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The first measurement at the LHC of charge-dependent directed flow (v1) relative to the spectator plane
is presented for Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. Results are reported for charged hadrons and D0

mesons for the transverse momentum intervals pT > 0.2 GeV=c and 3 < pT < 6 GeV=c in the 5%–40%
and 10%–40% centrality classes, respectively. The difference between the positively and negatively
charged hadron v1 has a positive slope as a function of pseudorapidity η, dΔv1=dη ¼
½1.68� 0.49ðstatÞ � 0.41ðsystÞ� × 10−4. The same measurement for D0 and D̄0 mesons yields a positive
value dΔv1=dη ¼ ½4.9� 1.7ðstatÞ � 0.6ðsystÞ� × 10−1, which is about 3 orders of magnitude larger than
the one of the charged hadrons. These measurements can provide new insights into the effects of the strong
electromagnetic field and the initial tilt of matter created in noncentral heavy ion collisions on the dynamics
of light (u, d, and s) and heavy (c) quarks. The large difference between the observed Δv1 of charged
hadrons and D0 mesons may reflect different sensitivity of the charm and light quarks to the early time
dynamics of a heavy ion collision. These observations challenge some recent theoretical calculations,
which predicted a negative and an order of magnitude smaller value of dΔv1=dη for both light flavor and
charmed hadrons.

DOI: 10.1103/PhysRevLett.125.022301

Quantum chromodynamic (QCD) calculations on the
lattice [1–6] predict at high temperatures the existence of a
deconfined state of quarks and gluons, known as the quark–
gluon plasma (QGP). Characterizing the QGP properties is
among the main goals of the experimental program with
ultrarelativistic heavy ion collisions at the Large Hadron
Collider (LHC). Measurements of the anisotropic trans-
verse flow [7–11], quantified by the second (v2) and higher
order (n > 2) harmonic coefficients vn, allow one to
characterize the different phases of a heavy ion collision
and constrain the properties of the QGP [12–16].
The directed flow, v1, has a special role due to its

sensitivity to the three-dimensional spatial profile of the
initial conditions and the preequilibrium early time dynam-
ics in the evolution of the collision. The space momentum
correlations in particle production from a longitudinally
tilted source result in a nonzero v1. The tilt arises from the
asymmetries in the number of forward and backward
moving participant nucleons at different positions in the
transverse plane [17–19]. The directed flow of charged

hadrons at the LHC [20] has significantly smaller magni-
tude compared to that at lower relativistic heavy ion collider
(RHIC) energies [21], which can be interpreted as a smaller
initial tilt at the LHC [22–24].
Charm quarks are produced early in the collision via hard

scattering processes. Their emission region is not tilted in
the longitudinal direction [19] unlike the one of light
quarks, which are predominantly produced in soft proc-
esses at later stages of the collision [18,25]. Consequently,
the region of charm quark production in the transverse
plane is shifted with respect to that of light quarks and
gluons, resulting in an enhanced dipole asymmetry in the
charm quark distribution [19]. During the system expan-
sion, charm quarks would be dragged by the flow of the
light quarks in the transverse direction of the shift, which is
predicted to result in a larger v1 of charm hadrons
compared to light flavor hadrons [19,26]. Consequently,
the measurements of the charge-integrated directed flow of
hadrons containing light (u, d, and s) and heavy (c) quarks
together with their difference in magnitude are of great
interest and allow one to probe the three-dimensional
space-time evolution of the produced matter.
Heavy ion collisions are also characterized by extremely

strong electromagnetic fields primarily induced by specta-
tor protons, which do not undergo inelastic collisions.
There is strong interest in characterizing the time evolution
of these fields, which are estimated to reach 1018–1019

Gauss in the early stages (<0.5 fm) of Pb-Pb collisions at
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LHC energies [27,28]. Phenomena predicted to occur in
the presence of this strong electromagnetic field include the
chiral magnetic effect (CME), which is driven by the
generation of an electric current along the magnetic field
in a medium with chiral imbalance [29–32]. While exper-
imental results for charge-dependent correlations are in
qualitative agreement with theoretical expectations for the
CME [33–35], possible background contributions, such as
effects of local charge conservation coupled with the
anisotropic flow, prevent their unambiguous interpretation
[36] and have led to upper limits on the CME at LHC
energies. Thus, it is fundamental to use other observables
with direct sensitivity to the electromagnetic fields in order
to constrain their magnitudes and time evolution in heavy
ion collisions.
The charge dependence of the produced particle directed

