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The quadrupole collective Hamiltonian, based on relativistic energy density functionals, is extended to
include a pairing collective coordinate. In addition to quadrupole shape vibrations and rotations, the model
describes pairing vibrations and the coupling between shape and pairing degrees of freedom. The parameters
of the collective Hamiltonian are determined by constrained self-consistent relativistic mean-field plus Bardeen-
Cooper-Schrieffer (RMF+BCS) calculations in the space of intrinsic shape and pairing deformations. The effect
of coupling between shape and pairing degrees of freedom is analyzed in a study of low-energy spectra and
transition rates of four axially symmetric N = 92 rare-earth isotones. When compared to results obtained with
the standard quadrupole collective Hamiltonian, the inclusion of dynamical pairing increases the moment of
inertia, lowers the energies of excited 0+ states, and reduces the E0 transition strengths, in better agreement with
data.
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I. INTRODUCTION

Atomic nuclei are finite-size, strongly correlated quantum
many-body systems, and their complex spectra exhibit a vari-
ety of excitation modes determined by collective and single-
particle degrees of freedom [1,2]. For low-energy excitation
spectra, in particular, the coupling between shape degrees of
freedom and two-quasiparticle excitations play an important
role [3–6]. The occurrence of pairing vibrations in nuclei
was suggested by Bohr and Mottelson [7], and this mode
influences many physical quantities in addition to low-energy
spectra, such as nuclear matrix elements for neutrinoless ββ

decay [8] and spontaneous fission half-lives [9–13].
The pairing interaction between nucleons produces corre-

lations that enhance the amplitude of two-nucleon transfer.
Thus, two-nucleon transfer reactions provide a tool to iden-
tify pairing excitations, and a number of pairing vibrational
states have been observed in heavier nuclei, e.g., the proton
pairing vibrational states with excitation energy: 5.24 MeV in
208Pb [14,15], 4.1 MeV in 206Pb [15], 1.690 MeV in 124Xe,
and 1.761 MeV in 126Xe [16,17].

*zpliphy@swu.edu.cn

A variety of theoretical methods have been used to de-
scribe pairing vibrations: the pairing Hamiltonian [18–20],
the collective Hamiltonian [21–31], the time-dependent
Hartree-Fock-Bogoliubov (TDHFB) theory [32,33], the
shell model [34], the quasiparticle random-phase approx-
imation [18,35–40], the pair addition and pair removal
phonon model [41], and the generator coordinate method
(GCM) [3,33,42–46]. In general, however, these methods
have not explicitly considered the coupling between shape and
pairing vibrations.

In Ref. [47] the GCM with the Gaussian overlap approx-
imation (GOA) was extended to include both pairing and
shape vibrations, and their coupling. It was shown that the
energy of the lowest excited 0+ state of 120,124−130Xe is
considerably reduced as a result of the inclusion of pairing
vibrations. Vaquero et al. have explicitly considered the col-
lective pairing degree of freedom using a finite-range force
in the framework of the symmetry conserving configuration
mixing (SCCM) approach [5]. They have also extended the
analysis to other observables like transition probabilities and
separation energies [6]. The method has been used to com-
pute nuclear matrix elements of neutrinoless ββ decay [8].
An increase of 10–40% in the nuclear matrix elements
with respect to the ones calculated without the inclusion of
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pairing fluctuations has been obtained, reducing the pre-
dicted half-lives of these isotopes. However, the numerical
implementation of the model is very involved, and applica-
tions to medium-heavy and heavy nuclei are computationally
excessive.

