 1.5η0.8 < |
trackletsN S

0K
| < 0.5y|

)c (GeV/
T

p
0 2 4 6 8 10 12 14

R
at

io
 to

 IN
E

L>
0

1−10

1

10

)c (GeV/
T

p
2 4 6 8 10 12 14

]
-1 )c

) [
(G

eV
/

yd Tp
/(d

N2 d
ev

N
1/

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

)9I (x 2
)8II (x 2
)7III (x 2
)6IV (x 2
)5V (x 2
)4VI (x 2
)3VII (x 2
)2VIII (x 2

IX (x 2)

X

Tsallis-Lévy fit

 = 13 TeVsALICE pp, 

 multiplicity classes| < 1.5η0.8 < |
trackletsN Λ+Λ

| < 0.5y|

)c (GeV/
T

p
0 2 4 6 8 10 12 14

R
at

io
 to

 IN
E

L>
0

1−10

1

10

)c (GeV/
T

p
2 4 6 8 10 12 14

]
-1 )c

) [
(G

eV
/

yd Tp
/(d

N2 d
ev

N
1/

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210

310

)9I (x 2

)8II (x 2
)7III (x 2
)6IV (x 2
)5V (x 2
)4VI (x 2

)3VII (x 2
)2VIII (x 2

IX (x 2)

X

Tsallis-Lévy fit

 = 13 TeVsALICE pp, 

 multiplicity classes| < 1.5η0.8 < |
trackletsN

+
Ξ+-Ξ

| < 0.5y|

)c (GeV/
T

p
0 2 4 6 8 10 12 14

R
at

io
 to

 IN
E

L>
0

1−10

1

10

)c (GeV/
T

p
2 4 6 8 10 12 14

]
-1 )c

) [
(G

eV
/

yd Tp
/(d

N2 d
ev

N
1/

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

)4I+II (x 2

)3III+IV (x 2

)2V+VI (x 2

VII+VIII (x 2)

IX+X

Tsallis-Lévy fit

 = 13 TeVsALICE pp, 

 multiplicity classes| < 1.5η0.8 < |
trackletsN

+
Ω+-Ω

| < 0.5y|

)c (GeV/
T

p
0 2 4 6 8 10 12 14

R
at

io
 to

 IN
E

L>
0

1−10

1

10

Fig. 4 Transverse momentum distribution of K0
S , �, �, and �, for

multiplicity classes selected using the tracklets in 0.8 < |η| < 1.5. Sta-
tistical and total systematic uncertainties are shown by error bars and
boxes, respectively. In the bottom panels ratios of multiplicity depen-
dent spectra to INEL > 0 are shown. The systematic uncertainties on

the ratios are obtained by considering only contributions uncorrelated
across multiplicity. The spectra are scaled by different factors to improve
the visibility. The dashed curves represent Tsallis–Lévy fits to the mea-
sured spectra

pT spectra well for all the examined strange hadrons over
the measured pT range.

The uncertainty on the extrapolated fraction was estimated
repeating the fit to the spectra with five alternative functions

(Blast-Wave, Boltzmann, Bose–Einstein, mT-exponential,
Fermi–Dirac). Since these alternative functions do not, in
general, describe the full pT-distribution, the fit range was
limited to a small number of data points in order to obtain a
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Fig. 5 〈pT〉 of K0
S , �, �, and � in multiplicity event classes selected

according to different estimators (see text for details). Statistical and sys-
tematic uncertainties are shown by error bars and empty boxes, respec-
tively. Shadowed boxes represent uncertainties uncorrelated across mul-
tiplicity

good description of the fitted part of the spectrum. This proce-
dure was repeated separately for the low and for the high pT

extrapolation, with the final uncertainties being dominated
by the low pT contribution. The reliability of the extrapola-
tion uncertainty estimate was checked using a simple linear
extrapolation to pT = 0 as an extreme case and in a full
Monte Carlo closure test where the EPOS model was used
with data and PYTHIA was used to estimate the corrections.
The resulting uncertainty on the integrated yields is around
2.5% for the � and ranges between 3% (4%) at high mul-
tiplicity to 19% (12%) at low multiplicity for the � (�).
The extrapolation uncertainty on 〈pT〉 is ∼2% for the � and
ranges between 2% (3%) at high multiplicity to 12% (7%) at
low multiplicity for the � (�).

