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The study of the strength and behavior of the antikaon-nucleon (K̄N) interaction constitutes one of the
key focuses of the strangeness sector in low-energy quantum chromodynamics (QCD). In this Letter a
unique high-precision measurement of the strong interaction between kaons and protons, close and above
the kinematic threshold, is presented. The femtoscopic measurements of the correlation function at low
pair-frame relative momentum of (Kþp ⊕ K−p̄) and (K−p ⊕ Kþp̄) pairs measured in pp collisions at
ffiffiffi

s
p ¼ 5, 7, and 13 TeVare reported. A structure observed around a relative momentum of 58 MeV=c in the
measured correlation function of (K−p ⊕ Kþp̄) with a significance of 4.4σ constitutes the first
experimental evidence for the opening of the ðK̄0n ⊕ K0n̄Þ isospin breaking channel due to the mass
difference between charged and neutral kaons. The measured correlation functions have been compared to
Jülich and Kyoto models in addition to the Coulomb potential. The high-precision data at low relative
momenta presented in this work prove femtoscopy to be a powerful complementary tool to scattering
experiments and provide new constraints above the K̄N threshold for low-energy QCD chiral models.

DOI: 10.1103/PhysRevLett.124.092301

The kaon (K) nucleon (N) and antikaon ðK̄ÞN inter-
actions constitute the building blocks of low energy QCD
with u, d, and s quarks, since the effective theories aiming
to describe hadron interactions in the nonperturbative
energy regime are anchored to these interactions.
Traditionally, the interaction of K and K̄ with protons
and neutrons has been studied by performing scattering
experiments at low energies. However, only few measure-
ments exist and only in a limited energy range [1–5]. In
such experiments the initial state is fixed, formed by a KN
or K̄N pair, and cross sections of elastic and inelastic final
states are measured.
These data showed that the K and K̄ behavior with

nucleons is very different: while the repulsive nature of
Kþp, due to the strong and Coulomb interactions, is well
established [6], the strong interacting term of the K−p is
instead deeply attractive and characterized by the presence
of several coupled channels, i.e., two-particle systems with
energy close to the K−p threshold and carrying the same
quantum numbers. These coupled-channels contributions
are already present in the initial K̄N scattering wave
function and hence influence both the inelastic and the
elastic processes [7].

In the K−p system, due to the strangeness S ¼ −1
charge of the K̄, already two open coupled channels
appear below threshold: Λπ and Σπ. Of particular interest
is the coupling to the Σπ channel since this, along with the
attractive nature of the K̄N interaction, leads to the
appearance of the Λð1405Þ resonance just 27 MeV=c2

below threshold. Indeed, this resonance is interpreted as the
only Σπ-K̄N molecular state [8–10]. The available theo-
retical approaches [11–20] are constrained above the K̄N
threshold, but since the experimental data are scarce, these
constraints are rather loose, resulting in rather significant
differences below threshold. Experimental constraints on
the K̄N interaction and on the interplay between both K̄N
and Σπ poles are fundamental to reproduce the properties of
the Λð1405Þ [21–25].
Approximately 5 MeVabove threshold, the K̄0n channel

opens up due to the breaking of the isospin symmetry. The
K̄n-KN coupling is also very important to understand the
interaction and structure of the Λð1405Þ and its effect
should be visible in the totalK−p cross section measured in
scattering experiments as a clear cusplike structure for a
kaon incident momentum of plab ¼ 89 MeV=c [26].
However, this peak has not been experimentally observed
yet due to the large uncertainties of the data [3,5,27].
In order to constrain the contributions of the coupled

channels and to provide a complete description of the K̄N
interaction, precise data close to threshold are needed and
the effects of coupled channels lying close to threshold
must be explicitly taken into account in any process
between a K̄ and a nucleon.
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The measurement of kaonic hydrogen [28], which
nowadays constitutes the most precise constraint at thresh-
old, and the obtained results on the K̄N scattering param-
eters include the coupled-channel contributions only in an
effective way.
Recently, the femtoscopy technique [29,30], which

measures the correlation of particle pairs at low relative
momentum, has provided high precision data on different
baryon-baryon pairs [31–33], indicating a great sensitivity
to the underlying strong potential. Contrary to the scatter-
ing, in femtoscopy only the final state is measured and
different initial states are allowed. In the K−p system, this
translates into an extreme sensitivity of the correlation
function to the introduction of the different coupled-
channels, which affect both shape and magnitude of the
femtoscopic signal [34].
The femtoscopic measurement of Kp pairs [(Kþp ⊕

