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Electrons in graphene behave like relativistic Dirac particles which can reduce the velocity of light by two
orders of magnitude in the form of plasmon-polaritons. Here we show how these properties lead to a peculiar
nonlinear plasmon response in the quasiclassical regime of terahertz frequencies. On the one hand, we show
how interband plasmon damping is suppressed by the relativistic Klein tunneling effect. On the other hand, we
demonstrate huge enhancement of the nonlinear intraband response when the plasmon velocity approaches the
resonance with the electron Fermi velocity. This extreme sensitivity to the plasmon intensity could be used for
new terahertz technologies.
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I. INTRODUCTION

Nonlinear optics holds promise for the development of
ultrafast information processing devices; however, it typically
requires huge optical intensities [1]. There is a constant search
for new materials with a stronger nonlinear response, so there
was naturally huge interest in the nonlinear properties of the
recently discovered material graphene [2–30]. Particularly, it
was argued that graphene has a strong nonlinear response in
the form of interband multiplasmon absorption [12]. However,
this is a perturbative process, which, strictly speaking, makes
sense only if N + 1 plasmon absorption is much less than N
plasmon absorption. In this paper we wish to discuss what
happens at terahertz (THz) frequencies due to many exciting
applications in spectroscopy, security, and wireless commu-
nications [31]. For such low frequencies, the perturbative
approach of multiplasmon absorption breaks down since it
gets increasingly harder to distinguish N from N + 1 plasmon
absorption if N � 1. On the other hand, since then electric
field changes extremely slowly in time, the process can be
better understood as quasiclassical tunneling. Here we provide
a general model that can describe graphene’s response to a
strong electromagnetic field and solve the model explicitly in
the quasiclassical case of slow oscillations in space and time.
We are particularly interested in the plasmon-polariton modes
which can reduce the velocity of light by two orders of mag-
nitude [32]. We show a huge enhancement of the nonlinear
intraband response when the plasmon velocity approaches the
resonance with the electron Fermi velocity, while interband
plasmon damping is surprisingly suppressed by the Klein tun-
neling effect [33]. Both effects crucially depend on the mass-
less Dirac Hamiltonian, so we first have to solve the Dirac
equation in a strong electromagnetic field. In Sec. II we
discuss the quasiclassical approximation, and in Sec. III we
discuss interband dynamics beyond the quasiclassical approx-
imation. In Sec. IV we calculate the general nonlinear current
response and use this result to analyze interband dissipation in
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Sec. V and intraband resonance in Sec. VI. Finally, in Sec. VII
we provide a discussion and conclusion.

II. QUASICLASSICAL DIRAC STATES IN A STRONG
ELECTROMAGNETIC FIELD

Electron motion in graphene is governed by a Dirac Hamil-
tonian:

Ĥ = vF σ · p̂, (1)

where vF = 106 m/s is the Fermi velocity, p̂ = −ih̄∇ is the
momentum operator, σ = (σx, σy), and σx,y are Pauli spin
matrices [34]. The corresponding eigenstates are

Ĥ�0
Pn

= EPn�
0
Pn

, (2)

�0
Pn

(r, t ) = 1√
2L2

(
e− i

2 �Pn

ne
i
2 �Pn

)
e

i
h̄ (Pn·r−EPn t ). (3)

Here r = (x, y), L2 is the area of a graphene flake, the electron
momentum is Pn = (pn, py), and the phase

ei�Pn = pn + ipy

|Pn| . (4)

Note that electron energies (eigenvalues) show a peculiar
linear dispersion:

EPn = nvF |Pn|, (5)

where n = −1 represents the valence band and n = 1 repre-
sents the conduction band.

To describe the behavior of graphene in an external vector
potential A(r, t ) we need to solve the Dirac equation:

ih̄
∂�

∂t
= vF σ · (p̂ − eA)�. (6)

Particularly, we are interested in the longitudinal field:

A(r, t ) = exA(r, t ) = exA0 sin u, (7)

where u = ωt − qx and ex is the unit vector in the x direction.
This field can then describe plasmon-polariton modes whose
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velocity is much smaller than the speed of light ω/q � c [32].
The case of Dirac particles in the transverse field at the light
line ω = qc was solved by Volkov [35], but unfortunately,
this approach does not work in our case. On the other hand,
since we are primarily interested in slow oscillations in space
and time, we can search for a solution in the form of the
quasiclassical state:

�qc = ae
i
h̄ S, (8)

where S is the classical action and a is the slowly varying
amplitude [36]. Moreover, we will see that these states enable
us to get a much more general description of the system,
including the fast oscillations in space and time. As a lowest
approximation, let us insert this ansatz into the Dirac equation
and neglect terms containing h̄, which is an excellent approx-
imation in the case of slow oscillations, i.e., for h̄ω � EF and
h̄q � pF , where EF is the Fermi energy and pF = EF /vF is
the Fermi momentum. We obtain the equation of motion,