The main focus of this paper is the study of the multiplic-
ity dependence of strangeness production. In this light, the
different systematic uncertainties can be categorised in the
following way:

1. Fully uncorrelated uncertainties: the change in the data
is completely uncorrelated across multiplicity classes.
These sources are rare, as most systematic effects have a
smooth evolution with multiplicity.

2. Fully correlated uncertainties: lead to a correlated shift
of the data in the same direction, independently of the
multiplicity class being studied. The common part of this
shift has to be considered separately, since it does not
affect the shape of the multiplicity-dependent observable.

3. Anti-correlated uncertainties: the effect is opposite in low
and high multiplicity events.

In the following we quote separately uncertainties that
affect the trends as a function of multiplicity and those
that lead to a constant fractional shift across all multiplicity
classes. The effect of every systematic variation was evalu-
ated simultaneously in each multiplicity class and in mini-
mum bias events to separate the fully correlated part of the
uncertainty.

Sources leading to a global, fully-correlated shift in the
spectra were subtracted from the total uncertainty while the
remaining contribution could in principle belong to any of
the three aforementioned categories. However, since differ-
ent (independent) sources are combined in the final uncer-
tainties, it is a reasonable assumption to consider them as
uncorrelated. For the figures shown in Sect. 5, total uncer-
tainties are shown as boxes, while shadowed boxes repre-
sent uncertainties uncorrelated across different multiplicity
classes. Statistical uncertainties are depicted as error bars.

5 Results and discussion

Particles and anti-particles turn out to have compatible trans-
verse momentum distributions within uncertainties, con-
sistently with previous results at the LHC. In the follow-
ing, unless specified otherwise, we present results for their
sum. The pT distributions of strange hadrons, measured in
|y| < 0.5, are shown in Figs. 2, 3, 4 for the different multi-
plicity classes, selected using the estimators V0M, tracklets
in |η| < 0.8 and tracklets in 0.8 < |η| < 1.5, as summarised
in Table 1. The Lévy–Tsallis fit to the pT distributions, used
for the extrapolation, are also displayed. The bottom panels
depict the ratio to the minimum bias (INEL > 0) pT dis-
tribution. The pT spectra become harder as the multiplicity
increases, as also shown in Fig. 5, which shows the average
pT (〈pT〉) as a function of the mid-rapidity charged particle

multiplicity. While the V0M and N 0.8<|η|<1.5
tracklets results show

the same trend, the spectra obtained with the N |η|<0.8
tracklets estima-

tor are systematically softer for comparable dNch/dη values
(though still compatible within uncertainty in the case of the
strange baryons).

The increase of the 〈pT〉 as a function of the charged-
particle multiplicity (Fig. 5) is compatible, within uncertain-
ties, for all particle species. The hardening of pT spectra
with the charged-particle multiplicity was already reported
for pp [40] and p–Pb collisions [22] at lower energies.

It is interesting to notice that the ratio of the measured
pT spectra to the minimum bias one, shown in the bottom
panel of Figs. 2, 3, 4, reaches a plateau for pT � 4 GeV/c.
This applies to all particle species and to all multiplicity
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Fig. 8 dN/dy (integrated over the full pT range) as a function of mul-
tiplicity for different strange particle species reported for different mul-
tiplicity classes (see text for details). Error bars and boxes represent

statistical and total systematic uncertainties, respectively. The bin-to-
bin systematic uncertainties are shown by shadowed boxes

estimators. The trend at high-pT is highlighted in Fig. 6,
which shows the integrated yields for pT > 4 GeV/c as a
function of the mid-rapidity multiplicity. Both the yields of
strange hadrons and the charged particle multiplicity are self-
normalised, i.e. they are divided by their average quoted on
the INEL > 0 sample. The high-pT yields of strange hadrons

increase faster than the charged particle multiplicity. Despite
the large uncertainties, the data also hint at the increase being
non-linear. The self-normalised yields of strange hadrons
reach, at high multiplicity, larger values for the N |η|<0.8

tracklets mul-
tiplicity selection as compared to the other estimators. For all
multiplicity selections the self-normalised yields of baryons
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Fig. 9 dN/dy (integrated over the measured pT ranges 0–12, 0.4–8,
0.6–6.5 and 0.9–5.5 GeV/c for K0

