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Measurements of K∗(892)0 and φ(1020) resonance production in Pb–Pb and pp collisions at √sNN = 5.02 
TeV with the ALICE detector at the Large Hadron Collider are reported. The resonances are measured 
at midrapidity (|y| < 0.5) via their hadronic decay channels and the transverse momentum (pT) 
distributions are obtained for various collision centrality classes up to pT = 20 GeV/c. The pT-integrated 
yield ratio K∗(892)0/K in Pb–Pb collisions shows significant suppression relative to pp collisions 
and decreases towards more central collisions. In contrast, the φ(1020)/K ratio does not show any 
suppression. Furthermore, the measured K∗(892)0/K ratio in central Pb–Pb collisions is significantly 
suppressed with respect to the expectations based on a thermal model calculation, while the φ(1020)/K 
ratio agrees with the model prediction. These measurements are an experimental demonstration of 
rescattering of K∗(892)0 decay products in the hadronic phase of the collisions. The K∗(892)0/K yield 
ratios in Pb–Pb and pp collisions are used to estimate the time duration between chemical and 
kinetic freeze-out, which is found to be ∼ 4–7 fm/c for central collisions. The pT-differential ratios 
of K∗(892)0/K, φ(1020)/K, K∗(892)0/π , φ(1020)/π , p/K∗(892)0 and p/φ(1020) are also presented 
for Pb–Pb and pp collisions at √

sNN = 5.02 TeV. These ratios show that the rescattering effect is 
predominantly a low-pT phenomenon.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Several measurements in high-energy heavy-ion collisions at 
the Large Hadron Collider (LHC) [1–3] and the Relativistic Heavy 
Ion Collider (RHIC) [4–9] have shown that a strongly-coupled 
Quark-Gluon Plasma (QGP) is formed that subsequently hadronizes. 
Resonances, short lived hadrons that decay via strong interactions, 
play an important role in characterizing the properties of hadronic 
matter formed in heavy-ion collisions [10–16]. Several resonances 
have been observed in pp and nuclear collisions [10–19]: f2(1270), 
ρ(770)0, �(1232)++ , f0(980), K∗(892)0,± , �(1385), �(1520) and 
φ(1020) with lifetimes of the order of 1.1 fm/c, 1.3 fm/c, 1.6 
fm/c, 2.6 fm/c, 4.16 fm/c, 5.5 fm/c, 12.6 fm/c and 46.3 fm/c, re-
spectively [20]. The wide range of their lifetimes allows them to 
be good probes of the dynamics of the system formed in ultra-
relativistic heavy-ion collisions [21–27].

In the hadronic phase of the evolution of the system formed 
in heavy-ion collisions, there are two important temperatures and 
corresponding timescales: the chemical freeze-out, when the in-
elastic collisions among the constituents are expected to cease, 
and the later kinetic freeze-out, when all (elastic) interactions 

� E-mail address: alice -publications @cern .ch.

stop [28–30]. If resonances decay before kinetic freeze-out, then 
their decay products are subject to hadronic rescattering that alters 
their momentum distributions. This leads to inability to recon-
struct the parent resonance using the invariant mass technique, 
resulting in a decrease in the measured yield relative to the pri-
mordial resonance yield, i.e. the yield at chemical freeze-out. The 
fraction of resonances that cannot be recovered depends on the 
lifetime of the hadronic phase (defined as the time between chem-
ical and kinetic freeze-out), the hadronic interaction cross section 
of resonance decay products, the particle density in the medium 
and the resonance phase space distributions. For example, a pion 
from a K∗(892)0 meson decay could scatter with another pion in 
the medium as π−π+ → ρ0 → π−π+ . At the same time, after 
the chemical freeze-out, pseudoelastic interactions could regener-
ate resonances in the medium, leading to an enhancement of their 
yields. For example, interactions like πK → K∗(892)0 → πK and 
K−K+ → φ(1020) → K−K+ could happen until kinetic freeze-out. 
Hence, resonances are probes of the rescattering and regeneration 
processes during the evolution of the fireball from chemical to ki-
netic freeze-out. Indeed, transport-based model calculations show 
that both rescattering and regeneration processes affect the final 
resonance yields [31,32]. Thermal statistical models, which have 
successfully explained a host of particle yields in heavy-ion colli-
sions across a wide range of center-of-mass energies [33–36], are 
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able to explain the measured resonance yields only after including 
rescattering effects [37,38].

