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Abstract: The application of machine learning methods to particle physics often does not provide
enough understanding of the underlying physics. An interpretable model which provides a way to
improve our knowledge of the mechanism governing a physical system directly from the data can be
very useful. In this paper, we introduce a simple artificial physical generator based on the Quantum
chromodynamical (QCD) fragmentation process. The data simulated from the generator are then
passed to a neural network model which we base only on the partial knowledge of the generator.
We aimed to see if the interpretation of the generated data can provide the probability distributions
of basic processes of such a physical system. This way, some of the information we omitted from the
network model on purpose is recovered. We believe this approach can be beneficial in the analysis of
real QCD processes.

Keywords: quantum chromodynamics; network model; data analysis; interpretability

1. Introduction

Modern particle physics has the potential to answer many open fundamental questions, such as
the unification of forces, the nature of dark matter or the neutrino masses. To answer these, we turn to
data collected by particle accelerators, such as the Large Hadron Collider (LHC) at CERN. These data
are collected by detectors which register signals coming from a collision of particles such as protons
or lead nuclei. They are almost exclusively complex and of high dimensionality, so untangling them
requires a certain level of understanding of the underlying processes that produce them.

The traditional analysis techniques employed in the high energy physics community use sequences
of decisions to extract relevant information. The determination of the statistical significance of the
extracted quantities then determine if the data yield a new result or not. This approach is usually limited
to a single variable, such as the invariant mass of the system. When more than one variable is considered,
a multivariate approach is used, which is already a form of a machine learning technique. Lately, a larger
number of these techniques are being implemented in high energy physics data analyses, typically
including boosted decision trees, genetic algorithms, random forests or artificial neural networks.

This approach to analysis should be natural, since the data resulting from a particle interaction are
fundamentally probabilistic due to the quantum mechanical nature of particle collisions. In this sense,
the classical approach to data analysis poses a problem because the statistical model describing them
can not be known explicitly in terms of an equation that can be analytically evaluated. To make matters
worse, even though we have a good model describing the particle interactions (namely quantum
chromodynamics), it is inherently non-perturbative and we cannot calculate what it predicts in a certain
collision. Therefore, to interpret the collected data we turn to large samples of simulated data generated
by stochastic simulation tools such as PYTHIA [1] which try to describe the relevant physics within
a nucleus–nucleus collision. However, they have their drawbacks in not being exact, but instead
relying heavily on Monte Carlo methods. Even though the knowledge incorporated in the simulators
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is regularly reinforced with new observations from data, one can never expect the complete physical
truth from them.

Considering the fact that we cannot rely entirely on simulated data, we wanted to develop
an interpretable model that will provide a way to improve our knowledge of the mechanisms governing
particle collisions. We introduce a simple artificial jet generator based only on generalized conservation
laws. The simulated data are then passed to a neural network model based only on the partial knowledge
of the generator. We try to interpret the generated data and obtain the probability distributions of basic
processes of such a physical system, thus recovering some of the information we omitted from the
network model. To do this, we make use of the Neyman–Pearson lemma [2], which is an approach
that has been proposed by several authors lately [3,4]. Even though we know the model we introduce
is a very crude approximation of any real Quantum chromodynamical (QCD) process, with further
developments this method could be extended to real data from the LHC, with the hope of gaining new
insight on real QCD processes.

This paper is organized as follows: in the Results section we describe how our data are generated
and propose the use of the Neyman–Pearson lemma to obtain the underlying probabilities of the data
distributions. To do this, we use a neural network classifier and a “guess” dataset. We quantify the
differences in the obtained and the original probabilities and present them along with the obtained
distributions. In the Discussion section we give a conclusion which follows from these results and
present the implications for future research. We conclude the paper with the Materials and Methods
section, where we detail the methodology used, should someone want to recreate the results on
their own.

2. Results

2.1. The Jet Generator

To begin with, we create a sample of data based on a simple physical process which will mimic some
of the characteristics of the data obtained from particle collider experiments. We start with a particle at
rest which decays into two particles. The energies and the momenta of these particles are determined by
a selected probability distribution, in this case the distribution of gluon momenta radiated by a quark [5].
The angular distribution of the decay products is selected to be uniform in space.

