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Motivated by the fact that the fractional Laplacean generates a wider choice of the interpolation curves
than the Laplacean or bi-Laplacean, we propose a new non-local partial differential equation inspired by
the Cahn-Hilliard model for recovering damaged parts of an image. We also note that our model is linear
and that the computational costs are lower than those for the standard Cahn-Hilliard equation, while the
inpainting results remain of high quality. We develop a numerical scheme for solving the resulting equa-
tions and provide an example of inpainting showing the potential of our method.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Digital image inpainting is the problem of modifying parts of an
image such that the resulting changes are not trivially detectable
by an ordinary observer. It is used to recover the missing or dam-
aged regions of an image based on the data from the known
regions. It represents an ill-posed problem because the missing
or damaged regions can never be recovered correctly with absolute
certainty unless the initial image is completely known.

In this paper we are concerned with the following problem. Let
X � R2 be a square image domain and x � X an open region with
smooth boundary S ¼ @x such that dist x; @Xð Þ > 0. Let f be the
original image, known only on X nx, and let 0 < l 6 m 6 1. For a
constant � 2 R, we aim to solve the following problem

�Dð Þl H0 uð Þ � �2 �Dð Þmu� � ¼0; on x; ð1Þ

u ¼f xð Þ on X nx; ð2Þ
where u : X ! R is the interpolation of the original image f. In the

special case when l ¼ m ¼ 1 and H uð Þ ¼ a
2 1� u2
� �2 (so called
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double-well potential), Eq. (1) is the famous stationary Cahn-
Hilliard equation (CHE) (see the original paper [10]), a well-
known macroscopic field model for the phase separation of a binary
alloy at a fixed temperature. It is derived from the Helmholtz free
energy

E u½ � ¼
Z
X

H u xð Þð Þ þ 1
2
�2jru xð Þj2

� �
dx ð3Þ

where u typically denotes the concentration, � is the range of inter-
molecular forces, H uð Þ is the free energy density and the last term is
a contribution to the free energy originating from the spatial fluctu-
ations of u.

Note that it is almost a rule that nonlinear PDEs (like Perona-
Malik or the CHE mentioned above; see also [35]) often capture
the most interesting phenomena. This increases the computational
costs and makes the numerical procedure more complicated.

In this contribution we assume H that to be quadratic, which
yields a linear equation, but instead of integer order derivatives
we deal with a fractional order equation. The motivation for this
comes from a simple observation from fractional calculus. Namely,
recall that for given boundary values linear diffusion Du ¼ 0 yields
only linear solutions. On the other hand, Dlu ¼ 0 has a much wider
set of solutions and due to this, it is reasonable to expect that the
image inpainting using fractional equations produces images that
seem more natural (see Fig. 1).

The aim of this paper is to study the application of the fractional
generalization of the Cahn-Hilliard type equations (CHTE) given in
(1) to the image inpainting problem and to propose a fast algo-
rithm for obtaining its numerical solutions. Through several exam-
ples, we are going to show that fractional PDEs produce superior
results over integer order PDEs.

To this end, we derive a fast algorithm based on the matrix
decomposition that solves (1) (formulated as (27)) in the local as
well as in the non-local case. In both cases, the idea is to use appro-
priate arrangements of the discrete equations obtained by the
finite difference method (see [12]) so that the computed matrix
of the linear system exhibits a sparse structure with block symme-
try (see (35)). This structure enables us to derive the recursive rela-
tions for the computation of the decomposition that, by using
simple backward and forward substitutions, yields the solution.
We also carry out a comparison of this approach with the standard
algorithms for numerical solutions of the sparse linear system.

We would like to emphasize that the discretized fractional
order partial differential equation (PDE) under the consideration
serves as a motivation for the construction of a fast and efficient
inpainting algorithms rather than as a problem from a purely
mathematical point of view that will be submitted to the rigorous
numerical analysis.