In this paper, the measurement of the production of K∗(892)0

and φ(1020) vector mesons at midrapidity in Pb–Pb and pp col-
lisions at 

√
sNN = 5.02 TeV is presented. Although both vector 

mesons have similar masses, their lifetime differs by a factor of 
larger than 10. This aspect is exploited to establish the dominance 
of rescattering in central Pb–Pb collisions at the LHC. The kaon 
and pion daughters of the short-lived K∗(892)0 → Kπ rescatter 
with other hadrons in the medium. The magnitude of the effect is 
mainly determined by the pion-pion interaction cross section [39], 
which is measured to be significantly larger (factor 5) than the to-
tal kaon-pion interaction cross section [40]. The latter determines 
the magnitude of the regeneration effect [41]. Thus with rescatter-
ing dominating over regeneration, the observable K∗(892)0 yields 
should decrease compared to the primordial yields, and there-
fore, a suppression of the K∗(892)0/K yield ratio is expected in 
heavy-ion collisions relative to pp collisions. Furthermore, this ra-
tio is expected to decrease with increase in system size, which is 
determined by the collision centrality (maximum for central colli-
sions). In contrast, because of a larger lifetime compared to that of 
the hadronic phase, the φ(1020) meson yields are not expected 
to be affected by rescattering [14,32]. The φ(1020) mesons are 
also expected not to be affected by the regeneration due to sig-
nificantly lower KK cross section compared to Kπ and ππ cross 
sections [39,40]. Hence the independence of the φ(1020)/K yield 
ratio of the system size will act as a baseline for corresponding 
K∗(892)0/K measurements, thereby supporting the presence of the 
rescattering effect in heavy-ion collisions. The lower K∗(892)0/K 
yield ratio in Pb–Pb collisions compared to pp at the same 

√
sNN

can then be used to estimate the time span between chemical 
and kinetic freeze-out in heavy-ion collisions. Furthermore, due to 
the scattering of the decay products, the low-pT K∗(892)0 are less 
likely to escape the hadronic medium before decaying, compared 
to high-pT K∗(892)0 [32]. This could alter the K∗(892)0 pT spectra 
in Pb–Pb collisions compared to pp, while no such effect is ex-
pected for φ mesons. Therefore, studying pT-differential ratios of 
K∗(892)0 and φ(1020) mesons with respect to other non-strange 
(π ) and strange (K) mesons, and baryons (p) in Pb–Pb and pp 
collisions will help to establish the pT dependence of rescatter-
ing effects and disentangle them from other physics processes like 
radial flow that modifies the shapes of the pT distributions at low 
and intermediate transverse momenta. In addition, the measure-
ments at 

√
sNN = 5.02 TeV are compared to results from Pb–Pb 

collisions at 
√

sNN = 2.76 TeV [14,42]. Since production of parti-
cles and antiparticles is equal at midrapidity at LHC energies, the 
average of the yields of K∗(892)0 and K∗

(892)0 is presented in this 
paper and is denoted by the symbol K∗0 unless specified other-
wise. The φ(1020) is denoted by the symbol φ.

The paper is organized as follows: In section 2, the detectors 
used in the analysis are briefly described. In section 3, the dataset, 
the analysis techniques, the procedure for extraction of the yields 
of K∗0 and φ mesons and the study of the systematic uncertain-
ties are presented. In section 4, the yields obtained by invariant 
mass reconstruction of K∗0 and φ mesons as a function of trans-
verse momentum in Pb–Pb and pp collisions at 

√
sNN = 5.02 TeV, 

the pT-integrated ratios of K∗0 and φ relative to charged kaons, 
and pT-differential ratios relative to charged π , K and protons are 
reported. Finally, in section 5 the findings are summarized.

2. Experimental apparatus

The measurements of K∗0 and φ meson production in pp and 
Pb–Pb collisions have been performed using the data collected by 
the ALICE detector in the year 2015. The details of the ALICE de-

tector can be found in Refs. [43–45]. So we briefly focus on the 
following main detectors used for this analysis. The forward V0 
detector, a scintillator detector with a timing resolution less than 
1 ns, is used for centrality selection, triggering and beam-induced 
background rejection. The V0 consists of two sub-detectors, V0A 
and V0C, placed at asymmetric positions, one on each side of the 
interaction point with full azimuthal acceptance and cover the 
pseudorapidity ranges 2.8 < η < 5.1 and -3.7 < η < -1.7, re-
spectively. The centrality classes in Pb–Pb collisions are determined 
from the sum of the measured signal amplitudes in V0A and V0C, 
as discussed in Refs. [46,47]. The collision time information is pro-
vided by T0 which consist of two arrays of Cherenkov counters 
T0A and T0C, positioned on both sides of the interaction point [48]. 
The Zero Degree Calorimeter (ZDC) consists of two tungsten-quartz 
neutron and two brass-quartz proton calorimeter placed at a dis-
tance of 113 m on both sides of the interaction point. It is used to 
reject the background events and to measure the spectator nucle-
ons.

In the central barrel, the Inner Tracking System (ITS) and the 
Time Projection Chamber (TPC) are used for charged-particle track-
ing and primary collision vertex reconstruction. The ITS consists of 
three sub-detectors of two layers each, covering a central pseu-
dorapidity range |η| < 0.9: Silicon Pixel Detector (SPD), Silicon 
Drift Detector (SDD) and Silicon Strip Detector (SSD). The TPC is 
the main charged particle tracking detector, and has full azimuthal 
coverage in the pseudorapidity range |η| < 0.9. Along with track 
reconstruction, it also provides a measurement of the momentum 
and excellent particle identification (PID). The TPC provides the 
measured specific energy loss (dE/dx) to identify the particles, es-
pecially in low momentum range (p < 1 GeV/c) where the dE/dx
of particles are well separated. To extend the particle identification 
to higher pT, the Time of Flight (TOF) detector is used in addition 
to the TPC information. The TOF is based on the Multigap Resistive 
Plate Chamber (MRPC) technology and measures the arrival times 
of particles with a resolution of the order of 80 ps. It covers a 
pseudorapidity range |η| < 0.9 and provides excellent PID capabil-
ities in the intermediate pT range by exploiting the time-of-flight 
information.