After the first decay, the procedure repeats iteratively as described in the Materials and Methods
section. The decay procedure stops when either of two conditions is met; if the decay particle mass
falls below a preset threshold, or a certain number of decays has been reached. For simplicity, all the
decays are considered to happen in the same point in space. The list of final decay particles now forms
a n-tuple that contains the energies, the momenta and the directions of the n particles. We call this entity
a jet. To visualize it, we create a histogram whose axes represent the direction of a particle in space.
The histogram axes represent the azimuthal angle φ and the polar angle θ of a particle. The color of
a pixel in the histogram corresponds to either the energy or the momentum of the particle traveling
in that direction in space. An example of the jet generator tree with modified parameters is given in
Appendix A. Two examples of jet images are given in Figure 1.
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Figure 1. Two examples of jet images generated by the procedure outlined in the text. The x and
y axes of the graphs correspond to the azimuthal angle φ and the polar angle θ with respect to the
origin. The full solid angle is mapped on these graphs, with 32 bins used for each angle. The color
values in these graphs correspond to the energies of the final particles, with the energy of the original
particle set to 100. The left panel shows an image of a jet generated with a probability distribution of
gluon momenta radiated by a quark. The right panel shows an image of jet generated with a different
probability distribution.

The model we chose is simple since it assumes the existence of only one type of particle,
which automatically forbids any pair-production channels. This assumption, along with the assumptions
of angular uniformity, and the fact that the decay distributions are independent on the invariant mass
are not purely QCD like, but we chose to implement them to reduce our computational load.

2.2. The Neyman–Pearson Lemma

Let us now forget the decay probability distributions implemented in the data we created.
We would like to retrieve them by guessing some of their general characteristics. To do this, we use
a neural network to differentiate jet images from the created data and jet images from a “guess”
distribution. The idea is the following: first, a number of jets following a known decay probability
distribution preal is created. In our case, this distribution is either the particle energy or the particle
momentum distribution, but the arguments we present are valid for any probability distribution.
Next, we create another set with the same number of jets in the same manner, this time following
a different probability distribution we call pguess.

Assume you are performing a hypothesis test between H0 : p = preal(z) and H1 : p = pguess(z)
using a likelihood-ratio test. The Neyman–Pearson lemma states that the likelihood ratio, Λ, given by:

Λ(preal | pguess) ≡
L(z | preal(z))
L(z | pguess(z))

=
preal(z1, z2, ..., zn)

pguess(z1, z2, ..., zn)
(1)

is the most powerful test at a given significance level [2]. Here, preal(zi) and pguess(zi) are the
probabilities associated with the i-th decay in a jet having n decays in total and following either
the preal(z) or pguess(z) probability distributions.

This means that for a fixed z, if we find the most powerful test of distinguishing between jets
created following the preal and pguess distributions, but we only know pguess, we can recover preal(z).
This can be done when several assumptions are satisfied. First of all, we consider that all the decays in
a decay chain that produces a certain jet are independent. Hence, a jet can be described by a product of
factors corresponding to the probability distribution as

p(z1, z2, ..., zn) = p(z1)p(z2)...p(zn) = p(z1)p(z2, ..., zn) , (2)
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where p(zi) is the probability associated with a single decay in a jet having n decays in total. Recall
that in this notation zi is a set containing zEi, zpi, φi and θi and the probability p(zi) can be written
as p(zE,i)p(zp,i)p(φi)p(θi). Now let us select the same number of jets generated from preal(z) and
pguess(z) and have a neural network distinguish between them. The neural network is set up as
a classifier which gives the probability that the distribution generating an image is preal(z), i.e., it gives
the value Cnn ≡ p(preal | z) [6]. According to the Bayes’ theorem, this value is equal to:

p(preal | z) =
p(z | preal)p(preal)

p(z | preal)p(preal) + p(z | pguess)p(pguess)

=
p(z | preal)

p(z | preal) + p(z | pguess)
=

Λ(preal | pguess)

Λ(preal | pguess) + 1
, (3)

where we take into account the fact that p(preal) = p(pguess) since we take the same number of jet
images from both distributions. By inverting (3) and using (1) and (2), we obtain:

Λ(preal | pguess) =
Cnn

1− Cnn
=

preal(z1, z2, ..., zn)

pguess(z1, z2, ..., zn)
=

preal(z1)preal(z2, ..., zn)

pguess(z1)pguess(z2, ..., zn)
. (4)

Now let us look at only preal(z1), i.e., the real probability distribution, but for a fixed z1.
An inversion of (4) gives:

preal(z1) =
Cnn

1− Cnn
· pguess(z1) ·

pguess(z2, ..., zn)

preal(z2, ..., zn)
. (5)