S , �, �− and �−, respectively) as a
function of multiplicity for different strange particle species reported for

different multiplicity classes (see text for details). Error bars and boxes
represent statistical and total systematic uncertainties, respectively. The
bin-to-bin systematic uncertainties are shown by shadowed boxes

are higher than those of K0
S mesons. The Monte Carlo models

EPOS-LHC, PYTHIA 8 and PYTHIA 6, also shown in Fig. 6,
reproduce the overall trend of strange hadrons seen in the
data, with EPOS-LHC showing a clear difference between
the K0

S and the baryons, as observed in the data. Indeed, a
non-linear increase can be explained by the combined effect
of multiplicity fluctuations and interactions between differ-
ent MPIs, which produces a collective boost [41]. Both color
reconnection effects implemented in PYTHIA and a collec-
tive hydrodynamic expansion can account for the non-linear
increase pattern.

The left (right) panel of Fig. 7 shows the ratio of the
pT spectra obtained with different estimators for multi-
plicity classes with comparable average dNch/dη value
(〈dNch/dη〉 � 26); the numerator refers to the N 0.8<|η|<1.5

tracklets

(N |η|<0.8
tracklets) estimator while the denominator refers to the V0M

estimator. These selections correspond to the highest multi-
plicity class studied for the V0M and N 0.8<|η|<1.5

tracklets estimators.

The N |η|<0.8
trackletsestimator, on the other hand, was re-adjusted to

lead to the same dNch/dη value. These classes correspond to
approximately 1%, 1% and 4% of the INEL > 0 cross sec-

tion for V0M, N |η|<0.8
tracklets and N 0.8<|η|<1.5

tracklets , respectively. It is
seen that the spectra are identical within uncertainties for the
V0M and N 0.8<|η|<1.5

tracklets estimators. The comparison between

the V0M and N |η|<0.8
tracklets estimators shows that the bias intro-

duced by the latter estimator does not depend on the particle
species and is more pronounced at low and intermediate pT,
although the uncertainties are large.

The pT-integrated yields of strange hadrons are shown in
Fig. 8 for the three estimators considered in this paper. For
reference, Fig. 9 shows the results integrated in the measured
pT range with no extrapolation. These are characterised by
a smaller uncertainty and can be useful for Monte Carlo tun-
ing. In the rest of this section, we focus on the discussion
of the fully extrapolated yields. The results obtained with
the V0M and N 0.8<|η|<1.5

tracklets estimators follow a similar linear

trend, while the results obtained with N |η|<0.8
tracklets tend to satu-

rate, showing a lower dN/dy for a similar high-multiplicity
class. In order to gain insight on this difference, a generator-
level PYTHIA (tune Perugia 2011) simulation study was per-
formed. The abundance of strange hadrons in |y| < 0.5 was
studied as a function of the estimated mid-rapidity charged
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Fig. 10 Correlations between integrated yield of different strange
hadrons in multiplicity classes selected according to different estima-
tors (see text for details). Statistical and systematic uncertainties are

shown by error bars and empty boxes, respectively. Shadowed boxes
represent uncertainties uncorrelated across multiplicity
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Fig. 11 Integrated yields of K0
S , �, �, and � as a function of dNch/dη

in V0M multiplicity event classes at
√
s = 7 and 13 TeV. Statisti-

cal and systematic uncertainties are shown by error bars and empty
boxes, respectively. Shadowed boxes represent uncertainties uncor-
related across multiplicity. The corresponding results obtained for
INEL > 0 event class are also shown

particle multiplicity for several event classes, selected using
charged primary particles measured in the η ranges corre-
sponding to the experimental estimators presented in this
paper: this generator level study confirms the trend observed
in the data, which can be understood in terms of a selection
bias sensitive to fluctuations in particles yields. Indeed, an
estimator based on charged tracks enhances charged primary
particles over neutral particles or secondaries. If the multi-
plicity estimator and the observable under study are measured
in the same η region one expects primary charged-particles to
be enhanced with respect to strange hadrons, which explains
the saturation of yields observed in Fig. 8 for the N |η|<0.8

tracklets
estimator. As a further check of this interpretation, Fig. 10
shows the correlations between the yields of different strange
hadrons for the multiplicity estimators studied in this paper.
The trend is linear, and similar for all estimators, confirm-
ing that the selection bias on primary charged-particles is
stronger than that on strange hadrons.