3. Data sample and analysis details

The pp data were collected using a minimum bias (MB) trigger. 
The logic for MB trigger requires at least one hit in V0A or V0C 
and one hit in the central barrel detector SPD in coincidence with 
the LHC bunch crossing [49,50]. In pp collisions, a criterion based 
on the offline reconstruction of multiple primary vertices in the 
SPD [45] is applied to reduce the pileup, which is caused by mul-
tiple interactions in the same bunch crossing. The rejected pileup 
events are less than 1% of the total events. The Pb–Pb data were 
also collected using a MB trigger with a logic that requires a co-
incidence of signals in V0A and V0C. The MB-triggered events are 
analyzed if they have a reconstructed collision vertex whose po-
sition along the beam axis (V z , z is the longitudinal direction) is 
within 10 cm from the nominal interaction point in both pp and 
Pb–Pb collisions. Background events are rejected using the timing 
information from the Zero Degree Calorimeters (ZDCs) and V0 de-
tectors.

The Pb–Pb analysis is performed in 8 centrality classes defined 
in Ref. [46]: 0–10%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 
60–70% and 70–80%. The 0–10% class corresponds to the most 
central Pb–Pb collisions, with small impact parameter, while the 
70–80% class corresponds to peripheral Pb–Pb collisions, with large 
impact parameter. The total number of events that are analyzed 
after passing the event selection criteria are ∼110 million for pp 
and ∼30 million for Pb–Pb collisions. Charged tracks are selected 
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for analysis based on track selection criteria that ensure good track 
quality, as done in previous work [42]. In particular, a track in the 
TPC is requested to have a minimum of 70 crossed rows (horizon-
tal segments along the transverse readout plane of the TPC) out 
of a maximum possible 159 [51]. A pT-dependent selection cri-
terion on the distance of closest approach to the collision vertex 
in the transverse (xy) plane (DCAxy ) and along the longitudinal di-
rection (DCAz) is used to reduce the contamination from secondary 
charged particles coming from weakly decaying hadrons. In addi-
tion to these selection criteria, tracks are required to have pT >

0.15 GeV/c in both pp and Pb–Pb collisions. Charged particles are 
accepted in the pseudorapidity range |η| < 0.8, which ensures a 
uniform acceptance.

The particle identification exploits both the TPC and the TOF. 
For K∗0 and φ reconstruction in Pb–Pb collisions, charged parti-
cles are identified as pion or kaon if the mean specific energy loss 
(〈dE/dx〉) measured by the TPC falls within two standard devia-
tions (2σTPC) from the expected dE/dx values for π or K over the 
entire momentum range. If the TOF information is available for 
the track, in addition to the TPC, a TOF-based selection criterion 
3σTOF is applied over the measured momentum range, where σTOF
is the standard deviation from the expected time-of-flight for a 
given species. These requirements help in reducing the background 
under the signal peak over a large momentum range and provide 
a better separation between signal and background with respect 
to TPC PID only. For K∗0 reconstruction in pp collisions, the same 
PID selection criteria are applied to identify pion and kaon can-
didates as are used in Pb–Pb collisions. For the φ reconstruction 
in pp collisions, the kaon candidates are identified using a 6σTPC, 
4σTPC and 2σTPC selection on the measured dE/dx distributions in 
the momentum ranges p < 0.3 GeV/c, 0.3 < p < 0.4 GeV/c and p
> 0.4 GeV/c, respectively. On top of this, the TOF-based selection 
criterion of 3σTOF is applied over the entire measured momentum 
range in pp collisions if the TOF information is available.

3.1. Yield extraction, corrections and normalization

The K∗0 and φ resonances are reconstructed by calculating the 
invariant mass of their decay products through the hadronic decay 
channels K∗0(K

∗0
) → K+π−(K−π+) (Branching Ratio, BR = 66.666 

± 0.006% [20]) and φ → K+K− (BR = 49.2 ± 0.5% [20]), respec-
tively. Oppositely charged K and π (or K) from the same event are 
paired to reconstruct the invariant mass distributions of K∗0(φ). 
The Kπ and KK pairs are selected in the rapidity range |y| < 0.5 
in both pp and Pb–Pb collisions. The invariant mass distribution 
exhibits a signal peak and a large combinatorial background re-
sulting from the uncorrelated Kπ (KK) pairs. The combinatorial 
background is estimated using a mixed-event technique in both 
collision systems. The mixed-event background is constructed by 
combining kaons from one event with the oppositely charged π (K) 
from different events for K∗0(φ). The events which are mixed are 
required to have similar characteristics. In Pb–Pb, two events are 
mixed if they belong to the same centrality class and the differ-
ence between the collision vertex position is |�V z| < 1 cm. In 
pp collisions, two events are mixed with a condition of |�V z| <