In our case, this can be applied to pE(zE,1) and pp(zp,1) distributions:

preal,E(zE,1) =
Cnn

1− Cnn
· pguess,E(zE,1) ·

pguess,p(zp,1)pguess(z2, ..., zn)

preal,p(zp,1)preal(z2, ..., zn)
and

preal,p(zp,1) =
Cnn

1− Cnn
· pguess,p(zp,1) ·

pguess,E(zE,1)pguess(z2, ..., zn)

preal,p(zE,1)preal(z2, ..., zn)
. (6)

This final expression offers a possibility of recovering preal,E and preal,p by only knowing pguess,E
and pguess,p in the case where the neural network acts as an ideal classifier. It is assumed that all of
the angles occur with equal probabilities so they are omitted from the equation. To recover the real
probability distribution, we used a feed forward convolutional neural network (CNN) [7]. The inputs
used for the network are jet images, the examples of which can be seen on Figure 1, while the output it
gives is Cnn, the parameter most relevant to our calculations. The architecture and the details of the
used network are given in the Materials and Methods section.

2.3. Recovering the Original Probability Distribution

In what follows, the indices E and p are omitted to improve clarity, but the general conclusions
work for either the energy distribution pguess,E or the momentum distribution pguess,p. To provide
a reasonable pguess distribution, we have to know some of the background of the physical process that
governs preal. For example, from our physics background we know that this distribution should fall
with increasing z. An example of such a distribution is

pguess(z) = N e−Cz , (7)

whose integral is normalized to 1. This distribution is allowed to be only “good enough” when using
the outlined procedure, since we can iteratively repeat it and set

pi+1
guess(z) = pi

real, calculated(z) , (8)
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with i being the iteration index and pi
real, calculated(z) being the approximation of the “real” distribution

as determined in the current step. The reason why the guess distribution converges to the real
distribution when applying this procedure iteratively can be seen if one looks at the cross entropy
loss of the neural network. This quantity, also known as the log loss, measures the performance of
a classification model where the prediction input is a probability value between 0 and 1 [8]. In the case
of binary classification, which we perform here, and using the notation already given in the text, it is
given by:

L = −1
2

n

∑
i=1

[y(zi) log Cnn + (1− y(zi)) log(1− Cnn)] . (9)

where y(zi) is the set of true data labels, being either 1 or 0, depending on which distribution was used
to create a particular jet. In general, the performance of any model is always worse compared to the
ideal model, so that the cross entropy loss of our classifier L has to be larger than the loss of an ideal
classifier Lideal. Using (3), this can be written as:

L > −1
2

n

∑
i=1

[
y(zi) log Cideal

nn + (1− y(zi)) log(1− Cideal
nn )

]
> −1

2

n

∑
i=1

[
y(zi) log

(
Λ(preal | pguess)

1 + Λ(preal | pguess)

)
+ (1− y(zi)) log

(
1

1 + Λ(preal | pguess)

)]
(10)

Now let us assume that the classifiers have been fed only the data from the real distribution,
i.e., that we set pi

guess = preal on purpose. Then the data labels y(zi) are all equal to 1, so that

− 1
2

n

∑
i=1

log Cnn > −1
2

n

∑
i=1

[
log
(

Λ(preal | pguess)

1 + Λ(preal | pguess)

)]
. (11)

Although the index i has been left out to improve readability, both expressions under the sum
still depend on the selected z-bin. A short rearrangement of this condition gives:

n

∏
i=1

Cnn <
n

∏
i=1

Λ(preal | pguess)

1 + Λ(preal | pguess)
. (12)

Now we use the fact that Cnn > 0.5, which we know to be true averaged over z, if the network
has any discriminating power. Using (3) again, the last inequality can be rearranged into:

n

∏
i=1

Cnn

1− Cnn
<

n

∏
i=1

Λ(preal | pguess) , (13)

Note that the left side of this inequality is a product larger than one, even though some of the
factors after the product sign can be smaller than one. Recalling the definition of Λ(preal | pguess),
after multiplying with pguess we can write:

n

∏
i=1

pguess(zi) <
n

∏
i=1

Cnn

1− Cnn
pguess(zi) <

n

∏
i=1

preal(zi) . (14)