−∂S

∂t
a = vF σ · (∇S − eA)a, (9)

which is solved with the following quasiclassical states:

�
qc
Pn

(r, t ) = 1√
2L2

(
e− i

2 �Pc
n−eA

ne
i
2 �Pc

n−eA

)
e

i
h̄ SPn , (10)

where SPn satisfies the Hamilton-Jacobi equation for the clas-
sical action of the Dirac particle,

∂SPn

∂t
= −nvF

∣∣∇SPn − eA
∣∣, (11)

and we have introduced the classical momentum Pc
n = ∇SPn

[37]. Since y is a cyclic variable, the momentum is conserved
in the y direction, and we can write Pc

n = (pc
n, py), where pc

n =
∂SPn/∂x. The phase is defined as

ei�Pc
n−eA = pc

n − eA + ipy∣∣Pc
n − eA

∣∣ . (12)

We assume that the field is slowly turned on:

A(r, t ) = A0 sin (ωt − qx)eηt , (13)

where η � ω, so that our quasiclassical state (10) adiabati-
cally evolves from the free particle state (3); that is, we set the
initial condition to be

�
qc
Pn

(r, t = −∞) = �0
Pn

(r, t ). (14)

To solve the Hamilton-Jacobi equation we use the ansatz [38]

SPn (r, t ) = Pn · r − EPnt + FPn (u), (15)

which gives the following equation for the unknown function
Ḟ = dF

du :

−EPn + ωḞPn = −nvF

√(
pn − qḞPn − eA

)2 + p2
y. (16)

It is simple to solve this quadratic equation and obtain the
classical momentum and energy,

pc
n = ∂SPn

∂x
= pn − qḞPn , (17)

Ec
Pn

= −∂SPn

∂t
= EPn − ωḞPn , (18)

explicitly as

pc
n − eA = 1

1 − q2v2
F

ω2

⎛
⎝pn − q

ω
EPn − eA

+ n
qvF

ω

√(
pn − q

ω
EPn − eA

)2

+ p2
y

(
1 − q2v2

F

ω2

)⎞
⎠

(19)

and

Ec
Pn

= vF

1 − q2v2
F

ω2

⎛
⎝qvF

ω

(
pn − q

ω
EPn − eA

)

+n

√(
pn − q

ω
EPn − eA

)2

+ p2
y

(
1 − q2v2

F

ω2

)⎞
⎠. (20)

To check that, initially, pc
n = pn and Ec

Pn
= EPn , one can note

that A(r, t = −∞) = 0 and use the following identity:√(
pn − q

ω
EPn

)2

+ p2
y

(
1 − q2v2

F

ω2

)
= n

(
EPn

vF
− qvF

ω
pn

)
.

(21)

Finally, by using Eqs. (15) and (18) it is convenient to write
the action implicitly as

SPn =
(

pn − q

ω
EPn

)
x + pyy − 1

ω

∫ u

0
Ec

Pn
du. (22)

III. INTERBAND DYNAMICS BEYOND THE
QUASICLASSICAL APPROXIMATION

We can, however, get a much more general description of
the system using the quasiclassical states (10). Let us start
with some general wave packet of the form

�(r, t ) =
∑
nPn

cPn (u)�qc
Pn

(r, t ) (23)

and insert it into the Dirac equation. It is then most con-
venient to consider the triplet {x, y, u} independent variables
since {x, y} variables appear only in the exponent e

i
h̄ SPn .

From Eq. (22) we then see that our system dynamics can
couple states Pn and P′

n only if p′
y = py and p′

n − q
ω

EP′
n
=

pn − q
ω

EPn . The first condition is just the conservation of
momentum in the y direction, while the second condition
corresponds to the multiphoton absorption process [12] which
is given by the conservation of momentum, p′

n − pn = Nh̄q,
and conservation of energy, EP′

n
− EPn = Nh̄ω. In this paper

we consider only the case qvF /ω < 1 since, otherwise, the
(intraband) single-photon absorption dominates the system
response [12,32]. In this case it is straightforward to show
that multiphoton absorption can couple only states in different
bands n′ = −n; that is, the second condition gives

p−n − q

ω
EP−n = pn − q

ω
EPn , (24)
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which can be solved as

p−n = pn
(
1 + q2v2

F
ω2

) − 2 q
ω

EPn

1 − q2v2
F

ω2

. (25)

It is also convenient to calculate the density of states:

d p−n

d pn
= −EP−n

EPn

. (26)

We see now that within our general wave packet, states∑
n cPn�

qc
Pn

evolve completely independently from one an-
other. Let us then focus on the state

�Pm (r, t ) =
∑

n=±m

cPn (u)�qc
Pn

(r, t ), (27)

subject to the initial condition

�Pm (r, t = −∞) = �0
Pm

(r, t ), (28)

i.e.,

cPm (u = −∞) = 1, (29)

cP−m (u = −∞) = 0. (30)