1 cm and a difference in charged-particle density at midrapidity 
(|�y| < 0.5) of less than 5. To minimize the statistical fluctua-
tions in the background distribution, each event is mixed with five 
other ones. The invariant mass distribution from the mixed-event 
is normalized to the same-event oppositely-charged pair distribu-
tion in the mass region 1.1–1.3 (resp. 1.04–1.06) GeV/c2 for K∗0

(resp. φ), which is away from the mass peak (6� for K∗0 and 7�

for φ, � is the width of the resonance). After the combinatorial 
background subtraction, the signal peak is observed on top of a 
residual background. The latter is due to the correlated Kπ or KK 

pairs that originate from jets and from the misidentification of par-
ticles. It is shown in Ref. [42] that the residual background has a 
smooth dependence on mass and the shape of the background is 
well described by a second order polynomial [14,42]. The invari-
ant mass distributions after mixed-event background subtraction 
are fitted with a Breit-Wigner (resp. Voigtian) function for the sig-
nal peak of K∗0 (resp. φ) plus a second order polynomial for the 
residual background [42]. The Voigtian function is a convolution 
of a Breit-Wigner distribution and a Gaussian, where the width 
σ of the Gaussian accounts for the mass resolution. The latter is 
pT-dependent and varies between 1 and 2 MeV/c2. The raw yields 
are measured as a function of pT for K∗0 and φ in pp collisions 
and in various centrality classes in Pb–Pb collisions. A detailed de-
scription of the yield extraction procedure is given in Ref. [42].

The measured yields are affected by the detector acceptance 
and reconstruction efficiency (A ×εrec). This is estimated by means 
of dedicated Monte Carlo simulations using the PYTHIA (PYTHIA 6 
Perugia 2011 tune and PYTHIA 8 Monash 2013 tune) [52,53] and 
HIJING [54] event generators for pp and Pb–Pb collisions, respec-
tively. The generated particles are then propagated through the 
detector material using GEANT3 [55]. The A × εrec is calculated as 
a function of pT and is defined as the ratio of the reconstructed 
K∗0(φ) to the generated K∗0(φ), both within |y| < 0.5. For the 
reconstruction of resonances, the same track and PID selection cri-
teria are applied to the simulations as used in the analysis of the 
measured data. The A × εrec is calculated for K∗0(φ) that decay 
through the hadronic channel K±π∓ (K+K−), hence it does not in-
clude the correction for BR. In Pb–Pb collisions, the A × εrec has a 
weak centrality dependence and the raw yields are corrected using 
the A × εrec of the respective centrality class.

The procedure to correct the raw yields is given by

1

Nevent

d2N

dydpT
= 1

Nacc
event

d2Nraw

dydpT

εtrig . εvert . εsig

(A × εrec) . BR
. (1)

The raw yields are normalized to the number of accepted events 
(Nacc

event) and corrected for A × εrec, trigger efficiency (εtrig), vertex 
reconstruction efficiency (εvert), signal loss (εsig) and the BR of the 
decay channel. The yields in pp are normalized to the number of 
inelastic collisions with a trigger efficiency correction, εtrig = 0.757 
± 0.019 [56]. The vertex reconstruction efficiency in pp collisions 
is found to be εvert = 0.958. The signal loss correction factor εsig
is determined based on MC simulations as a function of pT and 
accounts for the resonance signal lost due to trigger inefficiencies. 
The εsig(pT) correction is only significant for pT < 2.5 GeV/c and 
has a value of less than 5% both for K∗0 and φ in pp collisions. 
In Pb–Pb collisions, the yields of K∗0 and φ in a given centrality 
class are normalized by the number of events in the respective 
V0M (sum of V0A and V0C amplitude) event centrality class. The 
correction factors εtrig, εvert and εsig(pT) are compatible with unity 
in the reported centrality classes in Pb–Pb collisions and hence are 
not used.

3.2. Systematic uncertainties

The systematic uncertainties in the measurement of K∗0 and 
φ yields in pp and Pb–Pb collisions are summarized in Table 1. 
The sources of systematic uncertainties are related to the yield ex-
traction method, PID and track selection criteria, global tracking 
efficiency, the knowledge of the ALICE material budget and of the 
interaction cross section of hadrons in the detector material. The 
uncertainties are reported for three transverse momentum values, 
low, mid and high pT. For Pb–Pb collisions all the systematic un-
certainties except the one related to the yield extraction are com-
mon in the various centrality classes and the values given in the 
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Table 1
Systematic uncertainties in the measurement of K∗0 and φ yields in pp and Pb–Pb collisions at √sNN = 5.02 TeV. These un-
certainties are shown for three transverse momentum values, low, mid and high pT. For Pb–Pb collisions all the systematic 
uncertainties except yield extraction are common in various centrality classes and the values given in the table are averaged 
over all centrality classes.