The first term on the left is the guess distribution in one of the iterations, the second term is
the next iteration of the guess distribution since we are using (6) and (8) and the last term is the real
distribution. Thus, we can conclude that in this case, the iterations successively converge to the real
distribution. The same argument can be used when the network is fed only the data from the guess
distribution. Since the real data are a mix of the two we conclude that in general, the successive
iterations of the guess distribution converge on average to the real distribution. If we could perform
an infinite number of iterations, we would reach the real distribution from the guess distribution,
but since we have limited time and resources, the two will always be at least slightly different.
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2.4. Calculation Results and Errors

Our calculation was performed with the initial guess probability distributions given by pguess,E =

p0
E(zE) = NEe−CzE , with zE in the interval [0.01, 0.5] and pguess,p = p0

p(zp) = Npe−Czp with zp in the
interval [0.01, 1]. Three different values of the constant C were used, 0.1, 10 and 100, thus creating
a nearly flat distribution, a distribution slowly decreasing with increasing z and a much more rapidly
decreasing distribution, respectively.

Once the iterative procedure starts, we need to decide at which point to stop further iterations.
We define the error margin of the i-th iteration for a single variable (either energy or momentum) of
a guess distribution as the root mean square relative error (RMSRE), which is a typical cross-validation
tool [9]:

RMSRE =

√√√√ 1
10

10

∑
j=1

(
1−

pi
guess(zj)

preal(zj)

)2

. (15)

The index j comes from the fact that we had to choose a number of z bins, which we set to 10,
in order to perform the calculations. The total error margin for an iteration of a guess distribution
is defined as the arithmetic mean of the margins for energy and momentum. We stop the iterative
procedure once the error margin remains below 10% during 20 successive iterations [10].

A graph showing the dependence of the error margin on the iteration index for the case of
distribution (7) with C set to 10 is given in Figure 2. The graph shows the margins for the calculated
pi

E(z) and pi
p(z) distributions. In this case the average error margin is lower than 10% for 20 successive

iterations after the 342nd iteration. On the same figure we also show the calculated probability
distributions pi

E(z) and compare them to preal,E(z). The comparison of the probability distributions
pi

p(z) to preal,p(z) for different parameters C is given in the Appendix B.

Figure 2. The calculated error margin vs. the iteration number in the case of the guess distribution
given by (7) with C set to 10. The error calculation is described in the text. The error margins are shown
separately for the case when the classifier is trained with jet images populated either with jet energies
or jet momenta. Several iterations of the calculated probability distributions pi

E(z) (symbols) compared
to preal,E(z) (full line). The 342nd iteration is the final iteration of this procedure, since the stopping
condition has been satisfied.

One can see the decrease of the error margin with growing iteration index and the convergence
of the guess distribution to the real distribution. The graphs showing the dependence of the error
margins on the iteration index and the calculated probability distributions pi

E(z) compared to preal,E(z)
when C equals 0.1 and 100, respectively, are given in Figures 3 and 4. In these cases, the stopping
condition has been reached after 544 and 1963 iterations, respectively. When comparing the results
for different initial guess distributions, we note that only the total number of the iterations needed to
achieve sufficient convergence is affected by the initial conditions. It is interesting to note that during
some of the iterations the distribution is no longer monotonically decreasing, as can be seen on Figure 4
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for the 250th iteration. This happens due to the finite sample and numerical rounding, but the final
distribution nevertheless converges into the real distribution.

Figure 3. The calculated error margin vs. the iteration number in the case of the guess distribution given
by (7) with C set to 0.1. Several iterations of the calculated probability distributions pi

E(z) (symbols)
compared to preal,E(z) (full line). The 544th iteration is the final iteration of this procedure, since the
stopping condition has been satisfied.

Figure 4. The calculated error margin vs. the iteration number in the case of the guess distribution
given by (7) with C set to 100. Several iterations of the calculated probability distributions pi

E(z)
(symbols) compared to preal,E(z) (full line). The 1963rd iteration is the final iteration of this procedure,
since the stopping condition has been satisfied.

3. Discussion

In this paper we present a study performed on a toy model representing a crude version of a QCD
fragmentation process. It is possible to retrieve some of the unknown properties of this process by
using a correct interpretation of a neural network model combined with incomplete knowledge of
the system. We presented an iterative method which recovers unknown probability distributions
that govern the presented physical system. We have mathematically shown that one can expect
the convergence from our incomplete knowledge to the real underlying distributions by using the
developed method. This claim was confirmed by our results.