flow relative to the spectator plane is directly sensitive to
the presence of electromagnetic fields. The spectator plane
is defined by the deflection direction of the collision
spectators. On average, its orientation is perpendicular to
the direction of the magnetic field generated by the
positively charged spectators. The charge dependence of
v1 comes from two competing effects acting in opposite
directions: the Lorentz force and the Coulomb force, both
induced by the rapidly decreasing magnetic field. In an
electrically conducting plasma, the induced charged cur-
rents might slow down the decay of the magnetic field [27].
The measurement of charge-dependent v1 can therefore
constrain the QGP electric conductivity.
First estimates of these effects on the v1 of charged

particles were presented in [37,38]. Using the electric
conductivity from lattice QCD calculations [39,40], the
difference between the v1 of positively and negatively
charged pions, Δv1ðπÞ ¼ v1ðπþÞ − v1ðπ−Þ, in Pb-Pb col-
lisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV was estimated to be not larger
than 10−5 for jηj < 1 [38]. Charm quarks, which are
produced in the early stages when the magnetic field is
maximal, should be more strongly affected by the electro-
magnetic fields than light quarks [26,41]. The difference
Δv1 between the v1 of D0 (cū) and D̄0 (c̄u) mesons should
therefore provide better sensitivity to this initial magnetic
field. A calculation of v1 of charmed mesons in the rapidity
interval jyj < 1 gives a value Δv1ðDÞ ∼ 10−2 [41], which is
3 orders of magnitude larger than the one expected for
pions. Recently, STAR Collaboration published a meas-
urement of directed flow of D0 and D̄0 mesons in 10%–
80% central Au–Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [42].
The slope of v1 of D0 and D̄0 mesons as a function of
rapidity is negative and about a factor of 25 times larger
than that of charged kaons.
This Letter reports the first measurements at the LHC

of the charge dependence of v1 relative to the spectator
plane for charged hadrons and D0 mesons as a function
of pseudorapidity in midcentral Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.

About 23ð19Þ × 106 Pb-Pb collisions in the 5%–40%
(10%–40%) centrality interval are used for the charged
hadron (D0 and D̄0 meson) v1 measurements. Only events
with a primary vertex reconstructed within �10 cm from
the detector center along the beam direction are analyzed.
Two forward scintillator arrays (V0A and V0C) [43] are
used to determine the collision centrality. For the most
central (0%–5%) collisions, the small number of spectators
prevents an accurate reconstruction of their deflection. In
the 5%–10% centrality interval, the large combinatorial
background does not allow the measurement of the D0 and
D̄0 v1.
The deflection direction of the collision spectators is

reconstructed from spectator neutrons detected using two
zero degree calorimeters (ZDCs) [44,45]. The ZDCs have a
2 × 2 segmentation in the plane transverse to the beam
direction and are installed at 112.5 m distance from the
detector center on both sides of the interaction point,
covering the “projectile” (η > 8.78) and the “target”
(η < −8.78) spectator regions. For each ZDC, a flow
vector is constructed following the procedure described
in [20]:

Qt;p ≡ ðQt;p
x ;Qt;p

y Þ ¼
X4
i¼1

niE
t;p
i

�X4
i¼1

Et;p
i ; ð1Þ

where p and t denote the ZDC on the projectile and target
side, Ei is the measured signal, and ni ¼ ðxi; yiÞ are the
coordinates of the center of the ith ZDC segment.
The deflection direction of the spectator neutrons is

estimated event by event with the Qt;p vectors corrected
for the run-dependent variation of the LHC beam crossing
position [46]. In midcentral collisions, this deflection
direction is strongly correlated with the magnetic field
orientation. The deflection is expected to be opposite
(anticorrelated) for the projectile and the target sides, i.e.,
hQp

xQt
xi ¼ hQp

yQt
yi < 0 and hQp

yQt
xi and hQp

xQt
yi ¼ 0.