The low-energy structure of medium-heavy and heavy
nuclei is best described in the framework of nuclear en-
ergy density functionals (EDFs) [48–61]. The basic imple-
mentation of this framework, in which an EDF is con-
structed as a functional of one-body nucleon density, is in
terms of self-consistent mean-field (SCMF) models. To cal-
culate excitation spectra and electromagnetic transition rates
the SCMF method must be extended to include collective
correlations that arise from symmetry restoration and fluc-
tuations around the mean-field minima. A particularly con-
venient approach is the collective Hamiltonian with param-
eters and the potential determined by SCMF calculations.
Since the early 2010s a five-dimensional collective Hamil-
tonian (5DCH) model for quadrupole vibrational and rota-
tional degrees of freedom, based on nuclear energy density
functionals, has been developed and applied in a number
of studies of structure phenomena related to shape coexis-
tence and shape transitions [62–77]. Another development
is the exploration of quadrupole and octupole vibrations,
rotations, and their coupling using the quadrupole-octupole
collective Hamiltonian (QOCH). With parameters determined
by nuclear energy density functionals, the QOCH has suc-
cessfully been applied to systematic studies of quadrupole
and octupole states in even-even medium-heavy and heavy
nuclei [68,78–82].

In various implementations of our collective Hamiltonian
model only shape and rotational degrees of freedom have
been considered as collective coordinates. Pairing correla-
tions have been taken into account on the SCMF level,
either in the relativistic mean-field RMF plus BCS ap-
proximation, or the relativistic Hartree-Bogoliubov frame-
work. In the present study we develop the quadrupole-and-
pairing collective Hamiltonian (QPCH) that, in addition to
quadrupole shape vibrations and rotations, includes pairing
vibrations and explicitly couples shape and pairing degrees of
freedom.

The paper is organized as follows. Section II outlines the
theoretical framework, in particular the calculation of mass
parameters and moments of inertia entering the QPCH, and
the method of solution of the QPCH eigenvalue problem. In
Sec. III we analyze the effect of coupling between shape and
pairing degrees of freedom on the low-energy spectra and
transition rates of four axially symmetric N = 92 rare-earth
isotones. Section IV presents a summary and an outlook for
future studies.

II. THEORETICAL FRAMEWORK

For a description of pairing vibrations the monopole pair-
ing operator can be defined in the following form [21,47]:

Â = 1

2

∑
k>0

(e−2iφckck̄ + e2iφc†
k̄
c†

k ), (1)

where φ is the gauge angle. The expectation value of this
operator in the BCS-like state.

|αφ〉 = eiNφ
∏
k>0

(uk + vke−2iφc†
kc†

k̄
)|0〉, (2)

determines the pair condensate. In this work we do not con-
sider the “pairing rotations,” that is, quasirotational bands that
correspond to ground states of neighboring even-even nuclei.
Therefore, the gauge angle can be chosen φ = 0, and the
pairing operator reduces to

P̂ = 1

2

∑
k>0

(ckck̄ + c†
k̄
c†

k ). (3)

The mean value of this operator:

ατ = 〈α(φ = 0)|P̂|α(φ = 0)〉τ =
∑
k>0

uτ
k v

τ
k , (4)

with τ denoting neutron or proton states, defines the intrinsic
pairing deformation α related to the pairing gap parameter �,

α =
∑

τ=n,p

∑
k>0

uτ
k v

τ
k . (5)

In the following, α will be considered as the pairing collec-
tive coordinate. Nuclear excitations characterized by axially
symmetric quadrupole shape vibrational and rotational col-
lective motion, and coupled with pairing vibrations, can be
described by constructing a collective Hamiltonian defined
by the quadrupole shape deformation parameter β, the Euler
angle �, and pairing deformation α as collective coordinates
(denoted as QPCH). The collective Hamiltonian takes the
general form

Ĥcoll = − h̄2

2
√

gI
∑
i, j

∂

∂qi

√
gI (B−1)i j

∂

∂q j
+ Ĵ2

2I + Vcoll(q),

(6)

where the collective mass tensor reads

B =
(

Bββ Bβα

Bαβ Bαα

)
, (7)

and g = detB. I and Vcoll are the moment of inertia and
collective potential, respectively. The corresponding volume
element in the collective space reads∫

dτcoll =
∫ √

gIdβdαd�. (8)