We can further simplify calculations by writing the state in a
more general form:

�Pm (r, t ) =
∑

n=±m

cPn (u)bPn (u)�qc
Pn

(r, t ), (31)

where we have introduced additional functions bPn (u) subject
to the initial condition,

bPm (u = −∞) = 1. (32)

Particularly, by choosing

bPn (u) = BPn

√
Ec

Pn
/�Ec

Pn
, (33)

where �Ec
Pn

= Ec
Pn

− Ec
P−n

and

BPm = BP−m = √
�EPm/EPm , (34)

we obtain (see Appendix A)∣∣cPm (u)
∣∣2 + ∣∣cP−m (u)

∣∣2 = 1. (35)

We can then interpret |cPn (u)|2 as the probability of finding the
electron in band n as a function of u. However, one needs to
be careful about this interpretation since u = ωt − qx, so this
is not the standard probability as a function of time t . Finally,
in the case of slow oscillations in space and time we can use
the Landau-Zener model [36] to obtain explicitly

|c−m(u = ∞)|2 = exp

(
1

h̄ω
Im

∫
C

�Ec
mdu

)
= K, (36)

where the integration contour C goes around the complex
transition point u0 which is given by �Ec

m(u0) = 0. Here K
is the transition probability for a single passage, while the
probability for a double passage is 2K (1 − K ) [36] (see also
Appendix D).

IV. NONLINEAR CURRENT RESPONSE

To describe the general case of a mixed state we can
introduce the density matrix

ρ(r, t, r′, t ′) = 4
∑
nPn

fPn�
∗
Pn

(r′, t ′)�Pn (r, t ), (37)

where fPn = 1
e(EPn −EF )/kT +1

is the Fermi-Dirac distribution at
temperature T [39] and we took into account two-spin and
two-valley degeneracy in graphene [34]. We can then write
the induced current as [36]

j(r, t ) =
∫

dR[ĵ(r)ρ(R, t, R′, t )]R′=R, (38)

where ĵ(r) = evF σδ(r̂ − r) is the current density operator of
graphene [34]. Since jy = 0 due to symmetry, we can focus
only on the x component:

jx(r, t ) = 4

L2

∑
nPn

fPn

[∣∣cPn

∣∣2
b2

Pn
evc

Pn
+ ∣∣cPnP−n

∣∣2
b2

PnP−n
evc

P−n

+ �Ec
Pn

Ȧ

B2
Pn

2

(
1 − q2v2

F

ω2

)
d
∣∣cPnP−n

∣∣2

du

]
, (39)

where Ȧ = dA
du and vc

Pn
= ∂Ec

Pn
∂ pc

n
= nvF cos �Pc

n−eA is the x com-
ponent of the classical velocity (see Appendix B). We can
consider that the state with initial conditions cPn = 1 and
cPnP−n = 0 evolves independently from the state with initial
conditions cP−n = 1 and cP−nPn = 0, after averaging over ther-
mally randomized initial phases. We can now interpret the first
part of Eq. (39) (|cn|2b2

nevc
n) as the current of the electrons

that have stayed in their original band and the second part
as the current of the electrons that have jumped into differ-
ent band, while the third part describes the actual interband
transition process, i.e., the energy dissipation. Note that we
could choose bPn = 1, but in that case it is no longer true that
|cPn |2 + |cPnP−n |2 = 1, and the interband part becomes much
more complicated.

V. INTERBAND DISSIPATED POWER

While Eq. (39) is exact, it requires numerical evaluation
of coefficients cPn (u) [see Eq. (A8)]. However, in the case of
slow oscillations in space and time we can use the Landau-
Zener model (36). Let us first find the dissipated power
P = ∫

dr j · E = ∫
dr jxEx, where Ex = − ∂Ax

∂t = −ωȦ. Since
Ȧ = A0 cos u, only the third interband part contributes to the
dissipation:

P = 4
∑
P1

(
fP−1 − fP1

) [
�Ec

P1
(u)

]
min

T

× 2K (1 − K )
B2

P1

2

(
1 − q2v2

F

ω2

)
. (40)

Here we have used the following relation:

d p−n

d pn

B2
P−n

B2
Pn

= −d p−n

d pn

EPn

EP−n

= 1, (41)
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which is a direct consequence of Eq. (26). Also, we used

d
∣∣cPnP−n

∣∣2

du
= 2K (1 − K )δ(u − ξ ); (42)

that is, we assumed that the transition happens at a real point
ξ when the gap is minimal, �Ec

P1
(ξ ) = [�Ec

P1
(u)]min, since

then tunneling probability is largest (see also Appendix D).
We can now clearly see a physical interpretation of every
part of Eq. (40): f−1 − f1 is the Pauli principle, [�Ec