Systematic variation Pb–Pb pp

K∗0 φ K∗0 φ

pT (GeV/c) pT (GeV/c) pT (GeV/c) pT (GeV/c)

0.6 4.5 18 0.5 4.25 18 0.1 4.25 18 0.5 4.25 18

Yield extraction (%) 7.3 7.5 10.1 4.4 1.9 4.9 11.8 7.9 8.2 2.4 3.5 3.5
Track selection (%) 2.7 1.4 3.0 3.0 1.3 1.0 1.4 1.0 1.9 4.0 2.0 5.5
Particle identification (%) 5.4 3.0 5.0 1.0 1.5 2.4 2.1 3.2 6.9 0.3 1.7 6.5
Global tracking efficiency (%) 4.7 7.4 4.0 4.7 8.2 3.1 2.0 3.1 3.4 2.0 3.2 2.4
Material budget (%) 1.4 0 0 5.7 0 0 3.4 0 0 5.7 0 0
Hadronic Interaction (%) 2.4 0 0 1.3 0 0 2.8 0 0 1.3 0 0

Total (%) 10.9 11.0 12.3 9.2 8.6 6.4 13.0 9.1 11.4 7.7 5.4 9.5

Fig. 1. The pT distributions of (a) K∗0 and (b) φ mesons in pp collisions and various centrality classes in Pb–Pb collisions at √sNN = 5.02 TeV. The values are plotted at the 
center of each bin. The statistical and systematic uncertainties are shown as bars and boxes, respectively.
table are averaged over all centralities. The yield extraction method 
includes the uncertainties due to variations of the fitting range, 
the choice of combinatorial background estimation technique, nor-
malization range and residual background shape. The uncertain-
ties due to yield extraction are estimated to be 7.9–11.8% for K∗0

(resp. 2.4–3.5% for the φ) in pp and 7.3–10.1% (resp. 1.9–4.9%) in 
Pb–Pb collisions. The PID systematic uncertainties varies between 
2.1–6.9% (0.3–6.5%) for K∗0 (φ) in pp and Pb–Pb collisions. The 
contribution to the uncertainty from the global tracking efficiency 
is calculated from the corresponding values for single charged par-
ticles [51] and results in a 2.0–8.2% uncertainty by combining the 
two charged tracks used in the invariant mass reconstruction of 
K∗0 and φ. The contribution from variation of the track selec-
tion criteria is 1.0–5.5%. The systematic uncertainties due to the 
hadronic interaction cross section are estimated to be less than 
2.8% and contribute only at low pT (< 2 GeV/c). The uncertainties 
in the description of the material budget of ALICE detector sub-
systems in GEANT3 (see Ref. [57] for details) give a contribution 
lower than 5.7% on the yields of K∗0 and φ in pp and Pb–Pb col-
lisions. The material budget uncertainty is significant only at pT

< 2 GeV/c and negligible at higher pT. The total pT-dependent 
systematic uncertainties on the K∗0(φ) yields are estimated to be 
9.1–13.0% (5.4–9.5%) in pp collisions and 10.9–12.3% (6.4–9.2%) 
in Pb–Pb collisions. The common systematic uncertainties for dif-
ferent particles (global tracking efficiency, material budget and 

hadronic interaction) are canceled out in calculating particle yield 
ratios like K∗0/K and φ/K.

4. Results and discussion

4.1. Transverse momentum spectra in pp and Pb–Pb collisions

The pT distributions of the K∗0 and φ mesons for |y| < 0.5, 
normalized to the number of events and corrected for efficiency, 
acceptance and branching ratio of the decay channel, are shown in 
Fig. 1. The results for Pb–Pb collisions are presented for eight dif-
ferent centrality classes (0–10% up to 70–80% in 10% wide central-
ity intervals) together with the results from inelastic pp collisions 
at the same energy.

The pT-integrated particle yields have been extracted using the 
procedure described in Refs. [14,42]. The pT distributions are fitted 
with a Lévy-Tsallis function [58,59] in pp and a Boltzmann-Gibbs 
blast-wave function [60] in Pb–Pb collisions. The yields have been 
extracted from the data in the measured pT region and the fit 
functions have been used to extrapolate into the unmeasured (low 
and high pT) region. The low-pT extrapolation covers pT < 0.4 
GeV/c for K∗0(φ) and accounts for 8.6% (7.2%) and 12.5% (12.7%) of 
the total yield in the 0–10% and 70–80% centrality classes in Pb–Pb
collisions, respectively. In pp collisions, the K∗0 is measured in the 
range 0 < pT < 20 GeV/c. For the φ meson, the low-pT extrap-
olation covers pT < 0.4 GeV/c, accounting for 15.7% of the total 
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Fig. 2. pT-integrated particle yield ratios K∗0/K− and φ/K− as a function of 
〈dNch/dη〉1/3 measured at midrapidity in pp, p–Pb and Pb–Pb collisions at √sNN

= 5.02 TeV. For Pb–Pb collisions at √sNN = 2.76 TeV, the φ/K− values are taken 
from Ref. [14] and the K∗0/K− values are taken from Ref. [42]. The ratios for p–
Pb collisions are taken from Ref. [17]. Statistical uncertainties (bars) are shown 
together with total (hollow boxes) and charged-particle multiplicity-uncorrelated 
(shaded boxes) systematic uncertainties. Thermal model calculations with chemi-
cal freeze-out temperature Tch = 156 MeV for the most central Pb–Pb collisions 
[34,64] are also shown. EPOS3 model predictions [32] of K∗0/K and φ/K ratios in 
Pb–Pb collisions are also shown as violet lines.