To solve the eigenvalue problem for the collective Hamilto-
nian of Eq. (6), the eigenfunctions are expanded in terms of a
complete set of basis functions. For each value of the angular
momentum I the basis is constructed as:

|n1n2IMK〉 = (gI )−1/4φn1 (β )φn2 (α)|IMK〉, (9)

where φni denotes the one-dimensional harmonic oscillator
eigenstate for the corresponding collective coordinate. The
present study is restricted by axial symmetry and thus the
projection of angular momentum K = 0. The collective wave
function can finally be written as

	IM
j (β, α,�) = ψ I

j (β, α)|IM0〉. (10)
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The reduced transition rates can be computed using the
expression

B(Eλ, Ii → I f )

= 〈Ii0λ0|I f 0〉2

∣∣∣∣
∫

dβdα
√

gIψiMEλ(β, α)ψ∗
f

∣∣∣∣
2

, (11)

where MEλ(β, α) denotes the electric moment of
order λ. In microscopic models it is calculated as
〈�(β, α)|M̂(Eλ)|�(β, α)〉, where �(β, α) is the nuclear
wave function.

For comparison we will also consider a pairing collective
Hamiltonian (PCH) that describes one-dimensional pairing
vibrational motion in α:

Ĥcoll = − h̄2

2

1√
Bαα

∂

∂α

1√
Bαα

∂

∂α
+ Vcoll(α). (12)

The entire dynamics of the collective Hamiltonian Eq. (6)
is governed by the five functions of the intrinsic quadrupole
deformation β and pairing deformation α: the collective
potential; the three mass parameters Bββ , Bαα , Bβα; and
the moment of inertia I. These functions are determined
by the choice of a particular microscopic nuclear energy
density functional and pairing interaction. In the present
study the energy density functional PC-PK1 [83] determines
the effective interaction in the particle-hole channel, and
the Bardeen-Cooper-Schrieffer (BCS) approximation with a
separable pairing force is employed in the particle-particle
channel [84,85]. The framework of the relativistic mean-field
model plus BCS (RMF+BCS) with a separable pairing force
is described in detail in Ref. [86].

The map of the collective energy surface as a function
of β and α is obtained by imposing constraints on the mass
quadrupole moment q and pairing deformation α, respec-
tively [45,87],

〈H〉 + 1
2Cβ (〈Q̂〉 − q)2 − λ〈N̂ − N〉 − ξα〈P̂ − α〉, (13)

where 〈H〉 is the total energy and 〈Q̂〉 denotes the expectation
value of the mass quadrupole operator:

Q̂ = 2z2 − x2 − y2, (14)

where q is the constrained value of the quadrupole mo-
ment and Cβ the corresponding stiffness constant [87]. The
quadrupole deformation parameter β is calculated from β =√

5π

3AR2
0
q, with R0 = r0A1/3 and r0 = 1.2 fm. N̂ is the particle

number operator, while P̂ is the pairing operator defined in
Eq. (3). λ and ξα are Lagrange multipliers. N and α are the
constrained value of particle number and pairing deformation,
respectively.

The single-nucleon wave functions, energies, and occupa-
tion probabilities, generated from constrained self-consistent
solutions of the RMF+BCS equations, provide the micro-
scopic input for the parameters of the collective Hamiltonian.

The moments of inertia are calculated according to the
Inglis-Belyaev formula [88,89]:

I =
∑
i, j

(uiv j − viu j )2

Ei + Ej
|〈i|Ĵ| j〉|2, (15)

where Ĵ is the angular momentum along the axis perpendic-
ular to the symmetry axis and the summation runs over the
proton and neutron quasiparticle states. The quasiparticle en-
ergies Ei, occupation probabilities vi, and single-nucleon wave
functions ψi are determined by solutions of the constrained
RMF+BCS equations.