1 ]min is
the dissipated energy per oscillation period T = 2π/ω, and

2K (1 − K ) B1
2

2 (1 − q2v2
F

ω2 ) is the transition probability. As we
noted, |cn(u)|2 is not the actual probability at time t since
u = ωt − qx. Only in the case of homogenous field, q = 0,
do we get that K [2K (1 − K )] is the transition probability
in time for a single passage (double passage). Note that K
from Eq. (36) exponentially decreases as we increase the gap
[�Ec

1 ]min. The leading contribution to the dissipated power
then comes from the states near the lowest gap (minimum
of [�Ec

1 ]min), i.e., for py = 0 and p1 = pF , since the Pauli
principle requires that p2

1 + p2
y � p2

F for kT � EF . In that
case,

[
�Ec

1

]
min = 2vF

∣∣pF
(
1 − qvF

ω

) − eA0

∣∣
1 − q2v2

F
ω2

, (43)

and we see that at the threshold A0 = Anl , where

Anl =
(

1 − qvF

ω

)
pF

e
, (44)

the gap disappears [�Ec
1 ]min = 0, and we get a perfect tunnel-

ing K = 1 for the single passage (just like the Klein tunneling
effect [33]). However, the particle simply returns back to the
original band upon the return passage since 2K (1 − K ) = 0.
In other words we expect to see P grow exponentially with
A0 until the threshold Anl , when it starts to saturate. Finally,
since Klein tunneling does not result in energy dissipation
([�Ec

1 ]min = 0), we get very small values for the total dissi-
pated power [see Fig. 1(b)]. We could also calculate dissipated
power by a Keldysh approach [40]; however, one has to
specially deal with the closely spaced singularities at the onset
of Klein tunneling.

VI. INTRABAND NONLINEAR RESONANCE

With the aforementioned analysis in mind we can find the
dominant contribution to the current (39) by writing |cPn | ≈
1 and |cPnP−n | ≈ 0, so that jx(r, t ) = 4

L2

∑
nPn

fPn b2
Pn

evc
Pn

. If
we then assume that kT � EF so that the valence band is
completely occupied (and thus cannot conduct electricity), we
are left with the conduction band (n = 1) current, which can
be written as (see Appendix B)

jx = 4e

h2

∫
d p1d py f1

∂Ec
1

∂ p1
= −4e

h2

∫
d p1d py

∂ f1

∂ p1
Ec

1 . (45)

Current (45) is plotted in Fig. 1(c) for the local case qvF /ω ≈
0 and in Fig. 1(d) for the nonlocal case qvF /ω ≈ 1. In the
local case it is easy to visualize the result since the field
uniformly shifts all electrons in momentum space: p1 → p1 −
eA0 sin ωt [see the inset in Fig. 1(c)]. Then due to peculiar

FIG. 1. (a) Plasmon dispersion in graphene for different dielec-
tric environments εr . Solid lines: Random-phase approximation [32].
Dots: quasiclassical linear response from Eq. (C4). Gray area: regime
of single-plasmon absorption, i.e., linear Landau damping. The open
square represents a point for which qvF /ω ≈ 0.08 and local theory is
applicable. The nonlinear response for this point is shown in (b) and
(c). The open circle represents the nonlocal case qvF /ω ≈ 0.8, for
which the nonlinear response is shown in (b) and (d). (b) Quasi-
classical nonlinear Landau damping: dependence of the plasmon
linewidth on the amplitude of the vector potential A0. The vertical
line represents the amplitude A0 = Anl = (1 − qvF /ω)pF /e and the
onset of the Klein tunneling. The inset shows the multiplasmon
absorption process, which for low frequencies h̄ω � 2EF is better
described as a quasiclassical Landau-Zener tunneling. (c) Intraband
current response at different amplitudes A0 for the local case. The
inset shows a snapshot of the electron dynamics. (d) Intraband
nonlocal current response.

linear Dirac dispersion, at the peak field for eA0 � pF the
majority of electrons reach the maximum electron velocity vF

in graphene, and the current saturates. While some of these
intraband effects were discussed for the local case [3,16], we
show a peculiar physics in the nonlocal response. Particu-
larly, for qvF /ω ≈ 1 the current becomes extremely nonlinear
since classical energy (20) is very asymmetric depending on
the sign of the field: Ec

1 ∝ �(p1 −
√

p2
1 + p2

y − eA). Partic-
ularly for eA > 0 very little current flows compared to the
eA < 0 case, and our system behaves like a rectifier [see
Fig. 1(d)]. Reaching this nonlinear response requires only that