K−p̄) and (K−p ⊕ Kþp̄)] from pp collisions at different
energies presented in this Letter shows experimentally for
the first time the impact of the coupled-channels effect on
the momentum correlation function. Comparison with
recent models including or partially including coupled-
channel contributions are presented. The same-charge pairs
(Kþp ⊕ K−p̄), because of the well-described interaction
and the lack of coupled-channel effects, are used as a
benchmark to test the sensitivity of the correlation function
to the strong interaction.
The analysis presented here is based on minimum bias

triggered pp collisions collected by the ALICE experiment
[35] at the LHC in 2010, 2015, 2016, and 2017 at three
different collision energies (

ffiffiffi

s
p ¼ 5, 7, and 13 TeV). The

correlation function Cðk�Þ is measured as a function of the
momentum difference of the pair k� ¼ 1

2
ðp⃗1

� − p⃗2
�Þ, where

p⃗1
� and p⃗2

� are the momenta of the two particles in the pair
rest frame. It is defined as Cðk�Þ ¼ NAðk�Þ=Bðk�Þ, where
Aðk�Þ is the measured distribution of pairs from the same
event, Bðk�Þ is the reference distribution of pairs from
mixed events, and N is a normalization parameter. The
denominator Bðk�Þ is formed by mixing particles from one
event with particles from a pool of other events with a
comparable number of charged particles at midrapidity [36]
and a comparable interval of the collision primary vertex
coordinate along the beam axis, Vz interval (ΔVz ¼ 2 cm).
The normalization parameter N is chosen such that
the mean value of the correlation function equals unity
for 400 < k� < 600 MeV=c.
The main subdetectors used in this analysis are the V0

detectors [37], which are used as trigger detectors, the inner
tracking system (ITS) [38], the time projection chamber
(TPC) [39] and the time-of-flight (TOF) detector [40]. The
ITS, TPC, and TOF are located inside a 0.5 T solenoidal
magnetic field and are used to track and identify charged
particles. In order to ensure a uniform acceptance at
midrapidity, events were selected by requiring the Vz of
the event to be within 10 cm from the center of the ALICE

detector. The rejection of pileup is performed by exploiting
the innermost silicon detector (SPD, part of ITS) vertexing
capabilities, following the same procedure described in
Refs. [33,41]. After the application of the event selection
criteria, about 874 million, 374 million, and 1 billion
minimum bias pp events were analyzed at

ffiffiffi

s
p ¼ 5, 7,

and 13 TeV, respectively.
As recently proposed in Ref. [42], in order to reduce the

contribution from the minijet background in pp collisions,
the events were classified according to their transverse
sphericity (ST), an observable which is known to be
correlated with the number of hard parton-parton inter-
actions in each event [43]. An event with only one hard
parton-parton interaction will generally produce a jetlike
distribution that yields low sphericity, while an event with
several independent hard parton-parton interactions can
yield higher sphericity. To reduce the strong minijet back-
ground at low momenta, only events with ST , defined as in
Ref. [42], larger than 0.7 were considered in this analysis.
Charged particles were tracked and selected using the