The adiabatic time-dependent HFB (ATDHFB) cranking
approximation [45,46] is used for the mass parameters:

Bββ = h̄2[M−1
(1)M(3)M−1

(1)

]
, (16)

Bαα = h̄2
∑
i>0

(
u2

i − v2
i

)2

8E3
i

σ−2, (17)

Bβα = −h̄2
∑
i>0

M−1
(1)

uivi〈i|Q̂|i〉
2E2

i

(
u2

i − v2
i

)
2Ei

σ−1, (18)

with

M(n) = 2
∑

i>0, j>0

〈i|Q̂| j〉〈 j|Q̂|i〉
(Ei + Ej )n

(uiv j + viu j )
2, (19)

σ =
∑
i>0

(
u2

i − v2
i

)2

4Ei
. (20)

The Hamiltonians of Eqs. (6) and (12) correspond to the
ATDHFB method, for which the metric and mass tensors are
identical and the zero-point energy (ZPE) vanishes. Therefore,
in addition to the mass parameters obtained using the above
ATDHFB expressions, for the collective potential Vcoll the
total constrained RMF+BCS energy is used. In a future study,
that will also include the triaxial degree of freedom, it would
be important to compare results with those obtained with
Hamiltonians based on the GCM+GOA method [46,47,90].

III. RESULTS AND DISCUSSIONS

To test the model that couples shape and pairing vibrations
we will perform several illustrative calculations of potential
energy surfaces, inertia tensors, and the resulting collective
excitation spectra of four even-even rare-earth N = 92 iso-
tones. In the present RMF+BCS calculation the strength of
the separable pairing force is enhanced by 6% compared
to the original value determined in Refs. [84,85], namely
we use G = −771.68 MeV fm3. It has been shown that by
increasing the pairing strength of the order of few percentages,
the RMF+BCS model accurately reproduces results obtained
with the full relativistic Hartree-Bogoliubov calculation and
the original pairing force [91].

A. The pairing collective Hamiltonian (PCH) for 156Gd

In Ref. [45] the generator coordinate method with the
Gaussian overlap approximation (GCM+GOA) approach,
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FIG. 1. The RMF+BCS binding energy (a) and collective mass
Bαα (b) of 156Gd, as functions of the intrinsic pairing deformation α.

based on the single-particle Nilsson potential and the δ-
pairing interaction, was used to calculate pairing vibra-
tional excitations of 148Ce. It has been shown that the first
excited collective pairing vibrational states for even-even
nuclei in the rare-earth region appear at ≈2.5 MeV for
protons and ≈4.5 MeV for neutrons. It was also noted
that pairing vibrations are strongly coupled to shape de-
grees of freedom. Here we perform a similar calculation
using an EDF-based collective Hamiltonian. In the first
step only one-dimensional pairing vibrations are considered
in the model. To this end the equilibrium minimum for
156Gd is determined using the self-consistent RMF+BCS
method: βmin = 0.325 and �p(�n) = 0.799 (0.665) MeV.
The constrained calculations for α in the interval 2 � α �
50, with a step of 2.0, correspond to the fixed equilibrium
value β = 0.325.

Figure 1 displays the RMF+BCS binding energy and
collective mass Bαα of 156Gd, as functions of α, calculated
with the PC-PK1 energy density functional [83] and separable
pairing interaction. The deformation energy curve is rather
soft for α � 16 with a shallow minimum at α ∼ 12 and then
increases steeply for stronger pairing. The collective mass
Bαα , in contrast, exhibits a steep decrease with α. Only for
larger values of α (α > 16) does this decrease become more
gradual. Such a functional dependence of Bαα makes it dif-
ficult to obtain converged numerical solutions for the pairing
collective Hamiltonian of Eq. (12). Following the method of
Refs. [43,45], we thus use a logarithmic function to transform
α into a new coordinate. Details of this transformation are
described in Appendix.

In Fig. 2 we display the two lowest eigenstates of the
pairing collective Hamiltonian [Fig. 2(a)] and the correspond-
ing probability density distributions [Fig. 2(b)] for 156Gd. In
Fig. 2(a) the location of the horizontal lines and positions
of the dots indicate the energies and expectation values of
the intrinsic pairing deformation α, respectively. One notes
that the expectation values of α calculated from the collective
wave functions of the ground state and first-excited state are
6.09 and 11.01, respectively, considerably smaller than the
value of α in the energy minimum. A similar result was also
obtained in Ref. [43].