The energy dependence of the strangeness yields and 〈pT〉
versus the charged particle multiplicity at mid-rapidity is
studied in Figs. 11 and 12, where our results are compared
to the previous pp measurements at

√
s = 7 TeV [21]. The
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minimum bias results in the INEL > 0 event class at
√
s = 7

and 13 TeV [5] are also shown.
As can be seen in Fig. 11, the yields of strange hadrons

increase with the charged particle multiplicity following
a power law behaviour, and the trend is the same at√
s = 7 and 13 TeV. The INEL > 0 results also fol-

low the same trend at all the tested centre-of-mass energies.
This result indicates that the abundance of strange hadrons
depends on the local charged particle density and turns out
to be invariant with the collision energy, i.e. an energy scal-
ing property applies for the multiplicity-dependent yields of
strange hadrons. It should also be noted that the yields of
particles with larger strange quark content increase faster as
a function of multiplicity as already reported in [21]. Fig-
ure 13 shows the �/K0

S (no � contribution considered here),
�/K0

S and �/K0
S ratios compared to calculations from grand-

canonical thermal models [13,14], which were found to sat-
isfactorily describe central Pb-Pb data at

√
sNN = 2.76 TeV.

In the context of a canonical thermal model for a gas of
hadrons, an increase of the relative strangeness abundance
depending on the strange quark content can be interpreted
as a consequence of a change in the system volume, called
canonical suppression. Indeed, it was recently shown in [18]

that the existing ALICE data can be described within this
framework, introducing an additional parameter to quantify
the rapidity window over which strangeness is effectively
correlated. It was also suggested that strangeness follows a
universal scaling behaviour in all colliding systems, when the
transverse energy density [42] or the multiplicity per trans-
verse area [43] are used as a scaling variable. While there are
some caveats in the observation reported in these papers (due
to the uncertainties on the transverse size of the system) this
is a very intriguing observation, that could help to clarify the
origin of strangeness enhancement.

The 〈pT〉 is seen in Fig. 12 to be harder at 13 TeV than
at 7 TeV for event classes with a similar dNch/dη. All the
tested Monte Carlo models describe in a qualitative way the
observed smooth rise of the 〈pT〉 with dNch/dη; from a quan-
titative point of view, EPOS-LHC provides a slightly better
description of the 〈pT〉 multiplicity evolution, especially for
what concerns the strange baryons.

In Fig. 14 the results on the strange hadron yields as a func-
tion of the charged particle multiplicity at mid-rapidity are
compared with some commonly-used general purpose QCD
inspired models, focusing on the multiplicity classes defined
by the V0M estimator. The yields of all measured strange
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Fig. 12 〈pT〉 of K0
S , �, �, and � as a function of dNch/dη in V0M

multiplicity event classes at
√
s = 7 and 13 TeV. Statistical and system-

atic uncertainties are shown by error bars and empty boxes, respectively.

Shadowed boxes represent uncertainties uncorrelated across multiplic-
ity. The results are compared to predictions from several Monte Carlo
models
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√
s = 13 TeV. Sta-

tistical and systematic uncertainties are shown by error bars and empty
boxes, respectively. Shadowed boxes represent uncertainties uncorre-
lated across multiplicity. The corresponding calculations from grand-
canonical thermal models, which refer to most central Pb-Pb collisions
at

√
sNN = 2.76 TeV, are shown

hadrons show an almost linear increase with multiplicity: a
linear fit to the baryon trends would intercept the dNch/dη

axis at positive values. Alternatively one may regard such
qualitative observation as the trend of the points to have an
enhanced (more than linear) increase for the hadrons with
larger strangeness content.

The PYTHIA 8.210 event generator (tune Monash 2013)
gives a reasonable description of the K0

S results, however
it shows a less pronounced increase of the strange baryons
yields versus the charged particle multiplicity than what is
observed in the data. The description worsens with increas-
ing strangeness content. Recent attempts to improve the
PYTHIA color reconnection scheme to account for the
observed strangeness enhancement are discussed in [3], how-

ever they cannot explain the reported experimental observa-
tions.

The DIPSY Monte Carlo [44,45] is based on a BFKL
inspired initial state dipole evolution model [46] interfaced
to the Ariadne model [47] for final state dipole evolution
and to the PYTHIA hadronisation scheme, where the latter
has been modified to take into account the high density of
strings that occurs in events with several MPI. More specif-
ically, depending on their transverse density, the strings are
allowed to form “colour-ropes” leading to increased string
tension, which leads to an increase of strangeness produc-
tion stronger than in default PYTHIA [48]. However, despite
a qualitative improvement in the description of the data, the
discrepancy for the � distributions remains large. Moreover,
as discussed in [21], DIPSY also predicts an increase of pro-
tons normalised to pions as a function of multiplicity, which
is not observed in our

√
s = 7 TeV data.