(p1 − q
ω

EP1 − eA)2 � p2
y(1 − q2v2

F
ω2 ). For qvF /ω ≈ 1 this will

be satisfied almost always if eA0 � eAnl = (1 − qvF /ω)pF

(see Appendix C for the linear response regime eA0 � eAnl ).
Figures 1(c) and 1(d) show the case of the photon energy

h̄ω ≈ EF /3, which for an electron concentration n = p2
F

π h̄2 =
1012 cm−2 corresponds to the frequency ω

2π
≈ 9 THz. At room

temperature, kT ≈ 0.2 EF , so we can neglect temperature
effects. Note that the threshold for the onset of nonlinear
behavior, Anl = (1 − qvF /ω)pF /e, decreases linearly with
Fermi energy like in the local case [3,16]. But what is espe-
cially intriguing is that Anl goes to zero at the resonance of
plasmon velocity and the electron Fermi velocity in graphene,
dramatically enhancing the nonlinear response in the nonlocal
case. This extreme sensitivity to the electric field amplitude
and the rectifying effect shown in Fig. 1(d) could be used for
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the detection of THz radiation and, in more advanced applica-
tions, for information processing devices [1]. Of course, like
in atomic resonances, the final scale of nonlinearity will be
determined by the loss mechanisms. Graphene room temper-
ature DC mobility can be larger than μ = 10 m2/V s [41,42],

which corresponds to damping rate γ = ev2
F

μEF
≈ 0.9 THz (see

Appendix C). Since h̄ω ∼ kT , this will not be drastically
changed at THz frequencies. The system response is then
undetermined within the linewidth γ /ω ≈ 0.01, so for 1 −
qvF /ω < 0.01 this theory has to be supplemented by taking
losses into account.

VII. DISCUSSION AND CONCLUSION

For small fields eA0 � eAnl we can linearize the current
(45) to obtain jx = iωσ (q, ω)A. However, oscillating current
will also induce a vector potential that will act back on the
current. If we then introduce some external potential Aext,
the current will respond not only to Aext but to the total

self-consistent potential A of the amplitude A0 = Aext
0

1+ iqσ (q,ω)
ω2ε0εr

(see

Appendix C). One can see that it is possible to have self-
sustained oscillations of the electron gas (plasmon-polaritons)
even in the absence of the external field if 1 + iqσ (q,ω)

ω2ε0εr
= 0,

with the corresponding plasmon dispersion ω(q) plotted in
Fig. 1(a). Furthermore, we see that we get a huge enhancement
of the external field at the plasmon resonance. Note that this
analysis gets much more complicated for large fields eA0 �
eAnl since the current response is extremely nonlinear and
it will produce a vector potential with many new harmonics
[see Figs. 1(c) and 1(d)], while our calculation is based on the
single harmonic in the vector potential A = A0 sin (ωt − qx).
The precise analysis including the full self-consistent non-
linear effects simply goes beyond the scope of this paper,
and here we can discuss only some qualitative properties.
The generation of direct current or higher harmonics, which
all extract energy from the basic harmonic, would manifest
as effective plasmon damping. Therefore, one would see
an increase in the plasmon linewidth due to pure intraband
effects in addition to the interband dissipation process. There
would also be an intensity-dependent response at the basic
harmonic which would shift the plasmon dispersion. Yet an
especially interesting case occurs for large εr when both
the plasmon dispersion and higher harmonics lie close to
the line ω = qvF since then self-consistent effects would
additionally enhance higher harmonics. It is interesting to
note that in that case all harmonics separately will show
similar behavior with a similar threshold field eAnl = (1 −
qvF /ω)pF , but a particularly strong nonlinear interaction
between these harmonics might occur. On the other hand,
to test the quantitative predictions of this work for large
fields eA0 � eAnl it would be simplest to measure the DC
component of the current (45) for nonlocal excitation ω �
qvF , making sure that none of the harmonics cuts the plasmon
dispersion.

To quantify interband plasmon dissipation it is simplest to
look at the dissipation rate γ = P/W , where W is the total
plasmon energy. The energy density of a dispersive medium
can be written as [43] u = 1

2 Re d (ωε)
dω

〈E2〉, which in the case of

graphene plasmons gives [12]

W

L2
= A2

0ω
3

4

d

dω

(−Imσ (q, ω)

ω

)
. (46)

One can then write the plasmon linewidth as γ /ω = P/ωW ,
which basically says what fraction of the plasmon energy is
dissipated during a single oscillation period. While plasmon
linewidth is very small, it can be, nonetheless, detected in
precise measurements due to very specific dependence on the
plasmon amplitude A0. For small amplitudes we see expo-
nential growth with A0 typical of the quasiclassical tunneling,
while for large amplitudes we see the saturation effect, which
signals the onset of Klein tunneling [Fig. 1(b)]. We call this
effect quasiclassical nonlinear Landau damping to distinguish
it from the nonlinear Landau damping discussed recently in
classical plasma at high frequencies [44]. Note that expression
(40) does not represent truly dissipated energy, but more like
a stored energy that can be retrieved back from the system.
One spectacular way in which this can happen is if, after the
electron has tunneled into a different band, it gets accelerated
by this strong electric field and finally recombines with the
hole it left behind, liberating this huge energy from the field
in the form of a train of high harmonics [45,46]. While this
too is a very weak effect, it shows intriguing properties in
the frequency space. Namely, this train of harmonics adds
up to a pulse extremely localized in time on the order of
attoseconds [47], an effect that would be even more interesting
with plasmons in graphene due to their subwavelength nature
[32] since the resulting pulse would be localized in time
and space. While high-harmonic generation with plasmons in
graphene was analyzed numerically [19], our quasiclassical
states offer the most natural platform to take into account the
quasiclassical nature of this problem [46].

