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ARTICLE

Universal momentum-to-real-space mapping
of topological singularities
Xiuying Liu1,6, Shiqi Xia1,6, Ema Jajtić2,6, Daohong Song1,3✉, Denghui Li1, Liqin Tang1,3, Daniel Leykam4,

Jingjun Xu1,3, Hrvoje Buljan1,2✉ & Zhigang Chen 1,3,5✉

Topological properties of materials are typically presented in momentum space. Here, we

demonstrate a universal mapping of topological singularities from momentum to real space.

By exciting Dirac-like cones in photonic honeycomb (pseudospin-1/2) and Lieb (pseudospin-1)

lattices with vortex beams of topological charge l, optimally aligned with a given pseudospin

state s, we directly observe topological charge conversion that follows the rule l→ l + 2s.

Although the mapping is observed in photonic lattices where pseudospin-orbit interaction takes

place, we generalize the theory to show it is the nontrivial Berry phase winding that accounts

for the conversion which persists even in systems where angular momentum is not conserved,

unveiling its topological origin. Our results have direct impact on other branches of physics and

material sciences beyond the 2D photonic platform: equivalent mapping occurs for 3D topo-

logical singularities such as Dirac-Weyl synthetic monopoles, achievable in mechanical,

acoustic, or ultracold atomic systems, and even with electron beams.
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Topological phases, as manifested in the intriguing phe-
nomena of quantum Hall effect and topological
insulators1,2, have attracted overwhelming transdisci-

plinary interest in recent years3–7. Topological edge states, for
instance, have been realized in a variety of systems including
electromagnetic waves8–12. Topological properties of Bloch bands
are revealed in momentum space, using concepts such as the
Chern number and Berry phase. We demonstrate here a universal
mapping of the topology of Dirac-like cones from momentum to
real space. This is achieved by properly aligned vortex excitation
of pseudospin states near the Dirac-like cones in photonic hon-
eycomb (half-integer pseudospin)13,14 and Lieb (integer pseu-
dospin)15 lattices, leading to direct observation of topological
charge conversion (as illustrated in Fig. 1a, b). We develop a
unified theory to explain the observed phenomenon and present
the mapping in a general topological framework involving non-
trivial Berry phase winding. The topological origin of this con-
version makes it both robust and universal, persisting in
deformed lattices where angular momentum is not conserved,
and for 3D Dirac–Weyl synthetic magnetic monopoles16–18 (see
Fig. 1c), which can be realized in ultracold atomic gases19. The
underlying mechanism could also be responsible for the vortex
creation in electron beams traversing magnetic monopole field20.

The coupling of spin and orbital degrees of freedom is in many
systems intertwined with the underlying topology of the space
and the Berry phase21. For instance, in condensed matter elec-
tronic systems, studies of spin-orbit interactions led to the dis-
covery of topological insulators, which have now emerged as an
important field. The physics of electron beams illustrates many
examples where spin–orbit coupling is integrated with topology22.
There is also a plethora of related examples in optics and pho-
tonics23: with real space Berry phase optical elements such as q-
plates and metasurfaces, circular polarization states of light
(intrinsic spin) can be transformed to optical vortices carrying
orbital angular momentum (OAM)24–26; for light propagating
along a coiled ray trajectory, the dynamics is governed by the
action of the monopole in Berry curvature, leading to the spin-
Hall effect of light27. An analogous topological transport of sound
waves has also been observed recently, thanks to the spin-
redirection geometric phase28.

When discussing spin in optical systems, it is the light polar-
ization or photon spin that is usually considered as the spin degree

of freedom23,29. Similarly, in electronic systems it is the intrinsic
electron spin1,2. However, for light (electrons) propagating in
structured photonic media (crystalline lattices) with microscopic
degrees of freedom, the concept of pseudospin independent of
any intrinsic particle property emerges13–15,30–32. Such a concept
in graphene is introduced through the mathematical analogy
between the graphene sublattice degree of freedom and the elec-
tron spin in the Dirac equation. Unlike the electron spin, however,
the pseudospin angular momentum is not associated with any
intrinsic property of particles, but rather arises from the sub-
structure of space (sublattices) that the particles (or wave packets)
live in. For instance, the honeycomb lattice (HCL)33 is composed
of two triangular sublattices (A, B), which features conical inter-
sections with two touching bands at two inequivalent Dirac points
(K and K’), representing a half-integer pseudospin system (S=
1/2, see Fig. 1a). In contradistinction, the Lieb lattice34–36 has
three square sublattices (A, B, C), which possess a conical inter-
section with three touching bands at the Dirac-like M points,
representing an integer pseudospin system (S= 1, see Fig. 1b).