The method we chose requires an initial guess of the probability distributions from which the
original distributions are to be recovered. The choice of the guessed probability distributions affects
only the number of iterations needed to achieve the convergence to the real distributions. The final
error margin between the obtained distributions and the real distributions should depends only on the
discriminating power of the used classifier, i.e., the convolutional neural network. In our study, we
used a stopping condition which relies on the RMSRE between the real and the calculated distribution.
However, this relies on the fact that we constructed and knew the real distribution, which is not true in
a realistic setting. In that case, the stopping condition could be based solely on the the loss function
of the classifier, evaluated on some test dataset. For example, one could impose the condition that
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the values of the loss function are in some small interval around the minimal possible loss value Lmin.
In that case the expected values of the classifier output will lie in some small interval around Cnn = 0.5
and any further calculation will not significantly improve the probability distributions obtained in the
previous iteration.

Since this method does not imply what kind of classifier should be used, any machine learning
technique used for binary classification can be employed. In this research we developed a classifier
based on convolutional neural networks, which have proven to be very successful in the image
classification tasks. We believe that the presented method can be generalized for use in more realistic
physical systems which include multiple decay mechanisms. For example, we could also introduce
the dependence of the probability distributions on the current invariant mass, or the case when the
polar angle is not uniformly distributed. The correlation between the energy and the angle, which is
present in reality, could also be studied by looking at joint distributions, instead of looking each of the
distributions independently. Surely, these modifications would bring us closer to a real QCD process.
However, in this paper we only wanted to perform the first step in showing that some characteristics
of the process can be retrieved with the help of a neural network. If one were to develop the method
further, increasing the similarity to QCD, we believe it could be applied to real data collected by some
high energy experiment. A possible way to go about this would be to perform a similar analysis on
an existing model, such as data from PYTHIA. This is computationally demanding and we leave it for
future research.

4. Materials and Methods

In this section, we present in detail the methodology used to obtain the presented results. First,
we describe the jet generator used to crate the jet images. Next, we present the detailed architecture of
the neural network used as the classifier and finally, we detail the algorithm used to recover of the
underlying probability distributions.

The computational code used to develop the particle generator, the neural network model and the
calculation of the probability distributions is written in the the Python programming language using
the Keras module with the TensorFlow backend [11]. Both the classifier training and jet generating
were performed using a standardized PC setup equipped with an NVIDIA Quadro p6000 graphics
processing unit.

4.1. The Jet Generator

1. We start with a particle at rest with a given rest mass, here taken to be m0 = 100 (the units are
inconsequential in the calculation).

2. The particle decays into two new particles. The energies and the momenta of these particles are
determined by a probability distribution. To generate the real data we use a distribution already
known in particle physics, given by:

p(z) = N 1 + (1− z)2

z
. (16)

The energy of the decay particle E equals zE0, with E0 = m0 being the energy of the decaying
particle. Note that the probability diverges as z approaches zero, so the distribution is limited
by a lower boundary on z both due to physical and computational reasons. N is a constant
that ensures that the integral of the probability distribution equals 1 and depends on the lower
boundary set on z. In our simulation, we set the minimum z to 10−2, making N equal to ≈ 0.13.

The momentum of the decay particle is limited with the total energy of the particle. We determine
the momentum by sampling the same probability distribution as for the energy, but now we
set the momentum p equal to zE, with E being the energy of the decay particle. To differentiate
between these z distributions, we write zE and zp when deemed necessary.
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The spatial distribution of the decay products is uniform in space. This means that, observed
from the rest frame of the decaying particle, the probability that either one of the decay products
flies off in a certain infinitesimal solid angle is uniform. Physically speaking, the angles θ and φ

are sampled from uniform distributions on intervals [0, π] and [0, 2π], respectively.

The energy, the momentum and the direction of the second particle are determined by the laws of
conservation of energy and momentum. In other words, z1 + z2 = 1 when looking at energy, and
p1 + p2 = 0, since the original momentum in the center of mass system is zero. These facts also
save computational time due to symmetry, since we can sample for the energy of the first particle
in the interval [0.01, 0.5], instead of placing the upper limit for z to 1.

3. After the first decay, the procedure repeats iteratively, i.e., we repeat step 2 for both decay products
from the previous step. The only difference compared to the previous step is that we now perform
the calculations for each particle in its center of mass frame and then transform the obtained
quantities back to the laboratory frame, which coincides with the center of mass frame of the
original particle.