The Monte Carlo generators based on EPOS [49] rely
on the Parton Based Gribov Regge Theory (PBGRT) [50].
A common feature of all the EPOS versions is a collec-
tive evolution of matter in the secondary scattering stage in
all reactions, from pp to AA, with a core-corona separation
mechanism [51] which defines the initial conditions of the
secondary interactions. In EPOS, the initial parton scatter-
ings create “flux tubes” that either escape the medium and
hadronise as jets or contribute to the core, described in terms
of hydrodynamics. The core is then hadronised in terms of
a grand-canonical statistical model. The relative amount of
multi-hadron production arising from the core grows with
the number of MPIs. The EPOS-LHC model adopted in this
analysis (distributed with the CRMC package 1.5.4) shows a
pronounced increase of the strangeness yields as a function
of the charged particle multiplicity at mid-rapidity. Despite
the differences in the underlying physics, the comparison to
data leads to a similar conclusion for EPOS-LHC and DIPSY.

The comparison of the Monte Carlo model predictions to
the data indicates that the origin of the strangeness enhance-
ment in hadronic collisions and its relation to the QCD decon-
finement phase transition are still open problems for models.
While the current versions of these models do not repro-
duce the data quantitatively, it is possible that the agreement
can be improved with further tuning or with new implemen-
tations. A quantitative description of strangeness production
and enhancement in a microscopic Monte Carlo model would
represent a major step to understand flavour production in
hadronic collisions at high energy.

6 Summary

We studied the production of primary strange and multi-
strange hadrons at mid-rapidity in pp collisions at√
s = 13 TeV, focusing on the multiplicity dependence. The
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Fig. 14 Integrated yields of K0
S , �, �, and � as a function of dNch/dη

in V0M multiplicity event classes at
√
s = 7 and 13 TeV. Statisti-

cal and systematic uncertainties are shown by error bars and empty

boxes, respectively. Shadowed boxes represent uncertainties uncorre-
lated across multiplicity. The results are compared to predictions from
several Monte Carlo models

main feature of this analysis is the usage of multiplicity esti-
mators defined in different pseudorapidity regions, providing
a different sensitivity to the fragmentation and MPI compo-
nents of particle production and allowing for a detailed study
of the selection biases due to fluctuations.

Hardening of the pT spectra with the increase of the mul-
tiplicity is observed, as already reported for pp [40] and p–Pb
collisions [22] at lower energies.

The pT-integrated yields of strange hadrons increase as a
function of multiplicity faster than the ones of unidentified
charged-particles. This behaviour is even more pronounced
for particles with higher strangeness content, confirming the
earlier observations in pp collisions at

√
s = 7 TeV [21].

This leads to a multiplicity-dependent increase of the ratio
of the strange baryons � and � over K0

S , while the � over
K0

S ratio turns out to be constant within uncertainties. In the
context of a canonical thermal model, an increase of the rel-
ative strangeness abundance depending on the strange quark
content can be understood as a consequence of an increase
in the system volume leading to a progressive removal of
canonical suppression.

Comparing the 13 TeV results to the 7 TeV ones, the data
exhibit an interesting scaling property: for multiplicity esti-

mators selected in the forward region, the strange hadron
yields turn out to be independent of the centre of mass energy,
the

√
s increase resulting just in harder pT spectra.

The use of high-multiplicity triggered data collected dur-
ing the full Run 2 period will allow us to test these scal-
ing ansatzes extending the measurement to higher multiplic-
ities, comparable to peripheral Pb-Pb collisions at the LHC
(dNch/dη ∼ 40–50).