Crucially, since the pseudospin operators satisfy a set of com-
mutation relations directly analogous to those used to define the
real spin, pseudospin should be treated on equivalent footing
as other angular momenta in a given system. Consequently, a
whole class of fundamental phenomena based on pseudospin-orbit
interaction, twined together with topology of the underlying space,
should be expected in photonic, electronic, and other relevant
platforms with emergent pseudospins. We demonstrate here one
such phenomenon using a photonic platform: momentum-to-real-
space mapping of topological singularities.

In the paraxial approximation, light propagation in photonic
lattices is governed by the Schrödinger equation13,33:

i
∂Ψ x; y; zð Þ

∂z
¼ � 1

2k0
∇2Ψ x; y; zð Þ � k0Δn x; yð Þ

n0
Ψ x; y; zð Þ � H0Ψ;

ð1Þ
where Ψ is the optical field of the probe beam, z is the longitudinal
propagation distance, k0 is the wavenumber, n0 is the background
refractive index of the medium, and Δn is the induced index
change forming either the HCL or the Lieb lattice. In Eq. (1), H0 is
the continuous Hamiltonian of the system, whose eigenvalues
define the lattice band structure. For the HCL, Eq. (1) becomes a
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Fig. 1 Illustration of momentum-to-real-space mapping of topological singularities. a A pseudospin-1/2 honeycomb lattice with two sublattices A and B
is excited with three vortex beams, each with topological charge l. b A pseudospin-1 Lieb lattice with three sites (A, B, C) per unit cell is excited with four
vortex beams. These vortex beams excite modes around conical intersections at the corners of the Brillouin zone (lower right inset). The arrows circulating
around the conical intersections illustrate winding of the Berry phase (π in HCL and 2π in Lieb lattice). Topological charge conversion from l to l + 2s is a
consequence of the mapping of topological singularity from momentum to real space. It occurs when initial excitation with l= ±1 is optimally aligned for a
given pseudospin state (a) s= ±1/2 in HCL, and (b) s= ±1 in Lieb lattice. c Illustration of similar excitation of a Berry curvature monopole in 3D momentum
space, leading to generation of a topological charge in real space with vorticity along the direction of excitation. Small blue and red arrows depict opposite
pseudospin states.
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two-band simplified description of the paraxial model under the
tight-binding approximation, and for excitations near the Dirac
points, it turns into the linear Dirac equation typically used for
describing massless Dirac particles in graphene37. The amplitude
of the optical wave in the two sublattices is then modeled by two-
component spinor functions corresponding to pseudospin. In our
previous work13, the angular momentum associated with such
lattice pseudospin has been observed. However, the topological
properties arising from the interplay between pseudospin-orbit
interaction and nontrivial Berry phases remain largely unexplored.

Results
Topological conversion in a pseudospin-1/2 honeycomb lattice.
For excitations around conical intersections in both lattices, the
dynamics is governed by the effective Hamiltonian

H ¼ κ Sxkx þ Syky
� �

; ð2Þ

where Si are the components of the pseudospin angular momen-
tum operator S, kx and ky are the displacements of the transverse
wavevectors with respect to the Dirac point, and κ depends on the
properties of the lattice. The eigenstates of the pseudospin χS,s are
given by S2χS,s= S(S + 1)χS,s, and SzχS,s= sχS,s (here S and s denote
the total and z-component of the pseudospin angular momentum,
respectively). The eigenmodes of the Hamiltonian, Hψn,k= βn,kψn,
k, are organized in 2S + 1 bands (labeled by n) touching at the
conical intersection. In contrast to previous excitation schemes, we
use three vortex beams (each with an initial topological charge l=
1 or l=−1) momentum-matched to the conical intersection
points for the HCL (see Fig. 1a), spatially structured to excite only
one pseudospin eigenstate (s=−1/2 or 1/2). Likewise, for the Lieb
lattice, we use four vortex beams (see Fig. 1b) to excite one
pseudospin eigenstate (s=−1, 0 or 1) for each measurement.
Further experimental details about lattice creation in a 20-mm-
long nonlinear crystal (SBN:61) and excitation scheme can be
found in Supplementary Note 1.

Typical experimental results obtained with the HCL are
summarized in Fig. 2. The HCL (Fig. 2a) is established with the

multi-beam optical induction technique38,39. It remains invariant
throughout the crystal with a nearest neighbor spacing of 9 μm.
The lattice is probed by a donut-shaped triangular lattice beam,
for which the OAM (l) and pseudospin (s) are optimally aligned
(top panel: l= 1, s= 1/2, bottom panel l=−1, s=−1/2). To
better see the phase structure of the probe beam at input (i.e.,
before the pseudospin-orbit interaction takes place), interfero-
grams are obtained for the whole superimposed beam (Fig. 2b) as
well as one of the three interfering beams (Fig. 2c). As illustrated
in Fig. 1a, the vortex beams are momentum-matched to the three
equivalent Dirac points (K) of the HCL. The output interfero-
grams in Fig. 2d, e clearly display two vortices of the same
helicity, which show conversion of the topological charges
from l to l + 2s for both initial states (schematically illustrated
in Fig. 1a). We demonstrate below that this conversion is a
consequence of the mapping of topological singularity at the
conical intersections from momentum to real space. Figure 2e is
obtained from the Fourier transform of spectral component at
one of the Dirac points back into real space for phase
measurement. The bottom-right inset in Fig. 2e shows a donut-
shaped intensity pattern at the output, which is somewhat
deformed as compared to the input (see the inset in Fig. 2c)
because it is now a higher-order vortex which tends to
disintegrate into multiple singly-charged vortices during propa-
gation in an inhomogeneous medium40.
It is instructive to provide a kinematical explanation of these