yield. The extrapolated fraction of the yield is negligible for pT >

20 GeV/c.

4.2. Particle ratios

Fig. 2 shows the K∗0/K and φ/K ratios as a function of 
〈dNch/dη〉1/3 [46,47,51] for Pb–Pb collisions at 

√
sNN = 2.76 [14,

42] and 5.02 TeV, p–Pb collisions at 
√

sNN = 5.02 TeV [17] and pp 
collisions at 

√
s = 5.02 TeV. The kaon yields in Pb–Pb at 

√
sNN

= 5.02 TeV are from Ref. [51]. The 〈dNch/dη〉1/3 measured at 
midrapidity, is used here as a proxy for the system size. This is 
supported by the observation of the linear increase in the HBT 
radii with 〈dNch/dη〉1/3 [61,62]. The K∗0/K ratio decreases for ris-
ing 〈dNch/dη〉1/3 while the φ/K ratio is almost independent of 
〈dNch/dη〉1/3. The ratios exhibit a smooth trend across the differ-
ent collision systems and collision energies studied. The K∗0/K and 
φ/K ratios in Pb–Pb collisions at 

√
sNN = 2.76 and 5.02 TeV are in 

agreement within uncertainties.
The resonance yields are modified during the hadronic phase by 

rescattering (which would reduce the measured yields) and regen-
eration (which would increase the measured yields). The observed 
dependence of the K∗0/K ratio on the charged-particle multiplicity 
is consistent with the behavior that would be expected if rescatter-
ing is the cause of the suppression. The fact that the φ/K ratio does 
not exhibit suppression with charged-particle multiplicity suggests 
that the φ, which has a lifetime an order of magnitude larger 
than that of the K∗0, decays predominantly outside the hadronic 
medium. Theoretical estimates suggest that about 55% of the of 
K∗0 mesons with momentum p = 1 GeV/c, decay within 5 fm/c
of production (a typical estimate for the time between chemical 
and kinetic freeze-out in heavy-ion collisions [22,32,63]), while 
only 7% of φ mesons with p = 1 GeV/c decay within that time. 
This supports the hypothesis that the experimentally observed 
decrease of the K∗0/K ratio with charged-particle multiplicity is 
caused by rescattering. A similar suppression has also been ob-
served for ρ0/π [15] and �∗/� [13] in central Pb–Pb collisions 
relative to peripheral Pb–Pb and pp collisions at 

√
sNN = 2.76 TeV. 

In addition, the K∗0/K ratio from thermal model calculations with-
out rescattering effects and with chemical freeze-out temperature 

Fig. 3. Lower limit on the hadronic phase lifetime between chemical and kinetic 
freeze-out as a function of 〈dNch/dη〉1/3 in p–Pb [17] and Pb–Pb collisions at √sNN

= 5.02 TeV. The bars and bands represent the statistical and systematic uncertain-
ties, respectively, propagated to the lifetime from the uncertainties associated with 
the measured K∗0/K ratios in Pb–Pb (p–Pb) and pp collisions at √sNN = 5.02 TeV.

Tch = 156 MeV for the most central Pb–Pb collisions [34,64] is 
found to be higher than the corresponding measurements, while 
the measured φ/K ratio agrees with the thermal model predic-
tions. The K∗0/K and φ/K ratios in Pb–Pb collisions are also com-
pared to EPOS3 model calculations with and without a hadronic 
cascade phase modeled by UrQMD [32]. The EPOS3 model predic-
tions shown in the figure are for Pb–Pb collisions at 

√
sNN = 2.76 

TeV but no significant qualitative differences are expected between 
the two energies. The EPOS3 generator with UrQMD reproduces 
the observed trend of the K∗0/K and φ/K ratios which further sup-
ports the experimental data.

The fact that K∗0/K− decreases with increasing 〈dNch/dη〉1/3

implies that rescattering of the decay products of K∗0 in the 
hadronic phase is dominant over K∗0 regeneration. This suggests 
that K∗0 ↔ Kπ is not in balance. Hence in Pb–Pb the K∗0/K−
ratio can be used to get an estimate of the time between chem-
ical and kinetic freeze-out, τ , as, [K∗0/K−]kinetic = [K∗0/K−]chemical
× e−τ/τK∗0 , where τK∗0 is the K∗0 lifetime. Here, τK∗0 is taken 
as 4.16 fm/c ignoring any medium modification of the width 
of the invariant mass distribution of K∗0. Furthermore, it is as-
sumed that [K∗0/K−]chemical is given by the values measured in 
pp collisions and the Pb–Pb collision data provides an estimate for 
[K∗0/K−]kinetic . This is equivalent to assuming that all K∗0’s that 
decay before kinetic freeze-out are lost due to rescattering effects 
and there is no regeneration effect between kinetic and chemi-
cal freeze-out which is supported by AMPT simulations [31]. All 
the assumptions listed above lead to an estimate of τ as a lower 
limit for the time span between chemical and kinetic freeze-outs. 
A decrease in the K∗0/K ratio with increasing multiplicity has pre-
viously also been observed in p–Pb collisions at 

√
sNN = 5.02 TeV 

[17]. This might indicate the presence of rescattering effect in high 
multiplicity p–Pb collisions and is suggestive of a finite lifetime 
of the hadronic phase. For comparison we have also estimated the 
hadronic phase lifetime in p–Pb data. Fig. 3 shows the results for τ
boosted by a Lorentz factor (∼ 1.65 for p–Pb collisions and 1.75 for 
Pb–Pb collision) as a function of 〈dNch/dη〉1/3. Neglecting higher 
order terms, the Lorentz factor is estimated as 

√
1 + (〈pT〉/mc)2. 