A deviation from these expectations, mostly for peripheral
collisions with centrality above 40%, is observed even after
applying the flow vector correction. These residual varia-
tions are used in the estimation of the systematic uncertainty
as described in [20] and discussed below.
The directed flow is measured using the scalar product

method [47] as follows:

vt;p1 ¼ huQt;piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhQtQpijp ¼ huxQt;p
x þ uyQ

t;p
y iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jhQt
xQ

p
x þ Qt

yQ
p
y ij

q ; ð2Þ

where u ¼ ðcosφ; sinφÞ is the unit flow vector of the
charged hadron or D0 meson candidate with azimuthal angle
φ. The directed flow is calculated as v1 ¼ ðvp1 − vt1Þ=2. The
sign of v1 is defined relative to the deflection of the projectile
spectators, corresponding to the rapidity odd component of
the v1 discussed in [20]. The measurement of v1 using
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spectators does not require any treatment of the momentum
conservation unlike the measurements based on correlations
between particles produced at midrapidity [48]. This is
justified by the observation of a vanishing relative momen-
tum shift along the spectator plane at η ¼ 0 [20].
The charged hadron v1 is measured from tracks recon-

structed with the Inner Tracking System (ITS) [49] and the
time projection chamber (TPC) [50] and selected requiring
pT > 0.2 GeV=c, jηj < 0.8, at least 70 (out of a maximum
of 159) TPC space points and χ2=ndf < 2 for themomentum
fit in the TPC. In order to reduce the contamination from
secondary particles, only trackswith amaximumdistance of
closest approach (DCA) to the reconstructed primary vertex
in both the transverse (DCAxy < 2.4 cm) and the longi-
tudinal direction (DCAz < 3.2 cm) are accepted.
The D0 and D̄0 mesons are reconstructed using the

decay channel D0 → K−πþ and its charge conjugate for
3 < pT < 6 GeV=c. Pions and kaons are reconstructed in
the TPC and ITS detectors. Tracks are selected requiring
jηj < 0.8, pT > 0.4 GeV=c, at least 70 hits in TPC, and at
least two hits (out of a maximum of six) in the ITS, out of
which at least one has to be in the two innermost layers.
Particle identification is based on measurements of the
specific ionization energy loss dE=dx in the TPC and the
flight time from the interaction point to the time of flight
(TOF) detector [51]. The charge of the identified pions and
kaons allows one to distinguish between the D0 → K−πþ

and D̄0 → Kþπ− candidates. Geometrical selections on the
displaced decay vertex topology are applied to reduce the
combinatorial background [52].
The vD1 is extracted separately for D0 and D̄0 mesons via

a simultaneous fit to the number NðMÞ of K∓π� pairs and
their v1ðMÞ as a function of the invariant mass, M:

NðMÞ ¼ NDðMÞ þ NbgðMÞ; ð3Þ

v1ðMÞ¼½vD1 NDðMÞþvbg1 ðMÞNbgðMÞ�=½NDðMÞþNbgðMÞ�:
ð4Þ

An example of the simultaneous fit is shown in Fig. 1. The
invariant mass distribution is fitted with the sum of a
Gaussian function NDðMÞ for the D0 and D̄0 signal and an
exponential function NbgðMÞ for the background. The
invariant mass dependence of the directed flow of back-
ground candidates vbg1 ðMÞ is parameterized by a linear
function.
Candidates that satisfy both the K−πþ and Kþπ−

hypotheses (reflected kinematics) and therefore cannot
be tagged uniquely as D0 or D̄0 are rejected. This removes
about 35% of the signal and increases the signal to
background ratio by about 30%–40%, with a net result
of a negligible reduction of the statistical significance of the
D0 and D̄0 yield. The extracted vD1 includes contributions
from both prompt D0 mesons and feed-down D0 mesons

from beauty hadron decays. The fraction of prompt D0

meson is about 85% for the analyzed centrality class and pT
interval [53].
Common sources of systematic uncertainty between