same criteria described in Ref. [33]. The charged kaons and
protonswere identified in awide transversemomentum (pT)
interval (0.15 < pT < 1.4 GeV=c for kaons and 0.4 <
pT < 3 GeV=c for protons) using the information provided
by the TPC and the TOF detectors. The deviation of the
measured specific ionization energy loss (dE=dx) in the
TPC from the Bethe-Bloch parametrization was required to
bewithin 3 standard deviations (σTPC). For kaons withpT >
0.4 GeV=c and protons with pT > 0.8 GeV=c, a similar
method was applied for the particle identification using the
TOF, where, on top of TPC selection, a selection based on a
maximum3 standard deviation difference from the expected
signal at a given momentum was applied. Tracks identified
ambiguously as belonging to both a proton and a kaon were
discarded. In order to remove the large fraction of eþe− pairs
that can affect the extraction of the correlation function of the
opposite-charge pairs, a selection on the pT of kaon and
protons was applied: kaon candidates are excluded if 0.3 <
pT < 0.4 GeV=c, while proton candidates are excluded in
the interval between 0.6 < pT < 0.8 GeV=c. The purity of
the selected particle samples, determined by Monte Carlo
simulations, is larger than 99% in the considered pT
intervals for all the analyzed dataset. The systematic
uncertainties of the measured Cðk�Þ were evaluated for
each k� interval by varying event and track selection criteria.
The event sample was varied by changing the selection on
the Vz position from �10 to �7 cm and by varying the
sphericity of the accepted events from ST > 0.7 to ST > 0.6
and ST > 0.8. Systematic uncertainties related to the track
selection criteriawere studied by varying the selection on the
distance of closest approach in the transverse plane direction
within the experimental resolution. To study systematic
effects related to particle identification, the number of
standard deviations around the energy loss expected for
kaons and protons in the TPC and, similarly, for the time of
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flight in the TOF was modified from 3σ to 2σ. For each
source, the systematic uncertainty was estimated as the root
mean square (RMS) of the deviations. The total systematic
uncertainty was calculated as the quadratic sum of each
source’s contribution and amounts to about 3% in the
considered k� intervals.
The measured correlation functions for (Kþp ⊕ K−p̄)

and (K−p ⊕ Kþp̄) are shown in the upper panels of Figs. 1
and 2. In both figures, each panel corresponds to a different
collision energy, as indicated in the legend. The structure
that can be seen in the (K−p ⊕ Kþp̄) correlation function
at k� around 240 MeV=c in Fig. 2 is consistent with the
Λð1520Þ which decays into K−p, with a center-of-mass
momentum for the particle pair of 243 MeV=c [44]. The
correlation function of (K−p ⊕ Kþ p̄) exhibits also a clear
structure between 50 and 60 MeV=c for the three collision
energies. The k� position of the structure is consistent with
the threshold of the K̄0n (K0n̄) channel opening at plab ¼
89 MeV=c [3,5,27] which corresponds to k� ¼ 58 MeV=c.
In order to quantify the significance of this structure, and
since the three measured distributions are mutually com-
patible, the Cðk�Þ measured at the three different energies
were summed using the number of pairs in each data
sample as a weight. The resulting Cðk�Þ was interpolated
with a spline considering the statistical uncertainties and
the derivative of the spline was then evaluated [36]. A
change in the slope of the derivative consistent with a cusp
effect in the k� region between 50 and 60 MeV=c at the
level of 4.4σ has been observed, to be compared with a
significance of 30σ for Λð1520Þ. The measurement pre-
sented here is therefore the first experimental evidence for
the opening of the K̄0n (K0n̄) channel, showing that the
femtoscopy technique is a unique tool to study the K̄p
interaction and coupled-channel effects.

The experimental correlation functions were also used to
test different potentials to describe the interaction between
Kþp (K−p̄) and K−p (Kþp̄). The measured correlation
function Cðk�Þ is compared with a theoretical function
using the following equation

Cðk�Þ ¼ ðaþ b · k�Þ · f1þ λ · ½Cðk�Þtheoretical − 1�g; ð1Þ

where the baseline ðaþ b · k�Þ is introduced to take into
account the remaining nonfemtoscopic background contri-
butions related to momentum-energy conservation which
might be present also after the ST selection. The slope b of
the baseline is fixed fromMonte Carlo simulations based on
PYTHIA 6 [45] and PYTHIA 8 [46], while the normalizationa is
a free parameter. In order to assign a systematic uncertainty
related to the slope of the baseline, the b parameter has been
varied by its uncertainty as obtained from the Monte Carlo
simulation (�10%) and the fit repeated. The parameter λ
represents the fraction of primary pairs in the analyzed
sample multiplied by the purity of the same sample and is
fixed by fitting Monte Carlo (MC) templates to the exper-
imental distributions of DCAxy of kaons and protons,
similarly to what is described in Ref. [33].
The model correlation function, Cðk�Þtheoretical, is evalu-