In conclusion we have developed a general model that can
treat the response of graphene to a strong electromagnetic
field, which we explicitly solved in the quasiclassical regime
of THz frequencies. Interband transitions were analyzed via
the Landau-Zener model, leading to plasmon dissipation
which is, however, suppressed by the Klein tunneling effect.
Moreover, our quasiclassical states could be further used to
find how this dissipated energy can be extracted back via
the three-step process of high-harmonic generation [45–47].
Most notably, we demonstrated a huge enhancement of the
nonlinear intraband response near the resonance of the plas-
mon velocity and electron Fermi velocity in graphene. This
extreme sensitivity to the plasmon intensity could be used for
nonlinear, subwavelength THz technologies like detectors and
information processing devices.
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APPENDIX A: INTERBAND DYNAMICS BEYOND
THE QUASICLASSICAL APPROXIMATION

To simplify notation let us write our state �Pm (r, t ) =∑
n cPn (u)bPn (u)�qc

Pn
(r, t ) as

�m =
∑

n=±m

cnbnane
i
h̄ Sn , (A1)

where we have used �
qc
n (r, t ) = an(u)e

i
h̄ Sn . We use this

ansatz to solve the Dirac equation ih̄ ∂�
∂t = vF σ · (p̂ − eA)�.

By choosing an, Sn to satisfy the quasiclassical
equation of motion − ∂Sn

∂t an = vF σ · (∇Sn − eA)an,
we obtain the equation for the remaining unknowns:
(ω − qvF σx )

∑
n

d
du (cnbnan)e

i
h̄ Sn = 0. Since the matrix

M = ω − qvF σx =
(

ω −qvF

−qvF ω

)
(A2)

is invertible for ω �= qvF , we multiply the previous equation
by M−1 to obtain the (exact) evolution equation:∑

n

d

du
(cnbnan)e

i
h̄ Sn = 0. (A3)

We can enormously simplify further calculations by choosing
the function bn(u) so that d (bnan )

du ∝ b−na−n, which means that
we maximally decouple dynamics between the bands. It is
easy to solve this equation via the substitution bn = eβn to
obtain bn(u) = Bn

√
Ec

n/�Ec
n , and here we give a short check

of the solution. Let us focus on a spinor,

dn = bnan = Bn√
2L2

√
Ec

n

�Ec
n

(
e− i

2 �Pc
n−eA

ne
i
2 �Pc

n−eA

)
. (A4)

Then since Ec
n = nvF

√
(pc

n − eA)2 + p2
y, we can write

ei�Pc
n−eA = (pc

n − eA + ipy)nvF /Ec
n and

dn = Bn√
2L2

√
vF

n�Ec
n

( √
pc

n − eA − ipy

n
√

pc
n − eA + ipy

)

= Bn√
2L2

(
Dn

nD∗
n

)
. (A5)

Here we have used the fact that nEc
n and n�Ec

n are positive
quantities, and we have introduced the function

Dn =

√√√√√ pn − q
ω

En − eA − ipy
(
1 − q2v2

F
ω2

)
2
√(

pn − q
ω

En − eA
)2 + p2

y

(
1 − q2v2

F
ω2

) + n
qvF

ω
.

(A6)

If we then choose B−m = Bm = const, it is straightforward to
show that

ḋn = d−n

− i
2 pyeȦ

√
1 − q2v2

F
ω2(

pn − q
ω

En − eA
)2 + p2

y

(
1 − q2v2

F
ω2

)
= d−n

−2iv2
F pyeȦ(

�Ec
n

)2

(
1 − q2v2

F

ω2

)−3/2

. (A7)

If we now insert this expression into the evolution Eq. (A3),∑
n (ċndn + cnḋn)e

i
h̄ Sn = 0, we obtain the following relations

for the coefficients cn(u):

ċ−n = icne
i
h̄ (Sn−S−n ) 2v2

F pyeȦ(
�Ec

n

)2

(
1 − q2v2

F

ω2

)−3/2

. (A8)

We can now immediately see that d|cn|2
du = − d|c−n|2

du , and since
initial conditions are set to cm(u = −∞) = 1 and c−m(u =
−∞) = 0, we obtain

|cm(u)|2 + |c−m(u)|2 = 1. (A9)

APPENDIX B: NONLINEAR CURRENT RESPONSE

Let us find the �m contribution to the current density:

jx = evF �∗
mσx�m

= evF

∑
n=±m

(|cn|2d∗
n σxdn + c∗

−ncne
i
h̄ (Sn−S−n )d∗

−nσxdn
)
. (B1)