The rest of the paper is structured as follows. In the next sec-
tion, we give a short overview of the previous approaches, motiva-
tions and ideas underlying the inpainting problem. In
Section ‘‘Numerical method”, we introduce the notion of the dis-
crete Laplacean and its fractional powers with the applications to
the equation under consideration. Together with that, we derive
an algorithm based on matrix decompositions for both local and
Fig. 1. Example of 1D inpainting problem on the x ¼ 250;550½ �. Biharmonic equ
nonlocal case for the purposes of fast image inpainting. In
Section ‘‘Results” we present the application of the introduced
ideas on several testing images, comparing it with well known lin-
ear methods. Finally in Section ‘‘Conclusions and further work”, we
finish with a short discussion and ideas for the future work.

A short overview of previous results

The literature regarding the PDEs with the applications to the
image inpainting problems is extensive. The terminology of digital
image inpainting first appeared in the paper of Bertalmio in [4],
based on the discretization of the transport-like PDE model

ut ¼r?u � rDu on x; ð4Þ

u ¼f xð Þ on X nx; ð5Þ
which is, for stabilization purposes, coupled with the anisotropic
diffusion

ut ¼ f�jrujr � ru
jruj ; ð6Þ

where f� is a smooth cut-off function that forces the equation to act
only x. Furthermore, r?u ¼ �uy;ux

� �
represents the perpendicular

gradient of the image and this is the term that controls the speed of
the transport. In this model j ¼ r � ru

jruj is the curvature along the

isophotes (curves on a surface that connect points of equal bright-
ness), Du is a measure of image smoothness and r?u is the propa-
gation direction, i.e., the direction of smallest spatial change. The
idea was to extend the image intensity in the direction of the iso-
photes arriving to the subset x � X, where x is the inpainting
domain. It can be shown that the steady state equation of (4) is
the equation satisfied by the steady state inviscid flow in the two
dimensional incompressible Navier-Stokes equation [5]. In this con-
cept we can identify image intensity as a stream function for which
the Laplacian of the image intensity models the vorticity that
results in an algorithm that continues the isophotes while matching
gradient vectors at the boundary of the inpaiting domain.

Given the subjective nature of the image inapainting problem it
is reasonable to argue that the brain interpolates broken missing
edges using elastica-type curves. More precisely, if we slightly
extend the inpainting domain x in X and denote it by x�, one
can extrapolate the isophotes of an image u by a collection of
curves ctf gt2 I0 ;Im½ � with no mutual crossing, which coincide with
the isophotes of u on x� nx and minimize the energy
Z Im

I0

Z
ct
aþ bjjct jp
� �

dsdt; ð7Þ

where I0; IM½ � is the intensity span and j is the curvature. For some
parameters a and b, depending on the specific application, this
energy penalizes a generalized Euler’s elastica energy. In [33] the
authors proposed two novel inpainting models based on the semi-
nal Mumford-Shah image model [24] and its high order correction,
called Mumford-Shah-Euler image model. The second one improves
ation (green), integer order CHTE (magenta) and fractional order CHTE (red).
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the first model by replacing the embedded straight-line curve
model with Euler’s elastica, first introduced by Mumford in the con-
text of curve modeling. This approach is not very computationally
efficient, and attempts have been made to create more effective
schemes, and various extensions involving augmented Lagrangians
were considered (see [34,37,38]).

More recently, modified CH and Allen–Cahn equations for the
inpainting of binary images have been analyzed [6,7,9,15,18]. In
the integer order case, besides the standard double well-
potential, researchers have investigated the nonsmooth double
obstacle potential [8] (considered in this contribution) with the
applications to the grayscale images, as well as the logarithmic
potential [13]. They successfully demonstrated that a simpler class
of models (comparing to [33]) can be modified to achieve fast
inpainting of simple binary shapes, text reparation, road interpola-
tion, and image upscaling. This was the motivation for the develop-
ment of advanced numerical methods based on finite difference
methods [11], finite element methods with preconditioning [8],
spectral methods [9], and operator splitting [20] in order to make
the practical computation faster and more efficient. For a mathe-
matical analysis of the fourth order models we refer to [35].