observations (see Supplementary Note 2). In the experiment
of Fig. 2, the z-component Jz of the total angular momentum J=
L + S is conserved (where L= r × k is the OAM): [Jz, H]= 0. The
initial excitation in all experiments is comprised of a single value
of l and s, and the optimally aligned initial condition implies
maximal value of |l + s|. The output beam has two or more values
of l′ and s′, all of which obey

l þ s ¼ l0 þ s0: ð3Þ
For example, for Fig. 2—top panel, the input beam has l= 1

and s= 1/2, while the output beam has two components: (i) l′= 1
and s′= 1/2, and (ii) l′= 2 and s′=−1/2. Since the output

Fig. 2 Experimental demonstration of topological conversion in a pseudospin-1/2 honeycomb lattice. a Top: an optically induced HCL; Bottom: input
pattern of vortex-bearing triangular lattice beam used for selective excitation of the pseudospin states. b–e Top (bottom) row corresponds to initial
excitation of s= 1/2 (s=−1/2) pseudospin state with vortex beams of initial topological charge l= 1 (l=−1). Interferograms of input (b, c) and output (d, e)
with a tilted reference beam showing topological charge conversion from 1 to 2 (top) and from −1 to −2 (bottom). b, d Interferogram from the whole beam,
and (c, e) corresponding interferogram from one of the spectral components. Difference in the numbers of counted fringes from the two sides of the marked
region illustrates the net topological charges at output in (d, e). White curved arrows mark the position and helicity of the vortices. Insets in (c) and (e) show
singly and doubly-charged vortex intensity patterns obtained at input and output, respectively, from one of the K valleys as illustrated in Fig. 1a.
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components are intertwined on both sublattices, we observe two
vortices in Fig. 2d, e. A fully equivalent explanation holds for
results in Fig. 2—bottom panel. However, as we shall discuss
below through theoretical analysis, the observed charge conver-
sion has a topological origin, holding even in systems without
rotational symmetry in which angular momentum is not
conserved.

To substantiate the above kinematical picture summarized in
Eq. (3), experimental observations (Fig. 3a) are further corrobo-
rated by numerical simulations (Fig. 3b–d) based on the paraxial
wave equation (Eq. (1)). For all simulations, the parameters are
chosen close to those from experiment with the index contrast
δn= 2 × 10−4 .We excite the pseudospin states s= 1/2 (top) and
s=−1/2 (bottom), with the input beam of topological charge l=
1 covering sublattices A and B, respectively. In numerical
simulations, the output field is decomposed into each pseudospin
component. From the phase structure of each component, the
difference is clear: if the s= 1/2 component is initially excited, the
unexcited s′=−1/2 component is converted into an l′= 2 vortex
(Fig. 3d, top). In contrast, if the s=−1/2 is initially excited, the
vorticity in the unexcited s′= 1/2 component disappears, l′= 0
(Fig. 3c, bottom). The vorticity of the initially excited component
always remains unchanged, in accordance with Eq. (3). Note that
the output intensity patterns in the lower insets of Fig. 3 have a
subtle difference between the two cases of excitation: the donut
shape is preserved in the top panels (when both components
maintain a vortex), but deforms to have a bright central spot in
bottom panels (when vortex annihilation occurs in one of the
components).

Topological conversion in a pseudospin-1 Lieb lattice. Next, we
discuss experimental results obtained with a photonic Lieb lattice
(summarized in Fig. 4). The lattice is established again by optical
induction in the 20-mm-long crystal36, with a nearest neighbor
spacing of 9 μm. A donut-shaped square lattice beam (Fig. 4a,

bottom) created by interfering four singly-charged vortex beams
is employed as a probe, which excites only one pseudospin
component (top panel: l= 1, s= 1; bottom panel: l=−1, s=−1).
In the Lieb lattice, the pseudospin Sz is not diagonal in sublattice
basis15. Therefore, to excite a given pseudospin state, the probing
square lattice is matched either to the B sublattice (for the
s= 0 pseudospin state) or the A and C sublattices with appropriate
phase relation (for the s= 1 and s=−1 pseudospin states) as
illustrated in Fig. 4b. The output interferograms in Fig. 4e clearly
display three vortices of the same helicity as the input (i.e., a net
topological charge of 3 or −3), exhibiting a conversion of the
topological charges from l to l + 2s for the optimally aligned
excitations (schematically illustrated in Fig. 1b).