Here m is the rest mass of the resonance and 〈pT〉 is used as 
an approximation for p for the measurements at midrapidity. The 
time interval between chemical and kinetic freeze-out increases 
with the system size as expected. For central Pb–Pb collisions at √

sNN = 5.02 TeV, the lower limit of time between chemical and 
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Fig. 4. Particle yield ratios (K∗0 + K
∗0

)/(K+ + K−) in panel (a) and (2φ)/(K+ + K−) in panel (b), both as a function of pT for centrality classes 0–10% and 70–80% in Pb–Pb
collisions at √sNN = 5.02 TeV. For comparison, the corresponding ratios are also shown for inelastic pp collisions at √s = 5.02 TeV. The statistical uncertainties are shown 
as bars and systematic uncertainties are shown as boxes. In the text (K∗0 + K

∗0
), (K+ + K−) are denoted by K∗0 and K, respectively.

Fig. 5. Particle yield ratios (K∗0 + K
∗0

)/(π+ + π−) in panel (a) and (2φ)/(π+ + π−) in panel (b), both as a function of pT for centrality classes 0–10% and 70–80% in Pb–Pb 
collisions at √sNN = 5.02 TeV. For comparison, the corresponding ratios are also shown for inelastic pp collisions at √s = 5.02 TeV. The statistical uncertainties are shown 
as bars and systematic uncertainties are shown as boxes. In the text (K∗0 + K

∗0
), (π+ + π−) are denoted by K∗0 and π , respectively.
kinetic freeze-out is about 4–7 fm/c. This is of the same order 
of magnitude as the K∗0 lifetime, but about an order of magni-
tude shorter than the φ lifetime. A smooth increase of τ with 
system size from p–Pb to Pb–Pb collisions is observed. The EPOS3 
generator with UrQMD reproduces the increasing trend of τ with 
multiplicity qualitatively [32]. If a constant chemical freeze-out 
temperature is assumed, then the increase of τ with multiplicity 
in Pb–Pb collisions corresponds to a decrease of the kinetic freeze-
out temperature. This is in qualitative agreement with results from 
blast-wave fits to identified particle pT distributions [51], which 
are interpreted as decrease in the kinetic freeze-out temperature 
from peripheral to central collisions.

Further, to quantify the pT-dependence of the rescattering ef-
fect observed in Pb–Pb collisions, a set of pT-differential yield 
ratios was studied: K∗0/K, φ/K, K∗0/π , φ/π , p/K∗0 and p/φ as 
shown in Figs. 4, 5 and 6. The choice of the ratios is motivated by 
the following reasons: (a) the ratio of resonance yields relative to 
the ones of kaons and pions can shed light on the shapes of the pT
distributions of mesons with different mass and quark content, and 
(b) the ratios of the proton yield with respect to the yields of the 

resonances allow comparisons among hadrons of similar mass, but 
different baryon number and quark content to be made. For case 
(a), ratios in 0–10%, 70–80% Pb–Pb collisions and pp collisions at √

sNN = 5.02 TeV are compared. For case (b), ratios in 0–10% Pb–
Pb collisions and pp collisions at 

√
sNN = 5.02 TeV are compared 

with 0–5% in Pb–Pb collisions at 
√

sNN = 2.76 TeV. The ratios for 
70–80% in Pb–Pb collisions are closer to the corresponding results 
in pp collisions. Noticeably, there are distinct differences between 
central and peripheral (pp) collisions in the ratios for pT below ∼
2 GeV/c and intermediate pT (between 2 and 6 GeV/c) but the 
ratios are consistent at higher pT [42].

At low pT, the K∗0/K and K∗0/π for central collisions are lower 
than in peripheral (pp) collisions, while the corresponding yield 
ratios for φ meson are comparable within the uncertainties. This 
observation is consistent with the suppression of K∗0 yields due 
to rescattering in the hadronic phase. It demonstrates that rescat-
tering affects low momentum particles. At intermediate pT, both 
ratios show an enhancement for central Pb–Pb collisions relative 
to peripheral and pp collisions, which is more prominent for φ/K, 
φ/π and K∗0/π . This is consistent with the presence of a larger 
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Fig. 6. Particle yield ratios (p + p)/(K∗0 + K
∗0