Several years later the investigation of fractional models started
in signal and image processing, a tool already widely used in phy-
sics [30]. Fractional derivatives with respect to space have been
used in the attempts to describe more accurately the anomalous
diffusion or dispersion, where a particle plume spreads at a rate
inconsistent with the well known Brownian model of motion,
and the plume may be asymmetric. The application of fractional
calculus resulted in superior algorithms for the edge detection
[21], filters for texture improvement [25], noise removal [3,39],
etc. Roughly speaking, the idea is to solve the following equation

rlu I u;ruð Þrmu
� � ¼ 0; ð8Þ

on either the entire or a part of the image domain where I u;ruð Þ is
an appropriately chosen function, depending on the specific appli-
cation. For a numerical treatment of such equations see [12,22],
and for applications in image inpainting cf. [1].

In general, fractional differential equations are characterized by
nonlocal and spatially heterogeneous properties in which classical
models fail to provide the adequate results. Regarding image
inpainting problems it has been shown that they improve the image
quality aswell as thepeak signal tonoise ratio (PSNR) [1,19,41]. For a
review of the field, starting from simple harmonic inpainting to the
state of the art methods in PDE based inpainting see [31,32].

Physical reasoning in the integer case

Even though ad hoc adjustments of the governing equations
have been known to produce impressive results (for example the
Perona-Malik equation [36]) it is important to keep in mind the
underlying thermodynamic theory for the construction of this class
of tools, at least when dealing with integer order equations. Let

E uð Þ ¼
Z
X
Hl u;ru;r2u; . . .
� �

dx ð9Þ

be the free energy functional, where Hl is the local free energy per
molecule. Next, we expand Hl in a Taylor series around u0

¼ u; 0;0; . . .ð Þ and neglect higher order terms

Hl u;ux1 ;ux2 ;ux1x1 ;ux1x2ux2x2 ; . . .
� � �

H uð Þ þ
X2
i¼1

@Hl u0ð Þ
@uxi

uxi þ 1
2

X2
i;j¼1

@2Hl u0ð Þ
@uxi @uxj

uxiuxj

þ 1
2

X2
i;j;k¼1

@2Hl u0ð Þ
@uxk @uxixj

uxkuxixj þ 1
2

X2
i;j;k;l¼1

@2Hl u0ð Þ
@uxixj @uxkxl

uxixj uxkxl :

ð10Þ
Imposing that the free energy is invariant under all rotations and
reflections i.e.

@Hl u0ð Þ
@uxi

¼ 0; @Hl u0ð Þ
@uxixi

¼ e1; @2Hl u0ð Þ
@u2xi

¼ e2; i ¼ 1;2;

@Hl u0ð Þ
@uxixj

¼ @2Hl u0ð Þ
@uxi @xj

¼ 0; i: ¼ j:
ð11Þ

we get the local free energy

Hl u;ux1 ;ux2 ;ux1x1 ;ux2x2 ; . . .
� � ¼ H uð Þ þ e1Duþ e2

2
jruj2 þ . . . ð12Þ

After integration over the domain and integration by parts we
obtain the total free energy

E uð Þ ¼
Z
X

H uð Þ þ �2

2
jruj2 þ . . .

� 	
dx; ð13Þ

where �2 ¼ e2 � 2@e1
@u .