In Fig. 5, we show experimental (Fig. 5a) and numerical
(Fig. 5b) results obtained by initial excitation of the pseudospin
states (from top to bottom rows) s= 1, s= 0, and s=−1 with a
proper input beam of topological charge l= 1, and examine how
the phase evolves for the three decomposed pseudospin
components (Fig. 5c–e). The first case (s= 1) corresponds to
optimally aligned excitation in Fig. 4, where the topological
charge emerging in the s′=−1 pseudospin component is l′= 3.
For the latter two cases (s= 0, and s=−1), which are not
optimally aligned, the initial vortex is also transformed into
multiple vortices but with a net topological charge of 2 (middle
row) or 1 (bottom row), while all components satisfy again the
kinematics of pseudospin-orbit interaction (Eq. (3)). Similar
studies with the input beam of topological charge l=−1 led to
the same conversion rule. The pseudospin components of the
Lieb lattice are not diagonal in the sublattice basis, and therefore
do not have a trivial correspondence to a particular sublattice15 as
for the case of pseudospin-1/2 HCL13. In fact, the physics of
pseudospin-orbit interaction in Lieb lattices is in one aspect richer
than that of polarization-based spin–orbit interaction: here we
have excited also the s= 0 pseudospin state, inadmissible for
helicity of photons due to its zero mass.

Fig. 3 Decomposed pseudospin components in an angular-momentum-conserved HCL. Top (bottom) row: pseudospin state s= 1/2 (s=−1/2) is
selectively excited with initial beam of topological charge l= 1. a Output interferogram from the experiment, and (b) corresponding results from the
simulation with (c, d) showing the evolved phase structure separately for each pseudospin component. The topological charge increases (decreases) by 1 unit
in the initially unexcited component as seen in the top (bottom) panel of d (c), while that in the initially excited component remains intact, as governed by Eq.
(3). The lower insets in (a, b) are the corresponding intensity patterns; the doughnut (central bright spot) pattern corresponds to l ≠ 0 (l= 0) components.
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Fundamental mechanism of the topological charge conversion.
Up to this point, we have discussed topological charge conversion
in honeycomb and Lieb lattices and explained the results kine-
matically with angular momentum conservation. One can also
explain the observed phenomenon dynamically, by expanding the
initial excitation in eigenmodes of the Hamiltonian, as elaborated

in the Methods section. However, there is a fundamental topo-
logical mechanism beyond the charge conversion observed in
experiment. When eigenmodes of the Hamiltonian (2) are
expanded in pseudospin eigenstates, there are vortices (i.e.,
topological charges) in the k-space attached to the components,
and the topological charge of neighboring pseudospin components

Fig. 5 Decomposed pseudospin components in an angular-momentum-conserved Lieb lattice. Experiment and simluation results for initial excitations of
the pseudospin states s= 0 in (a1–e1), s= 1 in (a2–e2) and s=−1 in (a3–e3) with four input beams of topological charge l= 1. Output interfrograms from
(a) experiment and (b) simulation show different topological charge conversions under different excitation conditions. (c–e) show output phase structure
of the probe beam numerically decomposed for each pseudospin component s′, where corresponding output vorticity l′ in each component has been
identified. In all cases, each pseudospin component obeys Eq. (3).

Fig. 4 Experimental demonstration of topological conversion in a pseudospin-1 Lieb lattice. a Top: an optically induced Lieb lattice; Bottom: input pattern
of vortex-bearing square lattice beam used to excite the pseudospin states of the Lieb lattice. b Top (bottom) row illustrates selective excitation of A and C
sublattices with an appropriate phase relation optimized for pseudospin states s= 1 (s=−1) by vortex beams of initial topological charge l= 1 (l=−1).
c–e Interferograms of input (c, d) and output (e) showing topological charge conversion from 1 to 3 (top) and from −1 to −3 (bottom).
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differs by one. For example, for the HCL the eigenmodes

are ψn; k ¼ 1ffiffi
2

p n
eiφk

� �
¼ 1ffiffi

2
p nχ1

2;
1
2
þ eiφkχ1

2;�1
2

� �
(see Methods and

Supplementary Notes). When a single pseudospin component is
excited, the k-space vortex in the other component is mapped
from momentum to real space, giving rise to topological charge
conversion. Difference in the k-space topological charges of
pseudospin components is related to the Berry phase winding
around the Dirac point (see Methods). If we denote the winding of
the Berry phase around the Dirac point with wπ, then for the
HCL, w= 1; and for the Lieb lattice, w= 2. Topological quantity
w is also the maximal difference between the k-space topological
charges of pseudospin components. For the studied honeycomb
and the Lieb lattices, the rule l→ l + 2s, which holds only for
optimally aligned excitations, can be expressed as l→ l + w for l >
0 (or l→ l−w for l < 0). It turns out that this latter expression of
the conversion rule, which contains the topological quantity w, is
more general than the one containing pseudospin s, as can be
viewed on the following examples.