From Eq. (A4) we can write the intraband matrix element:

d∗
n σxdn = b2

n

L2
n cos �Pc

n−eA = b2
n

L2

vc
n

vF
, (B2)

where we have introduced the classical velocity vc
n = ∂Ec

n
∂ pc

n
=

nvF cos �Pc
n−eA. Alternatively, using Eqs. (A5) and (A6) we

can express the same matrix element as

d∗
n σxdn = n

B2
n

L2
Re

(
D2

n

) = n
B2

n

2L2

×

⎛
⎜⎜⎝ pn − q

ω
En − eA√(

pn − q
ω

En − eA
)2+ p2

y

(
1 − q2v2

F
ω2

) + n
qvF

ω

⎞
⎟⎟⎠.

(B3)

Next, using Eqs. (A5) and (A6), we can write the interband
matrix element:

d∗
−nσxdn = −n

B2
n

L2
i Im(D−nDn)

= B2
n

2L2

2ivF py

�Ec
n

(
1 − q2v2

F

ω2

)−1/2

. (B4)

From Eqs. (A8) and (B4) we then obtain

c∗
−ncne

i
h̄ (Sn−S−n )d∗

−nσxdn + c.c.

= B2
n

2L2

�Ec
n

vF eȦ

(
1 − q2v2

F

ω2

)
d|c−n|2

du
. (B5)

Finally, we can write the current density (B1) as

jx = 1

L2

[
|cm|2b2

mevc
m + |c−m|2b2

−mevc
−m

+ �Ec
m

Ȧ

B2
m

2

(
1 − q2v2

F

ω2

)
d|c−m|2

du

]
. (B6)

In the quasiclassical case of low frequencies interband tran-
sitions are exponentially suppressed, and we can approxi-
mately write cm ≈ 1, c−m ≈ 0, so that the current density
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is jx = b2
mevc

m/L2. We note that this reduces to the classical
single-band result jc

x = evc
m/L2 only in the nonlinear local

case (q = 0) or in the linear nonlocal case. In other words bm

amounts to quantum nonlinear, nonlocal, interband correction.
By using the density matrix it is straightforward to generalize
this to the case of the electron Fermi sea described by the
Fermi-Dirac distribution fm = 1

e(Em−EF )/kT +1 as

jx = 4

L2

∑
pm py

fmb2
mevc

m = 4

h2

∫
d pmd py fmb2

mevc
m. (B7)

By using Eqs. (B2) and (B3) we can write this in alternative
form as

jx = 4evF

h2

∫
d pmd py fm

B2
m

2
m

×
⎛
⎝ pm − q

ω
Em − eA√(

pm − q
ω

Em − eA
)2 + p2

y

(
1 − q2v2

F
ω2

) + m
qvF

ω

⎞
⎠.

(B8)

The initial condition bm(u = −∞) = 1 requires that Bm =√
�Em/Em, where �Em = Em − E−m. From Eqs. (24) and

(25) it is straightforward to show that

B2
m

2
=

1 − m qvF

ω

pm√
p2

m+p2
y

1 − q2v2
F

ω2

. (B9)

Equation (B8) can then be rewritten in a more convenient
form:

jx = 4e

h2

∫
d p1d py f1

∂Ec
1

∂ p1
= −4e

h2

∫
d p1d py

∂ f1

∂ p1
Ec

1 , (B10)

the last equation obtained by partial integration, and we
assumed that we are dealing with the conduction band m = 1.
Furthermore, in the low-temperature case kT � EF we can
write f1 = �(pF −

√
p2

1 + p2
y ), so that − ∂ f1

∂ p1
= ∑

s sδ(p1 −
ps

1), where ps
1 = s

√
p2

F − p2
y and s = ±1. We can then eval-

uate one integral from Eq. (B10) to obtain the current:

jx = 8evF

h2
(
1 − q2v2

F
ω2

)
∫ pF

0
d py

[
2

qvF

ω

√
p2

F − p2
y

+
√(√

p2
F − p2

y − qvF

ω
pF − eA

)2

+ p2
y

(
1 − q2v2

F

ω2

)

−
√(

−
√

p2
F − p2

y − qvF

ω
pF − eA

)2

+ p2
y

(
1 − q2v2

F

ω2

)]
.

(B11)

APPENDIX C: LINEAR RESPONSE REGIME

For small fields eA0 � eAnl = pF (1 − qvF

ω
) we can lin-

earize the current (B11) to obtain jx = iωσ (q, ω)A, where the

conductivity σ (q, ω) can be evaluated explicitly:

σ (q, ω) = i8πe2EF ω

h2q2v2
F

⎛
⎝ 1√

1 − q2v2
F

ω2

− 1

⎞
⎠. (C1)

Note that σ (q, ω) diverges as we approach the line ω = qvF ,
signaling the breakdown of linear response theory. This is also
the reason why plasmon dispersion cannot cut this line [see
Fig. 1(a)].