ated using the CATS framework [47]. The λ parameters
obtained for each analyzed dataset are reported in each
panel of Figs. 1 and 2 for same-charge and opposite-charge
Kp pairs, and vary from 0.61 to 0.76 for each considered
set. A systematic uncertainty of �10% is associated with
the λ parameters. This uncertainty was estimated by varying
the Monte Carlo templates used in the feed-down estima-
tion procedure based on PYTHIA 6 [45] for the analysis
at

ffiffiffi

s
p ¼ 7 TeV and based on PYTHIA 8 [46] for the

analyses performed at
ffiffiffi

s
p ¼ 5 and 13 TeV, and varying
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FIG. 1. (Kþp ⊕ K−p̄) correlation functions obtained from pp collisions at
ffiffiffi

s
p ¼ 5 (left), 7 (middle), and 13 TeV (right). The inset

shows the correlation function evaluated for pp collisions at
ffiffiffi

s
p ¼ 5 TeV in a wider k� interval. The measurement is shown by the black

markers; the vertical lines and the boxes represent the statistical and systematic uncertainties, respectively. Bottom panels represent
comparison with models as described in the text.
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the transport code used in the simulation from GEANT3 [48]
to GEANT4 [49].
The effects related to momentum resolution effects are

accounted for by correcting the theoretical correlation
function, similarly to what shown in Refs. [33] and [41].
The theoretical correlation function Cðk�Þtheoretical depends
not only on the interaction between particles, but also on
the profile and the size of the particle emitting source.
Under the assumption that there is a common Gaussian
source for all particle pairs produced in pp collisions at a
fixed energy, the size of the source considered in the present
analysis is fixed from the baryon-baryon analyses described
in Refs. [33] and [41]. The impact of strongly decaying
resonances (mainly K� decaying into K and Δ decaying
into p) on the determination of the radius for Kp pairs was
studied using different Monte Carlo simulations [45,46]
and found to be 10%. This contribution was linearly added
to the systematic uncertainty associated with the radius.
The radii of the considered Gaussian sources are r0 ¼
1.13� 0.02þ0.17

−0.15 fm [33] for collisions at
ffiffiffi

s
p ¼ 5 and

7 TeV, and r0 ¼ 1.18� 0.01� 0.12 fm [41] for the
ffiffiffi

s
p ¼

13 TeV collisions.
The comparison of the measured Cðk�Þ for same-charge

Kp pairs with different models is shown in Fig. 1. Each
panel presents the results at different collision energy and
the comparison with two different scenarios. The blue band
represents the correlation function evaluated as described in
Eq. (1), assuming only the presence of the Coulomb
potential to evaluate the Cðk�Þtheoretical term. The red band
represents the correlation function assuming the strong
potential implemented in the Jülich model [50] in addition
to the Coulomb potential. The latter has been implemented

using the Gamow factor [51]. In the bottom panels, the
difference between data and model evaluated in the middle
of each k� interval, and divided by statistical error of data
for the three considered collision energies are shown. The
width of the bands represents the n-σ range associated to
the model variations. The reduced χ2 are also shown. This
comparison reveals that the Coulomb interaction is not able
to describe the data points, as expected, while the intro-
duction of a strong potential allows us to reproduce
consistently the data when the same source radius as for
baryon-baryon pairs is considered. Hence, the measured
correlation functions are sensitive to the strong interaction
and can be used to test different strong potentials for the
K−p system, assuming a common source for all the Kp
pairs produced in a collision.
Similar to Fig. 1 for like-sign pairs, Fig. 2 shows the

data-model comparison for unlike-sign pairs. The measured
Cðk�Þ is reported for the three different collision energies
and the Cðk�Þ distributions were compared with different
interaction models. Since all the models considered in this
Letter do not take the presence of Λð1520Þ into account,
only the region below 170 MeV=c is considered in the
comparison. The blue bands show results obtained using
CATS with a Coulomb potential only.
The remaining curves include, on top of the Coulomb