The color reconnection effects implemented in PYTHIA 8
and DIPSY as well as the collective hydrodynamic expansion
implemented in EPOS-LHC could not account quantitatively
for all the reported results. Some of the qualitative features of
the data are described by these models, including the indica-
tion of a non-linear increase of the yields of strange hadrons
at high pT, similar to what was previously reported in [52] for
J/ψ and D meson production. Although none of the tested
models can reproduce the data from a quantitative point of
view, EPOS-LHC and DIPSY do provide a better qualitative
description of the strangeness enhancement.
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J. Bielčík37, J. Bielčíková93, A. Bilandzic103,117, G. Biro145, R. Biswas3, S. Biswas3, J. T. Blair119, D. Blau86, C. Blume68,
G. Boca139, F. Bock34,94, A. Bogdanov91, L. Boldizsár145, A. Bolozdynya91, M. Bombara38, G. Bonomi140, H. Borel137,
A. Borissov91,144, M. Borri127, H. Bossi146, E. Botta26, L. Bratrud68, P. Braun-Munzinger105, M. Bregant121, T. A. Broker68,
M. Broz37, E. J. Brucken43, E. Bruna58, G. E. Bruno33,104, M. D. Buckland127, D. Budnikov107, H. Buesching68,
S. Bufalino31, O. Bugnon114, P. Buhler113, P. Buncic34, Z. Buthelezi72, J. B. Butt15, J. T. Buxton95, S. A. Bysiak118,
D. Caffarri88, A. Caliva105, E. Calvo Villar110, R. S. Camacho44, P. Camerini25, A. A. Capon113, F. Carnesecchi10,27,
J. Castillo Castellanos137, A. J. Castro130, E. A. R. Casula54, F. Catalano31, C. Ceballos Sanchez52, P. Chakraborty48,
S. Chandra141, B. Chang126, W. Chang6, S. Chapeland34, M. Chartier127, S. Chattopadhyay141, S. Chattopadhyay108,
A. Chauvin24, C. Cheshkov135, B. Cheynis135, V. Chibante Barroso34, D. D. Chinellato122, S. Cho60, P. Chochula34,
T. Chowdhury134, P. Christakoglou88, C. H. Christensen87, P. Christiansen79, T. Chujo133, C. Cicalo54, L. Cifarelli10,27,
F. Cindolo53, J. Cleymans124, F. Colamaria52, D. Colella52, A. Collu78, M. Colocci27, M. Concas58,b, G. Conesa Balbastre77,
Z. Conesadel Valle61, G. Contin59,127, J. G. Contreras37, T. M. Cormier94, Y. Corrales Morales26,58, P. Cortese32,
M. R. Cosentino123, F. Costa34, S. Costanza139, P. Crochet134, E. Cuautle69, P. Cui6, L. Cunqueiro94, D. Dabrowski142,
T. Dahms103,117, A. Dainese56, F. P. A. Damas114,137, S. Dani65, M. C. Danisch102, A. Danu67, D. Das108, I. Das108,
P. Das3, S. Das3, A. Dash84, S. Dash48, A. Dashi103, S. De49,84, A. De Caro30, G. de Cataldo52, C. de Conti121,
J. de Cuveland39, A. De Falco24, D. De Gruttola10, N. De Marco58, S. De Pasquale30, R. Derradi de Souza122, S. Deb49,
H. F. Degenhardt121, K. R. Deja142, A. Deloff83, S. Delsanto26,131, D. Devetak105, P. Dhankher48, D. Di Bari33,
A. Di Mauro34, R. A. Diaz8, T. Dietel124, P. Dillenseger68, Y. Ding6, R. Divià34, Ø. Djuvsland22, U. Dmitrieva62,
A. Dobrin34,67, B. Dönigus68, O. Dordic21, A. K. Dubey141, A. Dubla105, S. Dudi98, M. Dukhishyam84, P. Dupieux134,
R. J. Ehlers146, V. N. Eikeland22, D. Elia52, H. Engel73, E. Epple146, B. Erazmus114, F. Erhardt97, A. Erokhin112,
M. R. Ersdal22, B. Espagnon61, G. Eulisse34, J. Eum18, D. Evans109, S. Evdokimov89, L. Fabbietti103,117, M. Faggin29,
J. Faivre77, F. Fan6, A. Fantoni51, M. Fasel94, P. Fecchio31, A. Feliciello58, G. Feofilov112, A. Fernández Téllez44,
A. Ferrero137, A. Ferretti26, A. Festanti34, V. J. G. Feuillard102, J. Figiel118, S. Filchagin107, D. Finogeev62, F. M. Fionda22,
G. Fiorenza52, F. Flor125, M. Floris34, S. Foertsch72, P. Foka105, S. Fokin86, E. Fragiacomo59, U. Frankenfeld105,
G. G. Fronze26, U. Fuchs34, C. Furget77, A. Furs62, M. Fusco Girard30, J. J. Gaardhøje87, M. Gagliardi26, A. M. Gago110,
A. Gal136, C. D. Galvan120, P. Ganoti82, C. Garabatos105, E. Garcia-Solis11, K. Garg28, C. Gargiulo34, A. Garibli85,
K. Garner144, P. Gasik103,117, E. F. Gauger119, M. B. Gay Ducati70, M. Germain114, J. Ghosh108, P. Ghosh141,
S. K. Ghosh3, P. Gianotti51, P. Giubellino58,105, P. Giubilato29, P. Glässel102, D. M. Goméz Coral71, A. Gomez Ramirez73,
V. Gonzalez105, P. González-Zamora44, S. Gorbunov39, L. Görlich118, S. Gotovac35, V. Grabski71, L. K. Graczykowski142,
K. L. Graham109, L. Greiner78, A. Grelli63, C. Grigoras34, V. Grigoriev91, A. Grigoryan1, S. Grigoryan74, O. S. Groettvik22,
F. Grosa31, J. F. Grosse-Oetringhaus34, R. Grosso105, R. Guernane77, B. Guerzoni27, M. Guittiere114, K. Gulbrandsen87,
T. Gunji132, A. Gupta99, R. Gupta99, I. B. Guzman44, R. Haake146, M. K. Habib105, C. Hadjidakis61, H. Hamagaki80,
G. Hamar145, M. Hamid6, R. Hannigan119, M. R. Haque63, A. Harlenderova105, J. W. Harris146, A. Harton11,
J. A. Hasenbichler34, H. Hassan77, D. Hatzifotiadou10,53, P. Hauer42, S. Hayashi132, A. D. L. B. Hechavarria144,
S. T. Heckel68, E. Hellbär68, H. Helstrup36, A. Herghelegiu47, E. G. Hernandez44, G. Herrera Corral9, F. Herrmann144,
K. F. Hetland36, T. E. Hilden43, H. Hillemanns34, C. Hills127, B. Hippolyte136, B. Hohlweger103, D. Horak37, S. Hornung105,
R. Hosokawa16,133, P. Hristov34, C. Huang61, C. Hughes130, P. Huhn68, T. J. Humanic95, H. Hushnud108, L. A. Husova144,
N. Hussain41, S. A. Hussain15, D. Hutter39, D. S. Hwang19, J. P. Iddon34,127, R. Ilkaev107, M. Inaba133, M. Ippolitov86,