FIG. 2. The lowest two eigenstates of the pairing collective
Hamiltonian (a) and the corresponding probability density distribu-
tions (b) for 156Gd.

B. Low-energy structure of 156Gd calculated with the QPCH

Next we consider 156Gd as a test example for the QPCH
based on relativistic EDFs. The low-energy spectra will also
be compared to those obtained with the axially symmetric
quadrupole collective Hamiltonian (QCH), which includes
only vibrational and rotational dynamic degrees of freedom.
Starting from constrained self-consistent RMF+BCS solu-
tions, that is, using the single-particle wave functions, occupa-
tion probabilities, and quasiparticle energies that correspond
to each point on the energy surface, the parameters that
determine the collective Hamiltonian are calculated as func-
tions of quadrupole deformation β and pairing deformation
α. As an illustration, for 156Gd the potential energy surface
(PES), moment of inertia I and mass parameters Bαα and Bββ

are displayed in Fig. 3. The global minimum is calculated
at (β, α) = (0.325, 12) and the PES around the minimum
appears rather soft, especially with respect to α (cf. also

FIG. 3. The potential energy surface (PES), moment of inertia
I, and mass parameters Bαα and Bββ of 156Gd in the (β, α) plane,
calculated by the constrained RMF+BCS with the PC-PK1 energy
density functional and separable pairing interaction. All energies (in
MeV) in the PES are normalized with respect to the binding energy
of the absolute minimum. In all panels the contours join points on
the surface with the same values.

064301-4



COUPLING OF SHAPE AND PAIRING VIBRATIONS … PHYSICAL REVIEW C 101, 064301 (2020)

FIG. 4. The low-energy excitation spectra of 156Gd, calculated with the QCH (a), QPCH (b), and PCH (c), based on the PC-PK1 energy
density functional [83], in comparison with the available data (d) from Refs. [92,93]. The corresponding electric quadrupole and monopole
transition probabilities are also compared to data.

Fig. 1). The moment of inertia generally increases with the
quadrupole deformation β, while displaying a decrease for
larger values of α. The mass parameters Bαα and Bββ exhibit
a pronounced dependence on α, that is, both increase steeply
as pairing becomes weaker. This is consistent with the result
of Ref. [94].

The diagonalization of the resulting Hamiltonian yields
the excitation energies and collective wave functions for each
value of the total angular momentum. In Fig. 4 we plot
the QPCH excitation spectrum of 156Gd, in comparison with
available data [92,93], and results obtained with the QCH and
PCH. In addition to the excitation energies, quadrupole E2
and monopole E0 transition rates are also shown in the figure.
Obviously, the coupling between shape and pairing dynamical
degrees of freedom has a pronounced effect on the calculated
spectra. When compared to the results of the QCH model, the
inclusion of dynamical pairing increases the moment of inertia
and lowers the bands based on excited 0+ states, altogether
bringing the theoretical spectrum in much better agreement
with experiment. In particular, we note that the 0+

2 and 0+
3

states are lowered by ∼0.534 and ∼1.271 MeV, respectively.
The coupling to pairing vibrations increases slightly the intra-
band electric quadrupole transition rates, while the calculated
E0 rates are generally in better agreement with data. It appears
that the QPCH qualitatively reproduces the excitation energies
of the first five excited 0+ states. The PCH can, of course,
only be used to calculate 0+ states, and the lowest two have
already been shown in Fig. 2. Without coupling to the axial
quadrupole deformation, the 0+

2 state is predicted at a very
high excitation energy.

Figure 5 displays the probability density distributions in
the (β, α) plane of the first four 0+ states of 156Gd, calculated
with the QPCH based on the PC-PK1 energy functional. One
finds nodes in the β direction for the 0+

2 , 0+
3 , and 0+

4 states.