Once the total number of particles exceeds a pre-determined threshold (in our case set to 32),
we disregard the lowest energy particles. We do this both to reduce the computational time and
because we determined that these particles do not influence our end result in a significant manner.

The decay procedure stops when either of two conditions is met; if the decay particle mass falls
below 0.1, or a certain number of decays has been reached. In the simulations, we limited the
number of decays in a single branch to 50. For simplicity, all the decays are considered to happen
in the same point in space.

4. The list of final decay particles now forms a list that contains the energies, the momenta and the
directions of the n particles. We call this entity a jet. The jet has a maximum of 32 particles in its
final state stemming from a maximum of 1 + 2 + 4 + 8 + 16 + 45·32 = 1471 decays. Hence, the full
description of a jet is given by a maximum of 1471 zE parameters, 1471 zp parameters and
1471 pairs of angles (θ, φ).

To create the final representation of the jet which will be fed to a classifier, we create a histogram
whose axes represent the direction of a particle in space. The histogram has 32×32 pixels with
axes representing the polar angle θ and the azimuthal angle φ of a particle. The color of a pixel in
the histogram corresponds to either the energy or the momentum of the particle traveling in that
direction in space. We distribute the deposited energy and momentum as Gaussian distributions
in the histograms, with the Gaussian of σ equal to 1 pixel centralized at the pixel corresponding
to a direction of a certain particle. This mimics the physics situation in real life, where the readout
from a detector always consists of a signal and a background noise. In fact, even when simulating
data in a deterministic way, this effect is taken into account [12]. Lastly, the energy and momentum
histograms are stacked to create an image with dimensions 32×32×2. An example of the jet
generator tree with modified parameters is given in the appendix. Two examples of jet images are
given on Figure 1 in the main body of the text.

4.2. The Classifier

The classifier used to recover the real probability distribution is a feed forward convolutional
neural network (CNN). The architecture of the used CNN is schematically shown on Figure 5. It consists
of a block of layers, repeated four times, followed by 3 dense layers consisting of 20, 10 and 1 unit,
respectively. A rectified linear activation function is used in each layer, except for the last one,
where a sigmoid function is used. The layer block consists of a 2-dimensional convolutional layer
(with 32 filters and a (3,3) kernel), a MaxPooling layer, a batch normalization layer and a dropout layer.
The training of the classifier is performed by minimizing the binary cross entropy loss [8]. The AdaM
optimizer is used to optimize the weights of the CNN [13]. When training through the iterations,
in each iteration we use the same number of jets obtained with preal(z) and jets obtained by using the
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distribution calculated from the previous iteration. To train the CNN we used 75% of data, while the
remaining 25% were used to validate the trained model.

4.3. The Algorithm Used to Recover the Underlying Probability Distributions

After the real jets dataset was generated, we wanted to recover its underlying probability
distributions, which we treated as unknown. The schematic view of the algorithm we use for this is
shown on Figure 5. The algorithm is repeated iteratively. To begin with, we set some initial guesses
of the underlying distributions, denoted by p0

E(zE) and p0
p(zp). Each iteration, indexed by i, consists

of 3 steps: first, the data are generated using the probability distributions pi
E(zE) and pi

p(zp). Next,
the classifier is trained on the generated data and then the probability distributions pi+1

E (zE) and
pi+1

p (zp) are calculated using the trained classifier. After each iteration the weights of the classifier
are saved and used as the initial weights for the training procedure in the next iteration. The iterative
procedure is stopped once the error margin (15) remains below 10% during 20 successive iterations.
Further subsections present the details of the outlined algorithm.

4.3.1. Generating the Data From the Obtained Distributions

To generate the data used for the next iteration we sample 10,000 vectors z ≡ (z1, z2, ..., zN),
where Nmax = 1471 and zn ≡ (zn

E, zn
p, θn, φn). The parameters zE and zp are sampled from the pi

E(zE)

and pi
p(zp) probability distributions obtained from the previous iteration. These vectors are fed into

the jet generator to obtain 10,000 jet images.

4.3.2. Training the CNN Classifier

The generated data are next used to train the classifier. The 10,000 samples of jets generated by
the distributions pi

E(zE) and pi
p(zp) are paired with 10,000 randomly chosen samples from the dataset

containing jets generated using the real distributions. If the pi
E(zE) and pi

p(zp) distributions and the
real distributions are very different, the output of the classifier Cnn can be expected to be very close
to 0 or 1. This can occur during the early iterations of the algorithm and can cause computational
difficulties due to nature of the denominator in (6). To avoid these difficulties, the classifier was trained
on a smaller dataset during the early iterations, typically containing ≈ 200-2000 jets.