Consider a conical intersection described by the Hamiltonian
Hs= κxSxkx + κySyky, where the angular momentum is not
conserved for κx ≠ κy due to lack of rotational symmetry; an
inspection of the eigenstates of Hs for pseudospin S= 1/2 and
S= 1 shows that the k-space vortices become elliptical but
preserve their topological charge. For the stretched HCL, the
winding of the Berry phase around the Dirac point is protected,
until the stretching is sufficiently large so that the inequivalent
Dirac points merge and a gap opens41–43. After this transition the
Berry phase vanishes and the topological charge conversion no
longer occurs. In Fig. 6 we show numerical simulations for the
optimally aligned initial condition in the stretched HCL and Lieb
lattice. The nearest neighbor spacing for the HCL and the Lieb
lattice is 9 µm, stretched by 12% and 15%, respectively. As seen
from these results, the conversion of the topological charges
from l to l ± w holds even when the angular momentum Jz is not
conserved, which indicates that the mapping of the topological

charges from k-space to x-space is a fundamental process with
topological origin. Other examples include band structures with
parabolic band-touching points, or conical intersections described
by the Hamiltonian H0= kσz, where the formula l→ l ± w still
holds, further underpinning the topological interpretation of our
results (see Methods and Supplementary Notes).

Next, we expand our results beyond the 2D platform. Our
experiments are performed in 2D lattices; however, analogous
considerations can be made for 3D Hamiltonians. For example,
we consider the Weyl Hamiltonian HWeyl ¼ σ � k, which has
attracted considerable interest in recent years; it has been
experimentally realized in the Brillouin zone of specially designed
optical and condensed matter structures16,17. This Hamiltonian
gives rise to a synthetic magnetic monopole in k-space18, with
topological charge 1. Suppose that we initially excite the modes
around a Weyl point with a symmetric Gaussian-like distribution,
and that we excite a pseudospin eigenstate χ1

2;
1
2
. The initial state is

ψ0;12
r; θr;φr; t ¼ 0
� � ¼ ψ0ðrÞχ1

2;
1
2
, and its evolution in time is

governed by i ∂ψ∂t ¼ HWeylψ. By expanding the initial state in
eigenmodes of the Weyl Hamiltonian, it is straightforward to see
that the wavefunction evolves as (see Supplementary Notes for
details)

ψ0;12
r; θr;φr; t
� � ¼ χ1

2;
1
2
g1
2;
1
2
r; θr; tð Þ þ eiφrχ1

2;�1
2
g1
2;�1

2
r; θr; tð Þ: ð4Þ

Clearly, even though the initial state was a Gaussian-like
excitation with l= 0 and s= 1/2, in the unexcited pseudospin
component s′=−1/2, a vortex with topological charge l′= 1
emerges, as illustrated in Fig. 1c. Since this is a 3D rotationally
invariant Hamiltonian, [J, HWeyl]= 0, if we excite any pseudospin
state αχ1

2;
1
2
þ βχ1

2;�1
2
with a Gaussian-like distribution, we will obtain

in the output a vortex field with a topological charge identical to the
charge of the Weyl monopole, with vorticity pointing in the
direction of the initial pseudospin. Thus, with properly designed
initial excitation, mapping of topological properties of the Weyl

Fig. 6 Evolution of pseudospin states in stretched lattices lacking rotational symmetry around conical intersections. Top (bottom) row corresponds to a
stretched HCL (Lieb lattice), with an initial excitation l= 1, s= 1/2 (l= 1, s= 1). a A 12% horizontally stretched HCL. b, e Interferograms of the output beam,
which clearly indicate the topological conversion from l to l + 2s (or l ± w), corresponding to results from unstretched lattices of the top rows in Figs. 3b
and 5b. This is underpinned by the phase structure of the pseudospin components at the output illustrated in (c, d) and (f–h) for the two lattices.
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monopole to topological charges in real space can be readily
achieved. In fact, this type of dynamics in 3D Weyl systems,
achievable in ultracold atomic gases19, seems to be related to a recent
experiment where an electron beam scattered from a magnetic
monopole experienced a conversion into an electron vortex20.