charged hadrons and D mesons are related to the resolution
of the spectator plane and to the dependence on the ALICE
magnet polarity. The absolute systematic uncertainty
related to the residual asymmetry in the spectator plane
estimation is given by the difference between the v1
obtained separately from huxQxi and huyQyi correlations
with the ZDCs in Eq. (2). It is about 3.5 × 10−5 (2 × 10−2)
for charged hadrons (D0 and D̄0 mesons). Effects related to
track reconstruction and geometrical alignment of the
detectors, which could influence positive and negative
tracks differently, are estimated by comparing the v1 results
obtained using data taken with opposite magnet polarity.
This comparison also probes the bias in the spectator plane
estimation due to the nonzero beam crossing angle in the
vertical plane, which had opposite values (�60 μrad) for
the opposite magnet polarities. The absolute difference
between the v1 values obtained with the two field polarities
is 2.5 × 10−5 (2 × 10−2) for charged hadrons (D0 and D̄0).
These systematic uncertainties are correlated in pseudor-
apidity for charged hadrons, while for D0 and D̄0 mesons
no significant correlation, beyond statistical uncertainties,
is observed.
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FIG. 1. Illustration of the D0 meson v1 extraction procedure via
a simultaneous fit to the candidate invariant mass distribution
(upper panel) and v1 (lower panel) for 3 < pT < 6 GeV=c and
−0.4 < η < 0 in the 10%–40% centrality interval. The blue solid
lines correspond to the combined signal and background fit
functions, while the red dashed lines represent the background
contribution.
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For charged hadrons, the track quality selections are
varied and an absolute systematic uncertainty of 2.5 × 10−5
is assigned. The contribution from secondaries is varied by
changing the maximum DCAxy, which resulted in a negli-
gible variation of v1. The contamination due to TPC tracks
originating from pileup collisions during the readout time of
the TPC is estimated by varying the selections on the
correlations between the event multiplicity (centrality)
estimated with detectors with different readout times. The
resulting systematic uncertainty is 10−5 for the charged
hadrons. No systematic uncertainty is assigned for D0 and
D̄0 because the topological selections effectively remove
tracks from pileup. The uncertainty due to the D0 and D̄0

signal extraction is estimated by varying (i) the fit functions
in Eqs. (3) and (4) for NðMÞ and v1ðMÞ, (ii) fixing the
Gaussian width and mean to the values extracted from
MonteCarlo simulations, and (iii) varying the invariantmass
fit range. The absolute systematic uncertainty assigned to v1
due to the D0 and D̄0 yield extraction is 2 × 10−2. The
possible bias due to the pT-dependent efficiency in the D0

and D̄0 v1 analysis is tested by reweighting both signal and
background with the inverse value of the signal
reconstruction efficiency as a function of pT. The assigned
absolute systematic uncertainty is 10−2.
The total systematic uncertainty on v1 is obtained by

adding in quadrature the contributions described above.

In the calculation of Δv1ðDÞ, all individual systematic
uncertainties are propagated as fully uncorrelated between
D0 and D̄0. For charged hadrons, the systematic uncer-
tainties due to the asymmetry in the spectator plane
estimation and the magnet polarity are correlated between
positive and negative tracks and largely cancel in Δv1ðhÞ.
The pseudorapidity dependence of the directed flow of

positively and negatively charged hadrons for the 5%–40%
centrality class in Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV is
shown in the upper left panel of Fig. 2. The negative slope
of v1 is usually attributed to the effect of the initial tilt [18]
or rotation [25] of the particle-emitting source. The charge-
integrated v1 at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV agrees within uncer-
tainties with the results at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV [20].
The difference Δv1ðhÞ between the v1 of positively and

negatively charged hadrons as a function of pseudorapidity
is shown in the lower left panel of Fig. 2. The rapidity slope
dΔv1=dη, extracted with a linear fit (constrained to v1 ¼ 0

at η ¼ 0), is dΔv1=dη ¼ ½1.68� 0.49ðstatÞ � 0.41ðsystÞ� ×
10−4 with a significance of 2.6σ for having a positive value.
The dΔv1=dη is expected to reflect different effects,
including those originating from the early time magnetic
field dynamics [19,26,41] and the Coulomb interaction
with charged spectators [54], as well as the transport to
midrapidity via the baryon stopping mechanism [17] of the
positive charge carried by the protons from the colliding
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FIG. 2. Upper left: v1 of positively (red) and negatively (blue) charged hadrons for the 5%–40% centrality interval. Upper right: v1 of
D0 (red) and D̄0 (blue) for the 10%–40% centrality interval. Lower left and right: Δv1ðhÞ ¼ v1ðhþÞ − v1ðh−Þ and Δv1ðDÞ ¼
v1ðD0Þ − v1ðD̄0Þ, respectively. Dashed lines represent fits with a linear function.