4.3.3. Calculation of the Probability Distributions

In order to calculate pi+1
E (zE) and pi+1

p (zp), we use (6). First, we generate a vector z ≡
(z1, z2, ..., zN), where zn = (zn

E, zn
p, θn, φn), by sampling the pi

E(ZE) and pi
p(zp) probability distributions.

From each of these vectors we remove z1
E and fix it by hand to a value between 0.01 and 0.5 in

1000 equidistant bins. This way, we create 1000 vectors z which differ only in the zE parameter of
the first decay. Our jet generator is then used to create the jet images. Each of the images is fed to
the classifier, which gives us Cj

nn(zj), with j being the index of the image. The second term in (6)
can be directly calculated using the pi

E(z
i
E) distribution. The last two terms form a constant which

is equal for all of the used jet images. The calculation of the constant is simple: since we are dealing
with probability distributions, we impose the condition that the integral pE(zE) over zE equals 1,
which directly determines the value of the constant. This way, we obtain the value of the probability
distribution pE(zE) for each zE bin. This procedure is repeated 200 times with jet images generated
with different decay conditions. The arithmetic average of the calculated distributions is used to finally
determine the distribution pi+1

E . Due to the nature of the algorithm, pi
E(zE) inevitably will not be

a smooth function since it is calculated on a point to point basis. Before feeding this distribution to the
next iteration, we perform a smoothing by fitting a fourth degree polynomial to the calculated values
on a log scale. An analogous procedure is used to determine pi

p(zp). The only difference is that instead
of zE, in this case we fix the zp parameter of the first decay.
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Figure 5. (The left panel shows the architecture of the convolutional neural network as described in
the text. The output dimensions of each layer are given on the right side of the panel. The Blocks
layer goes through 4 passes. The right panel shows the algorithm used to recover the underlying
probability distributions. AUC stands for Area Under the Curve and provides an aggregate measure of
the network performance.
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Appendix A. An Example of a Generated Jet

Here we give a pictorial example of a jet generated as outlined in Section 2 (see Figure A1).
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Figure A1. An example of the operation of the jet generator. The number on the specific node represents
the total energy for a given particle, while the number on the line connecting two nodes is the energy
ratio z when decaying. The decay probability distribution p(z) in this image is constant. The maximum
number of decays in a single branch has been set to 7, and the maximum number of particles in the jet
has been set to 8. A particle stops to decay once its energy is too low (here set to 0.1). The particles
coloured red are removed from the jet because their energy is too low.
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Appendix B. Supplementary Results

Here we give the comparison of momentum probability distributions pi
p(z) when varying the

parameter C as a complement to the results for pi
E(z) given in the text (see Figure A2).

Figure A2. Several iterations of the calculated probability distributions pi
p(z) (symbols) compared to

preal(z) (full line) in the case of the guess distribution given by (7). Top: C = 0.1. Middle: C = 10 and
Bottom: C = 100.



Entropy 2020, 22, 994 14 of 14

References

1. Sjostrand, T.; Mrenna, S.; Skands, P. PYTHIA 6.4 Physics and Manual. arXiv 2006, arXiv:hep-ph/0603175.
2. Neyman, J.; Pearson, E.S. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R.

Soc. Lond. A 1933, 231, 694–706.
3. Streit, R.L. A neural network for optimum Neyman-Pearson classification. In Proceedings of the 1990 IJCNN

International Joint Conference on Neural Networks, San Diego, CA, USA, 17–21 June 1990; pp. 685–690.
4. Tong, X.; Feng, Y.; Li, J.J. Neyman-Pearson classification algorithms and NP receiver operating

characteristics. Sci. Adv. 2018, 4, 2. [CrossRef] [PubMed]
5. Altarelli, G.; Parisi, G. Asymptotic freedom in parton language. NPB 1977, 126, 298–318. [CrossRef]
6. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
7. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. NAT 2015, 521, 436–444. [CrossRef] [PubMed]
8. Nielsen, M.A. Neural Networks and Deep Learning. Available online: neuralnetworksanddeeplearning.com/

(accessed on 1 September 2020)
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