We have thus demonstrated the universal mapping of
topological singularities in k-space to measurable topological
entities in real space. Our experiments were carried out in
photonic honeycomb and Lieb lattices, where the mapping can be
explained with pseudospin-orbit interaction, angular momentum
conservation and nontrivial winding of the Berry phase. However,
we have demonstrated in theory that the underlying mechanism
for the mapping lies in fundamentally topological origin. Besides
the typical honeycomb and Lieb conical intersections, we have
shown that it occurs also in stretched lattices where angular
momentum is not conserved, and for parabolic band touching
and other nonconical intersections. Moreover, we have predicted
that the same mechanism exists in 3D Weyl lattices where
synthetic magnetic monopoles come to play the role. Our finding
brings about many interesting questions as well as opportunities.
For instance, is it possible to create vortices of Bose–Einstein
condensates44 by topological conversion from synthetic magnetic
monopoles in ultracold atomic gases19? How could the mechan-
ism explored here be adapted for topological conversion with
photons in a photonic Dirac monopole field45? It is also natural to
ask: is the spin angular momentum gifted by light polarization
indispensable in spin-to-orbital angular momentum conversion,
as commonly thought, or the pseudospin and topological
conversion is essential even in those conventional settings based
on optical phase elements24,26? What other mechanisms can we
conceive and explore where topological properties of the bands
can be directly mapped from momentum to real space in
experiments? Can other topological entities such as vortex knots
and nodal chains46–48 be directly mapped from momentum space
to real space or vice versa, or onto a synthetic space49,50?

Methods
Theoretical framework for topological conversion. We develop here a systematic
theoretical framework to fully analyze the observed phenomena, which unravels the
connections between pseudospin, OAM and the underlying topology of the lattice
in k-space. The initial vortex beam which probes the conical intersection of
Hamiltonian in Eq. (2) is described with the complex amplitude of the electric field
ψl;sðr;φr ; z ¼ 0Þ ¼ ψ0r

leilφr exp �r2=a20
� �

χS;s , where χS,s accounts for the fact that we
initially excite only a single pseudospin component. The probe beam is broad in
real space (a0 ≫ lattice constant), and narrow in momentum space. We expand the
initial excitation in eigenmodes of the Hamiltonian (2) and account for the

dynamics via ψl;s r;φr ; z
� � ¼ P

n;k cn;kψn;kexp �iβn;kz
� �

; the coefficients cn,k are

found by calculating projection 〈ψn,k|ψl,s(z= 0)〉 (see Supplementary Notes). For
the optimally aligned initial state in HCL (e.g., exciting the s= 1/2 state with l= 1),
it is straightforward to find the evolving complex amplitude of the electric field:

ψl¼1;s¼1
2
r;φr ; z
� � ¼ eilφr χ1

2;
1
2
g1
2;
1
2
r; zð Þ þ ei lþ1ð Þφr χ1

2;�1
2
g1
2;�1

2
r; zð Þ: ð5Þ

The radial and z-dependence of the electric field is for clarity denoted with
g1
2; ±

1
2
r; zð Þ, and it produces the conical diffraction pattern13,33. This is in full

agreement with observations in Figs. 2 and 3 (top rows), which show that the
initially unexcited s′=−1/2 component has vorticity l′= l + 1, whereas the excited
s′= 1/2 component has vorticity l′= l.

In a fully equivalent manner, we can describe the dynamics in the Lieb lattices.
For the optimally aligned initial excitation (e.g., exciting the s= 1 state with l= 1),
the electric field evolves according to the following (see Supplementary Notes):

ψl¼1;s¼1 r;φr ; z
� � ¼ eilφr χ1;1g1;1 r; zð Þþ ei lþ1ð Þφr χ1;0g1;0 r; zð Þ þ eiðlþ2Þφr χ1;�1g1;�1 r; zð Þ:

ð6Þ
We see that the topological charge emerged in the pseudospin components

s= 0 and −1 is l + 1 and l + 2, respectively, in accordance with experimental
results and numerical simulations presented in Figs. 4 and 5 (top rows), and the
kinematical arguments. Dynamical considerations provide, in addition, the details
of the r- and z-dependence of the electric field, which are contained in the g-
functions. For all other initial conditions, similar calculations yield results also in
accordance with observations.

Although the above dynamical explanation seems enough to address the observed
phenomena, there is a fundamental connection to the underlying topology of k-space
and the observation of vortices in x-space. If a beam propagates sufficiently long in a
photonic lattice, as in our experiments, the output intensity of the beam in x-space
will reflect the initial distribution of the power in the lattice k-space (analogous to far-
field dynamics in free space). However, the HCL possesses topological singularity at
the Dirac point: the Berry phase acquired as one traverses a loop around the Dirac
point is π; the Dirac point can be considered as a flux tube (topological singularity) of
the Berry curvature51. Our experiments essentially reveal how the excitations of
modes around the singularity are mapped into the far field dynamics.

To see that clearly, we revisit the calculation of the Berry phase in the HCL. An

HCL eigenstate close to the conical intersection can be written as ψn;k ¼ 1ffiffi
2

p n
eiφk

� �
,

with n= ±1. As we adiabatically circle around the Dirac point, the acquired Berry

phase is �i
H

ψn;k
∂
∂φk

			 			ψn;k

D E
dφk ¼ π. The Berry phase arises from the specific phase

relation in k-space between the pseudospin components of the eigenstate. There is a
vortex (i.e., a topological charge) in k-space in one of the pseudospin components;
more precisely, the difference in k-space topological charges of the two components
is one. From the derivation of Eq. (5), we see that during propagation this vortex is
mapped from the k-space to the x-space (see Supplementary Notes). Thus, what we
observed in our experiments is the topological singularity of the HCL mapped from
momentum to real space. The mapping is revealed due to the properly designed
initial excitation of a single pseudospin state.