The distribution of the 0+
4 state in the α direction indicates a

structure characterized by pairing vibration.

C. Systematics of low-lying spectra of N = 92 isotones

As a further test of the QPCH we analyze the systematics
of the low-lying spectra of four even-even axially deformed
N = 92 isotones: 152Nd, 154Sm, 156Gd, and 158Dy. Figure 6
displays the deformation energy surfaces of the N = 92 iso-
tones, calculated with the PC-PK1 energy density functional
and separable pairing force. The energy surfaces exhibit
pronounced global minima for a rather large value of the

FIG. 5. Probability density distributions in the (β, α) plane for
the first four 0+ states of 156Gd, calculated with the QPCH based on
the PC-PK1 energy density functional.
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FIG. 6. The deformation energy surfaces (in MeV) of even-even
N = 92 isotones in the (β, α) plane, calculated using the RMF+BCS
model with the PC-PK1 energy functional and separable pairing
force.

quadrupole deformation β ≈ 0.35, and pairing deformation
α ≈ 12–16. The minima appear quite soft toward smaller
values of the pairing collective coordinate α. It is interesting
to note that this softness is reduced with the increase of
the proton number, while simultaneously the energy surfaces
become more soft in the quadrupole collective deformation.
The moment of inertia I, and the collective masses Bββ and
Bαα , are displayed in Figs. 7–9, respectively. The collective
parameters of the isotones 152Nd, 154Sm, and 158Dy present
patterns very similar to those of 156Gd, already discussed in
the previous section.

The effect of pairing vibrations are further illustrated in
the systematics of low-lying spectra of N = 92 isotones.
Figure 10 displays the evolution of excitation energies of
the two lowest excited 0+

2 and 0+
3 states, the E0 transition

strengths ρ2(E0; 0+
2 → 0+

1 ), and the B(E2; 2+
1 → 0+

1 ) values
of the four even-even N = 92 isotones, as functions of the pro-
ton number. Based on the PC-PK1 functional and separable

FIG. 7. Same as in the caption to Fig. 6 but for the moment of
inertia.

FIG. 8. Same as in the caption to Fig. 6 but for the collective
mass Bββ .

pairing force, values predicted by the QPCH are compared
to those obtained with the usual QCH, that only includes the
axial quadrupole deformation as collective coordinate, and
with available data [92,95]. Except for 0+

2 in 152Nd, all the 0+
2

and 0+
3 states are significantly lowered by the coupling to pair-

ing vibrations, in very good agreement with the experimental
excitation energies. The lowering of the 0+

2 level ranges from
∼0.1 to ∼0.9 MeV in the present calculation, while for the 0+

3
state the interval is ∼1.2 to ∼1.7 MeV.

The E0 transition probabilities from the 0+
2 state to the

ground state are considerably reduced by the inclusion of
the dynamical pairing degree of freedom, while the QPCH
calculation moderately increases the B(E2; 2+

1 → 0+
1 ) values

of 152Nd, 154Sm, and 156Gd, with respect to the B(E2)’s pre-
dicted by the QCH model. However, all calculated transition
rates are generally in good agreement with data, especially
considering that only one shape deformation degree of free-
dom is taken into account.

It is interesting to consider these results in relation to the
trend exhibited by the collective coordinates. In Fig. 11(a), we
plot the expectation values of the quadrupole deformation 〈β〉

FIG. 9. Same as in the caption to Fig. 6 but for the collective
mass Bαα .
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FIG. 10. The excitation energies of the two lowest excited 0+
2

(a) and 0+
3 (b) states, the E0 transition strengths ρ2(E0; 0+

2 → 0+
1 )

(c), and the B(E2; 2+
1 → 0+

1 ) values (d) of four even-even N = 92
isotones, as functions of the proton number. Values calculated with
the QPCH based on the PC-PK1 functional are shown in comparison
with the available data [92,95], and corresponding results obtained
with the usual QCH.