attraction, different descriptions of the K̄N strong inter-
action. The width of each band accounts for the uncer-
tainties in the λ parameters, the source radius and the
baseline. The light blue bands corresponds to the Kyoto
model calculations with approximate boundary conditions
on the K−p wave function which neglect the contributions
from Σπ and Λπ coupled channels [26,52–55]. Moreover,
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ffiffiffi
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this version of the Kyoto model is performed in the so-
called isospin basis and hence does not include the mass
difference between K− and K̄0: no cusplike structure are
foreseen by the model in Cðk�Þ.
The introduction of coupled-channel contributions in the

correlation function has been shown to result in additional
attractive terms enhancing the signal, in particular in the
low k� region [34]. As expected, the Kyoto results clearly
underestimate the data at low momenta where the Σπ
channel is particularly relevant.
The red bands indicate results obtained with the Jülich

strong potential, recently updated to reproduce the kaonic
atom results from SIDDHARTA collaboration [34]. This
model includes explicitly both Σπ andΛπ coupled channels
below threshold and the K−–K̄0 mass difference, reflected
in the presence of a cusp structure. Accordingly, the
comparison with data shows a better agreement with
respect to the Kyoto model, but the region of k� below
100 MeV=c is nevertheless not fully reproduced and the
shape of the correlation function deviates from the data
around the cusp.
The overall tension between data and the models is not

surprising since the latter were fitted to only reproduce
scattering data above threshold (providing constraints for
k� ≥ 70 MeV=c) and the SIDDHARTA results at thresh-
old [28].
To test the stability of the results, the measured Cðk�Þ

without any ST cut was used and the background from
minijets and other kinetically correlated pairs was sub-
tracted by using a Monte Carlo simulation based on PYTHIA

8 [46], using a procedure similar to the one described in
Ref. [56]. Applying this method the comparison between
data and models is consistent within statistical uncertainties
with the one obtained using the sphericity selection.
To summarize, the momentum dependent correlations of

same-charge and opposite-charge Kp pairs [(Kþp ⊕ K−p̄)
and (K−p ⊕ Kþp̄)] were measured using the two-particle
correlation function in pp collisions at different collision
energies. A structure around k� ¼ 58 MeV=c in the mea-
sured correlation function of (K−p ⊕ Kþp̄) was observed.
The significance of such a structure was evaluated by
combining the results from the three analyzed datasets and
by interpolating the total correlation function with a spline.
By studying the variation in the slope of the derivative
of such a spline in the range 50 ≤ k� ≤ 60 MeV=c, the
kinematic cusp was assessed at a 4.4σ level. The observed
structure is consistent with the opening of the K̄0n channel
(plab ∼ 89 MeV=c). This measurement represents the first
experimental evidence for the K̄0n (K0n̄) isospin breaking
coupled channel and shows experimentally the effect of
coupled-channel contributions on the correlation function.
The measured Cðk�Þ were compared to different inter-

action scenarios. The (Kþp ⊕ K− p̄) correlation functions
were proven to be sensitive to the strong interaction, since a
Coulomb-only hypothesis is insufficient to describe the

data. The inclusion of the strong interaction via the Jülich
model results in a reasonable description of the data within
uncertainties. The (K−p ⊕ Kþp̄) correlation functions at
low k� cannot be fully reproduced by the considered
potentials. Nevertheless, model including explicitly
coupled-channel contributions shows a better agreement
with data. The data presented here represent the most
precise experimental information for the KN interaction
and provide new constraints for future low-energy phe-
nomenological QCD calculations that can be used to shed
light on the nature of the K̄N interaction.
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S. Bagnasco,58 R. Bailhache,69 R. Bala,99 A. Baldisseri,137 M. Ball,42 R. C. Baral,85 R. Barbera,28a,28b L. Barioglio,26a,26b

G. G. Barnaföldi,145 L. S. Barnby,92 V. Barret,134 P. Bartalini,6 K. Barth,34 E. Bartsch,69 F. Baruffaldi,29a,29b N. Bastid,134