Note also that the oscillating current will induce the vector
potential that will act back on the current. It is straightforward
to solve Maxwell’s equations for the current oscillating in the
plane of graphene jx(r, t ) = j0 sin (ωt − qx) and show that it
will induce a vector potential Aind

x (r, t ) = Aind
0 sin (ωt − qx)

of the amplitude

Aind
0 = −q j0

ω22ε0εr
, (C2)

where εr = (εr1 + εr2 )/2 is the average dielectric constant
of materials surrounding graphene from above and be-
low [12,32]. If we then introduce some external potential
Aext

x (r, t ) = Aext
0 sin (ωt − qx), the current will respond not

only to Aext but also to the total potential A = Aext + Aind =
A0 sin (ωt − qx), i.e., jx = iωσ (q, ω)A. The amplitude of this
self-consistent potential is then

A0 = Aext
0

1 + iqσ (q,ω)
ω2ε0εr

. (C3)

One can see that it is possible to have self-sustained os-
cillations of the electron gas (plasmon-polaritons) even in
the absence of the external field if 1 + iqσ (q,ω)

ω2ε0εr
= 0, with the

corresponding plasmon dispersion

ω(q) = qvF
ql + 1√

ql (ql + 2)
, (C4)

where we have introduced the length l = ε0εr h2vF
4πe2 pF

.
In the local case (q = 0) conductivity (C1) reduces to

σ (ω) = i
ω

e2EF

π h̄2 , in which case it is also easy to include losses
(due to the impurity of phonon scattering) via the phenomeno-
logical damping rate γ as σ (ω) = i

ω+iγ
e2EF

π h̄2 [32]. It is usual to
introduce the DC mobility μ via the relation σ (0) = neμ, so

we can express the damping rate as γ = ev2
F

μEF
.

APPENDIX D: LANDAU-ZENER MODEL

Let us focus on the state �m(r, t ) = ∑
n cn(u)�QC

n (r, t ),
where �QC

n = bn�
qc
n are our generalized quasiclassical states

[�qc
n multiplied by bn(u) also satisfies the quasiclassical

condition]. Now �QC
n are asymptotically exact solutions as

long as we are far away from the transition point Ec
n (u0) =

Ec
−n(u0), which is generally complex [36]. We can then

connect these asymptotic states by going into the com-
plex u plane, always staying far away from the transi-
tion point u0, so that the quasiclassicality condition is al-
ways satisfied. This way Ec

n from Eq. (20) simply changes
the branch of the square root, i.e., turns into Ec

−n, with
similar changes for other quantities. One can show that

085424-7



MARINKO JABLAN PHYSICAL REVIEW B 101, 085424 (2020)

|c−m(u = ∞)|2 = exp ( 1
h̄ω

Im
∫

C �Ec
mdu) = K , where the in-

tegration contour C goes around the transition point u0 in the
upper half plane for m = −1 and around u∗

0 in the lower half
plane for m = 1 [36]. For convenience we write the energy
gap explicitly:

�Ec
m = Ec

m − Ec
−m

= 2mvF

1 − q2v2
F

ω2

√(
pm − q

ω
Em − eA

)2

+ p2
y

(
1 − q2v2

F

ω2

)
,

(D1)

where we have used the fact that p−m − q
ω

E−m = pm − q
ω

Em.
Generally, u0 is complex, except in the case py = 0, where
we can have real u0 and a perfect transition K = 1. This
is completely analogous to the famous Klein tunneling in
graphene where electrons can simply pass through the poten-
tial barrier by using the available negative-energy states [33].
Since K is the probability of transition into a different band

during a single passage, then 1 − K is the probability that an
electron remains in the original band. As our field oscillates
periodically in u, we also need to consider the transition prob-
ability for a double passage: w = K (1 − K ) + (1 − K )K =
2K (1 − K ) [36]. Finally, for very slow oscillations we can
approximately say that the transition happens at a real point u
where the gap �Ec

m(u) has a minimum since then the tunnel-
ing probability is largest. This generally happens at two points
ζ < ξ during a single period, so we can write |c−m(u)|2 ≈
K�(u − ζ )�(ξ − u) + 2K (1 − K )�(u − ξ ), where �(u) is
a step function. Of course, truncating dynamics to a single
period only makes sense if 2K (1 − K ) � 1, which is the only
regime we explore in this paper. Finally, since d�(u)

du = δ(u)

is a δ function, we can write d|c−m (u)|2
du = Kδ(u − ζ ) − Kδ(u −

ξ ) + 2K (1 − K )δ(u − ξ ). When calculating dissipated power,
the first two parts cancel, and the only term that contributes is

d|c−m(u)|2
du

= 2K (1 − K )δ(u − ξ ). (D2)
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