for the ground states of the four N = 92 isotones calculated
with QPCH and QCH, respectively. The expectation values of
the pairing deformation 〈α〉 calculated with the QPCH for the
0+

2 and 0+
3 states are also compared with the self-consistent

minima αmin of the PESs shown in Fig. 11(b). One notes

FIG. 11. (a) The expectation value of the quadruple deformation
〈β〉 for the ground states of four N = 92 isotones, calculated with the
QPCH and QCH, respectively. (b) The self-consistent minima αmin of
the potential energy surfaces, and the expectation value of the pairing
deformation 〈α〉 for the 0+

2 and 0+
3 states of the four N = 92 isotones.

that 〈β〉 increases slightly for 152Nd, 154Sm, and 156Gd when
dynamical pairing is included. This is consistent with the vari-
ation of B(E2; 2+

1 → 0+
1 ) in these nuclei. As already noted,

the expectation values 〈α〉 for 0+
2 and 0+

3 are considerably
smaller than the equilibrium value and, consequently, this
leads to a significant increase of inertia masses for these states
and lowers the corresponding excitation energies.

IV. SUMMARY AND OUTLOOK

The QCH, based on the framework of microscopic energy
density functionals, has been extended to include a pairing
collective coordinate. In addition to quadrupole shape vibra-
tions and rotations, the model describes pairing vibrations and
explicitly couples shape and pairing degrees of freedom. The
parameters of the kinetic term of the QPCH, as well as the
potential, are determined by fully self-consistent mean-field
calculations, with constraints on the collective coordinates.

In the particular implementation considered in the present
work, we have simplified the model by assuming axial shape
symmetry and neglecting pairing rotations. Therefore, only
two intrinsic collective coordinates have explicitly been con-
sidered: the axial quadrupole deformation β and the intrinsic
pairing deformation α related to the gap parameter �. Without
such simplifications, that is, by including additional collective
coordinates, the method quickly becomes computationally
excessive, especially for heavy nuclei. As our aim here is to
test the effect of coupling between shape and pairing degrees
of freedom on low-energy spectra, the specific model includes
only two intrinsic collective coordinates.

Constrained self-consistent mean-field calculations in the
(β, α) plane have been performed for four N = 92 axially
deformed rare-earth isotones, using the PC-PK1 relativistic
density functional in the particle-hole channel, and pairing
correlations are included in the BCS approximation with a
pairing force separable in momentum space. The resulting
single-nucleon wave functions, energies and occupation prob-
abilities, as functions of the intrinsic deformations β and
α, provide the microscopic input for the parameters of the
collective Hamiltonian: three mass parameters Bββ , Bαα , and
Bβα , the moment of inertia I, and the collective potential. The
moments of inertia are calculated using the Inglis-Belyaev
formula, and the mass parameters associated with the col-
lective coordinates β and α are computed in the cranking
approximation. An extensive test has been carried out in
calculations of potential energy surfaces, and the resulting col-
lective excitation spectra and transition probabilities. Results
for excitation energies in the ground-state band and bands
based on excited 0+ states, the corresponding intraband and
interband E2 transition probabilities, as well as E0 transition
rates, have been compared to available data and values ob-
tained using the standard QCH. The effect of the inclusion
of pairing vibrations on low-lying excitation spectra has been
analyzed for the four N = 92 isotones: 152Nd, 154Sm, 156Gd,
and 158Dy.

The analysis has demonstrated, in a quantitative way, the
importance of the dynamical pairing degree of freedom. Even
though in several studies of low-energy collective spectra
this effect was taken into account in an approximative way,
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here we have explicitly considered the coupling between
shape and pairing degrees of freedom in the parameters that
determine the collective Hamiltonian. It has been shown that
the coupling to pairing vibrations increases the moment of
inertia, lowers the energies of excited 0+ states and bands built
on them, reduces the E0 transition strengths and, generally,
produces low-energy spectra in much better agreement with
experimental results.