PHYSICAL REVIEW LETTERS 125, 022301 (2020)

022301-4



nuclei. The importance of baryon stopping for the charge
dependence of unidentified hadron v1 is supported by the
observed difference, even at top RHIC energy, between
proton and antiproton v1 [22,55,56]. The baryon stopping
effects are expected to decrease with increasing collision
energy, as supported by the observation of a smaller
magnitude of v1 [20] and of a proton to antiproton ratio
closer to unity at the LHC as compared to RHIC [57].
Despite the overall decrease, the baryon stopping can
contribute significantly to the proton and antiproton v1
difference and, as such, to the charge dependence of the
inclusive hadron v1.
The charged hadron dΔv1=dη at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV is 1
order of magnitude larger and has an opposite sign with
respect to calculations for charged pions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
2.76 TeV [38] based on the analytic solution of relativistic
hydrodynamics [58] with a constant electrical conductivity
of the QGP. More recent calculations [54], using viscous
hydrodynamic calculations [59], yield an absolute value of
dΔv1=dη of similar magnitude as the one measured for
charged hadrons but with opposite sign.
The D0 and D̄0 v1 as a function of pseudorapidity is

shown in the upper right panel of Fig. 2. The data suggest a
positive slope for the rapidity dependence of the v1 of D0

and a negative slope for D̄0, with a significance of about 2σ
in both cases. The slopes are different from the measure-
ments in Au–Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [42],
where a negative value is observed for both D0 and D̄0.
Additionally, the v1 for D0 and D̄0 mesons with 3 < pT <
6 GeV=c (hpTi ≈ 4.2 GeV=c) in the 10%–40% centrality
interval is about 3 orders of magnitude larger than that of
charged hadrons with pT>0.2GeV=c (hpTi ≈ 0.7 GeV=c)
in the 5%–40% centrality class. The different pT intervals
used for the charged hadron and D0 meson v1 measure-
ments are imposed by the statistical precision of the data,
which simultaneously limits the yield of high pT charged
hadrons and results in low significance of the D0 and D̄0

meson yield at low pT. The charged hadron v1 at the LHC
has a weak centrality dependence and changes sign around
pT ≈ 1.5 GeV=c [20]. The differences in centrality and
transverse momentum intervals should not be responsible
for the observed difference between the magnitude of the v1
of charged hadrons and D0 and D̄0 mesons. The D0 and D̄0

v1 is an order of magnitude larger than the predictions
from the transport [41] and hydrodynamic [19,26] model
calculations. The difference between the v1 values of D0

and D̄0 mesons Δv1ðDÞ is shown in the lower right panel
of Fig. 2. The value of dΔv1=dη ¼ ½4.9� 1.7ðstatÞ �
0.6ðsystÞ� × 10−1 corresponds to a significance of 2.7σ
to have a positive slope. A negative value for dΔv1=dη was
predicted in [41] and is observed in Au–Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV [42]. The opposite sign of the measured
D0 meson and charged hadron Δv1 slope with respect to
model calculations might indicate a stronger effect of the

Lorentz force relative to the Coulomb one. These results
demonstrate the sensitivity of the v1 to the interplay among
the effects of the rapidly decreasing magnetic field and the
initial tilt of the source.
In summary, first measurements of the charge depend-

ence of v1 relative to the spectator plane in midcentral Pb-
Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV are presented. The v1
and the difference Δv1 between positively and negatively
charged hadrons and D0 mesons are sensitive to the effects
of the electromagnetic fields induced by spectator protons,
baryon number transport, and the initial tilt or rotation of
the particle-emitting source for noncentral collisions. An
indication of a positive slope dΔv1=dη of the charge-
dependent v1 at midrapidity for both charged hadrons and
D0 and D̄0 mesons is observed. The slope dΔv1=dη is
½1.68�0.49ðstatÞ�0.41ðsystÞ�×10−4 for charged hadrons
with pT>0.2GeV=c and ½4.9�1.7ðstatÞ�0.6ðsystÞ�×10−1
for D0 and D̄0 mesons with 3 < pT < 6 GeV=c, with
significance of 2.6σ and 2.7σ for having a positive value,
respectively. The measured values of v1 for D0 and D̄0

mesons are about 3 orders of magnitude larger than the
measured value of charged hadrons. These measurements
together with those at RHIC [42] provide new insights and
can constrain the theoretical modeling [38,41] of electro-
magnetic effects. Further constraints will be set by future
higher precision measurements at the LHC [60,61].
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25bSezione INFN, Turin, Italy
26aDipartimento di Fisica e Astronomia dell’Università, Bologna, Italy
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