123



167 Page 22 of 26 Eur. Phys. J. C (2020) 80 :167

M. S. Islam108, M. Ivanov105, V. Ivanov96, V. Izucheev89, B. Jacak78, N. Jacazio27,53, P. M. Jacobs78, M. B. Jadhav48,
S. Jadlovska116, J. Jadlovsky116, S. Jaelani63, C. Jahnke121, M. J. Jakubowska142, M. A. Janik142, M. Jercic97, O. Jevons109,
R. T. Jimenez Bustamante105, M. Jin125, F. Jonas94,144, P. G. Jones109, A. Jusko109, P. Kalinak64, A. Kalweit34,
J. H. Kang147, V. Kaplin91, S. Kar6, A. Karasu Uysal76, O. Karavichev62, T. Karavicheva62, P. Karczmarczyk34,
E. Karpechev62, U. Kebschull73, R. Keidel46, M. Keil34, B. Ketzer42, Z. Khabanova88, A. M. Khan6, S. Khan17,
S. A. Khan141, A. Khanzadeev96, Y. Kharlov89, A. Khatun17, A. Khuntia118, B. Kileng36, B. Kim60, B. Kim133,
D. Kim147, D. J. Kim126, E. J. Kim13, H. Kim147, J. Kim147, J. S. Kim40, J. Kim102, J. Kim147, J. Kim13, M. Kim102,
S. Kim19, T. Kim147, T. Kim147, S. Kirsch39, I. Kisel39, S. Kiselev90, A. Kisiel142, J. L. Klay5, C. Klein68, J. Klein58,
S. Klein78, C. Klein-Bösing144, S. Klewin102, A. Kluge34, M. L. Knichel34,102, A. G. Knospe125, C. Kobdaj115,
M. K. Köhler102, T. Kollegger105, A. Kondratyev74, N. Kondratyeva91, E. Kondratyuk89, P. J. Konopka34, L. Koska116,
O. Kovalenko83, V. Kovalenko112, M. Kowalski118, I. Králik64, A. Kravčáková38, L. Kreis105, M. Krivda64,109, F. Krizek93,
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