S. Basu,143 G. Batigne,114 B. Batyunya,75 P. C. Batzing,21 D. Bauri,48 J. L. Bazo Alba,110 I. G. Bearden,88 C. Bedda,63

N. K. Behera,60 I. Belikov,136 F. Bellini,34 R. Bellwied,126 V. Belyaev,91 G. Bencedi,145 S. Beole,26a,26b A. Bercuci,47

Y. Berdnikov,96 D. Berenyi,145 R. A. Bertens,130 D. Berzano,58 L. Betev,34 A. Bhasin,99 I. R. Bhat,99 H. Bhatt,48

B. Bhattacharjee,41 A. Bianchi,26a,26b L. Bianchi,126,26a,26b N. Bianchi,51 J. Bielčík,37 J. Bielčíková,93 A. Bilandzic,103,117

G. Biro,145 R. Biswas,3a,3b S. Biswas,3a,3b J. T. Blair,119 D. Blau,87 C. Blume,69 G. Boca,139 F. Bock,34,94 A. Bogdanov,91

L. Boldizsár,145 A. Bolozdynya,91 M. Bombara,38 G. Bonomi,140 M. Bonora,34 H. Borel,137 A. Borissov,144,91 M. Borri,128

H. Bossi,146 E. Botta,26a,26b C. Bourjau,88 L. Bratrud,69 P. Braun-Munzinger,105 M. Bregant,121 T. A. Broker,69 M. Broz,37

E. J. Brucken,43 E. Bruna,58 G. E. Bruno,33a,33b,104 M. D. Buckland,128 D. Budnikov,107 H. Buesching,69 S. Bufalino,31

O. Bugnon,114 P. Buhler,113 P. Buncic,34 O. Busch,133,a Z. Buthelezi,73 J. B. Butt,15 J. T. Buxton,95 D. Caffarri,89 A. Caliva,105

E. Calvo Villar,110 R. S. Camacho,44 P. Camerini,25a,25b A. A. Capon,113 F. Carnesecchi,10 J. Castillo Castellanos,137

A. J. Castro,130 E. A. R. Casula,54 F. Catalano,31 C. Ceballos Sanchez,52 P. Chakraborty,48 S. Chandra,141 B. Chang,127

W. Chang,6 S. Chapeland,34 M. Chartier,128 S. Chattopadhyay,141 S. Chattopadhyay,108 A. Chauvin,24a,24b C. Cheshkov,135

B. Cheynis,135 V. Chibante Barroso,34 D. D. Chinellato,122 S. Cho,60 P. Chochula,34 T. Chowdhury,134 P. Christakoglou,89

C. H. Christensen,88 P. Christiansen,80 T. Chujo,133 C. Cicalo,54 L. Cifarelli,10,27a,27b F. Cindolo,53 J. Cleymans,125

F. Colamaria,52 D. Colella,52 A. Collu,79 M. Colocci,27a,27b M. Concas,58,b G. Conesa Balbastre,78 Z. Conesa del Valle,61

G. Contin,128 J. G. Contreras,37 T. M. Cormier,94 Y. Corrales Morales,26a,26b,58 P. Cortese,32 M. R. Cosentino,123 F. Costa,34

S. Costanza,139 J. Crkovská,61 P. Crochet,134 E. Cuautle,70 L. Cunqueiro,94 D. Dabrowski,142 T. Dahms,103,117 A. Dainese,56

F. P. A. Damas,137,114 S. Dani,66 M. C. Danisch,102 A. Danu,68 D. Das,108 I. Das,108 S. Das,3a,3b A. Dash,85 S. Dash,48

A. Dashi,103 S. De,85,49 A. De Caro,30a,30b G. de Cataldo,52 C. de Conti,121 J. de Cuveland,39 A. De Falco,24a,24b

D. De Gruttola,10 N. De Marco,58 S. De Pasquale,30a,30b R. D. De Souza,122 S. Deb,49 H. F. Degenhardt,121 A. Deisting,102,105

K. R. Deja,142 A. Deloff,84 S. Delsanto,131,26a,26b P. Dhankher,48 D. Di Bari,33a,33b A. Di Mauro,34 R. A. Diaz,8 T. Dietel,125
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24bSezione INFN, Cagliari, Italy

25aDipartimento di Fisica dell’Università, Trieste, Italy
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