This finding holds for a general Hamiltonian (2), i. e., for any pseudospin S.
Every eigenmode can be expanded in pseudospin eigenstates as

ψn;k ¼ PS
s¼�S χS;sjψn;k

D E
χS;s. The coefficients 〈χS,s|ψn,k〉 are found by rewriting the

Hamiltonian as H ¼ κ
2 k Sþe

�iφk þ S�e
iφk

� �
, where S±= Sx ± iSy:

βn;k χS;sjψn;k

D E
¼ χS;sjHjψn;k

D E

¼ κ

2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S� sð Þ Sþ sþ 1ð Þ

p
χS;sþ1jψn;k

D E
e�iφk

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ sð Þ S� sþ 1ð Þ

p
χS;s�1jψn;k

D E
eiφk

�
:

ð7Þ

There is a clear phase relationship between different pseudospin components of
the eigenstates. The difference in k-space topological charges (vortices) of
neighboring pseudospin components is one. When a single pseudospin component
is excited, k-space topological charges of the unexcited components are mapped to
real space, which is the fundamental mechanism behind topological charge
conversions observed in our experiments.

To further corroborate the topological interpretation of the conversion, let us
consider the following two examples. The first is the Hamiltonian

Hm ¼
0 kx � iky

� �m

kx þ iky
� �m

0

0
B@

1
CA; ð8Þ

which for m= 1 corresponds to the HCL we studied above. The band structure for
m= 2 corresponds to bilayer graphene and has a parabolic band-touching point, and
for m > 2 it corresponds to other variants of band touching. It is straightforward to
verify that if the nonconical Dirac-like points are excited with a fully equivalent optimal
excitation as for the HCL, the topological charge conversion l→ l ± w still holds.
However, the expression l→ l + 2 s relying on the angular momentum is no longer
applicable. Note that for the Lieb and bilayer graphene lattices, the topological
conversion arises from the Berry phase of 2π, which may seem trivial at glance52. In a
similar fashion, one may explore another example of the Hamiltonian H0= kσz, which
has a conical intersection point like the HCL case but here with w= 0. It can be shown
again that l→ l ±w is valid, consolidating our finding that a more general
interpretation of our experimental observations should be formulated by the winding of
the Berry phase as the topological quantity, rather than just the pseudospin.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Received: 18 September 2019; Accepted: 4 March 2020;

References
1. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy

determination of the fine-structure constant based on quantized Hall
resistance. Phys. Rev. Lett. 45, 494–497 (1980).

2. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett.
95, 226801 (2005).

3. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon.
8, 821–829 (2014).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15374-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1586 | https://doi.org/10.1038/s41467-020-15374-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


4. Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional materials: a
review. Rep. Prog. Phys. 79, 066501 (2016).

5. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
6. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical

systems. Nat. Rev. Phys. 1, 281–294 (2019).
7. Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold

atoms. Rev. Mod. Phys. 91, 015005 (2019).
8. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of

unidirectional backscattering-immune topological electromagnetic states.
Nature 461, 772–775 (2009).

9. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496,
196–200 (2013).

10. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12,
233–239 (2013).

11. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological
edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

12. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological States
and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

13. Song, D. et al. Unveiling pseudospin and angular momentum in photonic
graphene. Nat. Commun. 6, 6272 (2015).

14. Liu, J. L., Ye, W. M. & Zhang, S. Pseudospin-induced chirality with staggered
optical graphene. Light Sci. Appl. 5, e16094 (2016).

15. Diebel, F., Leykam, D., Kroesen, S., Denz, C. & Desyatnikov, A. S. Conical
diffraction and composite lieb bosons in photonic lattices. Phys. Rev. Lett. 116,
183902 (2016).

16. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).
17. Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi

arcs. Science 349, 613–617 (2015).
18. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X

5, 031013 (2015).
19. Dubcek, T. et al. Weyl points in three-dimensional optical lattices: synthetic

magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).
20. Béché, A., Van Boxem, R., Van Tendeloo, G. & Verbeeck, J. Magnetic

monopole field exposed by electrons. Nat. Phys. 10, 26–29 (2013).
21. Berry, M. V. Quantal phase factors accompanying adiabatic. Chang. Proc. R.

Soc. Lond. A 392, 45–57 (1984).
22. Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys.

Rep. 690, 1–70 (2017).
23. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit

interactions of light. Nat. Photon 9, 796–808 (2015).
24. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of

Pancharatnam–Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002).
25. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular

momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett.
96, 163905 (2006).