The present study has been restricted to axially symmetric
nuclei, and we have only analyzed the low-energy spectra of
four rare-earth nuclei obtained using a Hamiltonian based on
the ATDHFB method. As the effect of pairing vibrations will
particularly be important for nuclei characterized by shape co-
existence, it is essential to extend the current implementation
of the model to include the triaxial degree of freedom, as well
as to study Hamiltonians obtained with the GCM+GOA ap-
proach. Future applications will consider other mass regions
and, in particular, soft nuclei that exhibit quantum shape-
phase transitions. Another interesting development will be
the extension of the model to heavy nuclei characterized by
pronounced octupole correlations.
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APPENDIX: DIAGONALIZATION OF THE
COLLECTIVE HAMILTONIAN

In Figs. 1 and 3 it has been shown that the collective mass
Bαα exhibits a very pronounced dependence on the pairing
deformation α. Bαα decreases very steeply with the increase of
α and, because the collective mass appears in the denominator
of the kinetic term of the collective Hamiltonian Eq. (12),
this leads to a slow convergence when the eigenfunctions are
expanded in the harmonic-oscillator basis [43]. The diagonal-
ization of the collective Hamiltonian is here illustrated with
the example of the pairing Hamiltonian PCH. As shown in
Ref. [43], a much better convergence can be reached when
one performs a transformation from α to a new coordinate x

x = D ln

(
1 + α

α0

)
, (A1)

and the collective mass Bαα is then transformed to Bxx,

Bxx = Bαα

(α + α0)2

D2
. (A2)

FIG. 12. The energy (a) and collective mass Bxx (b) of 156Gd as
functions of x. The location of the energy minimum is indicated with
the red arrow.

The parameters D and α0 are determined by fitting the collec-
tive mass Bαα to Mαα ,

Mαα ≈ D2

(α + α0)
. (A3)

Figure 12 displays the collective potential Vcoll(x) and Bxx

of 156Gd as functions of the new coordinate x. For the two-
dimensional case which includes the axial quadrupole defor-
mation, in Fig. 13 we plot the collective mass Bxx in (β, x)
plane of 156Gd. The variation of Bxx with the coordinate x is
more smooth than that of Bαα (cf. Fig. 3).

Expressed in the new coordinate the pairing collective
Hamiltonian takes the form

Ĥcoll(x) = − h̄2

2

1√
Bxx

∂

∂x

1√
Bxx

∂

∂x
+ Vcoll(x), (A4)

and thus the basis states used to diagonalize the
Hamiltonian (A4) will be generated by the harmonic oscillator

FIG. 13. The collective mass Bxx in the (β, x) plane of 156Gd.
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Hamiltonian

ĤB = − h̄2

2μ

d2

dx2
+ 1

2
μω2x2 . (A5)

The corresponding oscillator length parameter reads

bx =
√

h̄

Mxωx
. (A6)

The eigenfunctions of the Hamiltonian (A5),

φnx (x) = Nnx

bx
Hnx (ζ )e−ζ 2/2, (A7)

correspond to the Hermite polynomials Hnx (ζ ), where ζ =
x/bx. In the two-dimensional case a harmonic oscillator basis
is also used for the expansion of the eigenfunctions of the
quadrupole shape collective coordinate.

For the self-consistent mean-field calculation the Dirac
equation is solved by expanding the spinors in terms of a har-
monic oscillator basis with 14 major shells. The RMF+BCS
equations are solved on a mesh in the β-α plane,

−0.025 � β � 0.775, 2 � α � 50, (A8)

with steps 0.05 and 2, respectively.
In the calculation of the matrix elements of the collective

Hamiltonian, with the substitution y ≡ βbβ , the integrals over
β are evaluated by Gauss-Laguerre quadrature. The integrals
over α are evaluated by Gauss-Legendre quadrature, with
the substitution z ≡ xbx. The corresponding number of mesh
points are nβ = 64 and nx = 520, respectively. The parame-
ters of the collective Hamiltonian at the Gaussian mesh points
are determined by interpolation from the values calculated on
the equidistant mesh defined by Eq. (A8).
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