) in panel (a) and (p + p̄)/(2φ) in panel (b), both as a function of pT for 0–10% central Pb–Pb collisions and inelastic pp 
collisions at √sNN = 5.02 TeV. For comparison, similar ratios are also shown for 0–5% central Pb–Pb collisions at √sNN = 2.76 TeV [42]. The statistical uncertainties are 
shown as bars and systematic uncertainties are shown as boxes. In the text (K∗0 + K

∗0
) and (p + p) are denoted by K∗0 and p, respectively.
radial flow in central collisions relative to peripheral and pp colli-
sions [51]. Given that the masses of K∗0 and φ mesons are larger 
than those of the charged kaon and pion, the resonances experi-
ence a larger radial flow effect. In central Pb–Pb collisions, for pT
below 5 GeV/c, the p/φ ratio is observed to be independent of 
pT and the p/K∗0 ratio exhibits a weak pT-dependence within the 
uncertainties, in contrast to the decrease of both ratios with pT
observed in pp collisions. In turn, this suggests that the shapes of 
the pT distributions are similar for K∗0, φ and p in this pT range. 
Although the quark contents are different, the masses of these 
hadrons are similar, indicating that this is the relevant quantity 
in determining spectra shapes. This is consistent with expectations 
from hydrodynamic-based models [65,66]. Within the uncertain-
ties, the p/K∗0 and p/φ ratios for central Pb–Pb collisions at 

√
sNN

= 5.02 TeV and 2.76 TeV [42] are constant at intermediate pT. This 
is consistent with the observation of similar order radial flow at 
both energies, obtained from the analysis of pT spectra of pions, 
kaons and protons [51]. For pT > 6 GeV/c, the K∗0/K, φ/K, K∗0/π , 
φ/π , p/K∗0 and p/φ yield ratios in central collisions are similar to 
peripheral and pp collisions, indicating that fragmentation is the 
dominant hadron production mechanism in this pT region. This is 
consistent with previous measurements at 

√
sNN = 2.76 TeV [42].

5. Summary

The transverse momentum distributions of K∗0 and φ mesons 
have been measured at midrapidity (|y| < 0.5) for various collision 
centralities in Pb–Pb and inelastic pp collisions at 

√
sNN = 5.02 

TeV using the ALICE detector. The K∗0 yields relative to charged 
kaons in Pb–Pb collisions show a suppression with respect to pp 
collisions, which increases with the system size, quantified us-
ing 〈dNch/dη〉1/3 measured at midrapidity. In contrast, no such 
suppression is observed for the φ mesons. The lack of suppres-
sion for the φ meson can be attributed to the fact that most of 
them decay outside the fireball because of its longer lifetime (τφ = 
46.3 ± 0.4 fm/c). Because of a shorter lifetime (τK∗0 = 4.16 ±
0.05 fm/c), a significant number of produced K∗0 decays in the 
hadronic medium. The decay product(s) undergo interactions with 
other hadrons in the medium resulting in a significant change in 
their momentum, and no longer contributing to the K∗0 signal 
reconstructed in the experiment. Although both rescattering and 
regeneration are possible, the results presented here represent an 

experimental demonstration of the predominance of rescattering 
effects in the hadronic phase of the system produced in heavy-
ion collisions. The effect of rescattering increases with the system 
size. Furthermore, the K∗0/K yield ratios in central Pb–Pb collisions 
are significantly lower compared to the values from thermal model 
calculations without rescattering effects, while the measured φ/K
yield ratio agrees with the model calculation. This further corrob-
orates the hypothesis that rescattering affects the measured K∗0

yields in Pb–Pb collisions. A lower limit for the lifetime of the 
hadronic phase is determined by using the K∗0/K ratios in Pb–Pb
and pp collisions at 

√
sNN = 5.02 TeV. The lifetime, as expected, 

increases with system size. For central Pb–Pb collisions, it is about 
4–7 fm/c.

The pT-differential yield ratios of K∗0/π and K∗0/K are studied 
in central Pb–Pb, peripheral Pb–Pb and pp collisions to understand 
the pT-dependence of the rescattering effect. It is observed that 
rescattering dominantly affects the hadrons at pT < 2 GeV/c. At 
intermediate pT (2–6 GeV/c), the φ/K, φ/π , K∗0/π , p/K∗0 and 
p/φ yield ratios are enhanced in central Pb–Pb collisions relative to 
peripheral Pb–Pb and pp collisions. In addition, the spectral shapes 
of K∗0, φ and p, which have comparable masses, are similar within 
the uncertainties for pT below 5 GeV/c in Pb–Pb collisions. These 
measurements demonstrate the effect of higher radial flow in cen-
tral Pb–Pb collisions relative to peripheral Pb–Pb and pp collisions. 
A comparison of the p/K∗0 and p/φ ratios for central Pb–Pb col-
lisions at 

√
sNN = 5.02 and 2.76 TeV shows the constancy of the 

ratios with pT. This is consistent with the observation of compa-
rable radial flow at 

√
sNN = 5.02 TeV and 2.76 TeV. For higher 

pT, above 6 GeV/c, all the ratios agree within the uncertainties 
for central and peripheral Pb–Pb, and pp collisions, indicating that 
particle production via fragmentation at high transverse momenta 
is not significantly modified in the presence of a medium.
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