26. Karimi, E. et al. Generating optical orbital angular momentum at visible
wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167–e167 (2014).

27. Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of
spinning light. Nat. Photon 2, 748–753 (2008).

28. Wang, S., Ma, G. & Chan, C. T. Topological transport of sound mediated by
spin-redirection geometric phase. Sci. Adv. 4, eaaq1475 (2018).

29. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light.
Science 348, 1448 (2015).

30. Mecklenburg, M. & Regan, B. C. Spin and the honeycomb lattice: lessons from
graphene. Phys. Rev. Lett. 106, 116803 (2011).

31. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered
transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

32. Zhang, Z. et al. Particlelike behavior of topological defects in linear wave
packets in photonic graphene. Phys. Rev. Lett. 122, 233905 (2019).

33. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic
lattices. Phys. Rev. Lett. 98, 103901 (2007).

34. Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices.
Phys. Rev. Lett. 114, 245503 (2015).

35. Mukherjee, S. et al. Observation of a localized flat-band state in a photonic
Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

36. Xia, S. et al. Demonstration of flat-band image transmission in optically
induced Lieb photonic lattices. Opt. Lett. 41, 1435–1438 (2016).

37. Ablowitz, M. J., Nixon, S. D. & Zhu, Y. Conical diffraction in honeycomb
lattices. Phys. Rev. A 79, 053830 (2009).

38. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M.
Discrete solitons in photorefractive optically induced photonic lattices. Phys.
Rev. E 66, 046602 (2002).

39. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N.
Observation of two-dimensional discrete solitons in optically induced
nonlinear photonic lattices. Nature 422, 147–150 (2003).

40. Basistiy, I. V., Bazhenov, V. Y., Soskin, M. S. & Vasnetsov, M. V. Optics of
light beams with screw dislocations. Opt. Commun. 103, 422–428 (1993).

41. Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach
to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

42. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic
Landau levels in dielectric structures. Nat. Photon 7, 153–158 (2013).

43. Milićević, M. et al. Type-III and tilted Dirac cones emerging from flat bands in
photonic orbital graphene. Phys. Rev. X 9, 031010 (2019).

44. Leanhardt, A. E. et al. Imprinting vortices in a Bose–Einstein condensate using
topological phases. Phys. Rev. Lett. 89, 190403 (2002).

45. Van Mechelen, T. & Jacob, Z. Photonic Dirac monopoles and skyrmions:
spin-1 quantization [Invited]. Opt. Mater. Express 9, 95–111 (2018).

46. Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. Isolated
optical vortex knots. Nat. Phys. 6, 118–121 (2010).

47. Pisanty, E. et al. Knotting fractional-order knots with the polarization state of
light. Nat. Photon 13, 569–574 (2019).

48. Yan, Q. et al. Experimental discovery of nodal chains. Nat. Phys. 14, 461–464
(2018).

49. Lin, Q., Xiao, M., Yuan, L. & Fan, S. Photonic Weyl point in a two-
dimensional resonator lattice with a synthetic frequency dimension. Nat.
Commun. 7, 13731 (2016).

50. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature
567, 356–360 (2019).

51. Duca, L. et al. An Aharonov–Bohm interferometer for determining Bloch
band topology. Science 347, 288 (2015).

52. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase
of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

Acknowledgements
This research is supported by the National Key R&D Program of China under Grant (No.
2017YFA0303800), the National Natural Science Foundation (11922408, 91750204,
11674180), PCSIRT, and the 111 Project (No. B07013) in China. H.B. acknowledges
support in part by the Croatian Science Foundation Grant No. IP-2016-06-5885 Synth-
MagIA, and the QuantiXLie Center of Excellence, a project co-financed by the Croatian
Government and European Union through the European Regional Development Fund -
the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).
D.L. is supported by the Institute for Basic Science in Korea (IBS-R024-Y1).

Author contributions
D.S., Z.C., and H.B. conceived the project. X.L. and S.X. performed the experiments and
simulation. H.B., E.J., and D.L. performed the theoretical analysis. D.H.L., L.T., and J.X.
participated in discussion. Z.C., H.B., and D.S. wrote the paper. All authors contributed
to all aspects of this work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15374-x.

Correspondence and requests for materials should be addressed to D.S., H.B. or Z.C.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15374-x

8 NATURE COMMUNICATIONS |         (2020) 11:1586 | https://doi.org/10.1038/s41467-020-15374-x | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-15374-x
https://doi.org/10.1038/s41467-020-15374-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Universal momentum-to-real-space mapping of�topological singularities
	Results
	Topological conversion in a pseudospin-1/2 honeycomb lattice
	Topological conversion in a pseudospin-1 Lieb lattice
	Fundamental mechanism of the topological charge conversion

	Methods
	Theoretical framework for topological conversion

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