Let us consider the mixture of two miscible phases, where u1

and u2 are relative concentrations of the components such that
u1 ¼ u and u2 ¼ 1� u; u 2 0;1½ �. In the general case, the corre-
sponding flux is given by

J ¼ �D u; jrujð Þr l2 � l1

� �
; ð14Þ

where D u; jrujð Þ is the (generalized) diffusivity, and l1;l2 are the
chemical potentials of the components. By Fick’s first law, the gra-
dient of two chemical potentials can be calculated as a variation of a
corresponding free energy potential

l2 � l1 ¼ dE uð Þ
du

: ð15Þ

Combining (14) and (15) and assuming a general anisotropic situa-
tion, as is often the case in image processing, one obtains

J ¼ �D u; jrujð Þr dE uð Þ
du

: ð16Þ

Now if we assume that the mass is conserved we obtain a class of
equations depending on the choice of energy functional

@

@t
quð Þ þ r � J ¼0; ð17Þ

@

@t
u�r � D u; jrujð Þr dE u½ �

du

� 	
¼0: ð18Þ

In typical situations, while constructing PDE interpolation or a filter,
one can choose either the specific diffusivity D u; jrujð Þor the free
energy functional E uð Þ in an effort to process the image. In the sim-
plest case where we neglect terms with derivatives and take H uð Þ to
be quadratic, D u; jrujð Þ ¼ const one obtains the linear diffusion
equation (Gaussian filter), the very first PDE model for harmonic
inpainting and image processing. Note that harmonic inpainting is
a linear extension scheme, and, because of this, images obtained
by employing such a technique do not produce very convincing
results. In practice, one replaces the Laplace operator with the
biharmonic one to define cubic inpainting by taking the total free
energy in the form (13) to get

@

@t
u�r � Dr �2Duþ au

� � ¼ 0: ð19Þ

As for the application in image processing, we assume that
� � const (or we can replace �2Du by a non-isotropic constant coef-
ficient elliptic operator), and we take the stationary case, i.e. we
arrive at (1) with quadratic H and l ¼ m ¼ 1.
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Extension to the fractional case

Continuing in the same direction as explained in the introduc-
tion, it is natural to go beyond integer derivatives in order to
increase the variety of curves which can be used during the
inpainting procedure (we recall that in the harmonic case it is a lin-
ear curve and in the bi-harmonic case it is a third order polyno-
mial; see Fig. 1 and Fig. 2).

This intention can be supported by the following arguments.
The system is expected to evolve so that Helmholtz energy (3)
decreases in time and approaches a minimum. For a Hilbert space
V, Eq. (1) with l ¼ m ¼ 1 can be viewed as a gradient flow

@u
@t

¼ �DrE u½ �; ð20Þ

where D is some positive constant and the gradient of E at a point
u 2 V is defined as follows

rE u½ �; vð ÞV ¼ d
ds

E uþ svð Þjs¼0: ð21Þ

Let �; �ð ÞL2 denote standard L2 scalar product, now by ignoring
boundary terms for the moment we can obtain that

d
ds

E uþ svð Þjs¼0 ¼ �2ru;rv� �
L2 þ H0 uð Þ;vð ÞL2

¼ ��2Duþ H0 uð Þ;v� �
L2 : ð22Þ

Now we can identify two distinct situations. In the first one, we can
choose V ¼ L2 Xð Þ to obtain the gradient

rE u½ � ¼ ��2Duþ H0 uð Þ; ð23Þ
and the associated gradient flow is

@u
@t

þ ��2Duþ H0 uð Þ� � ¼ 0; ð24Þ

that gives already mentioned Allen-Cahn equation. It is well known
that this equation does not preserve mass. Alternatively, one can
take V ¼ H�1 Xð Þ with the scalar product

v;wð ÞH�1 ¼ �Dð Þ�1=2v ; �Dð Þ�1=2w
� �

L2
. In this case the associated

gradient flow is Eq. (1) with l ¼ m ¼ 1 that does preserves mass.
Next natural step would be to explore the gradient flow in the

space H�l where l > 0 with the appropriate scalar product

v ;wð ÞH�l ¼ �Dð Þ�l=2v ; �Dð Þ�l=2w
� �

L2
. In this case, a gradient is

given by
Fig. 2. Graphical representation of the image inpainting problem of the Runge function
rE u½ � ¼ �Dð Þl ��2Duþ H0 uð Þ� �
: ð25Þ

In conclusion, one can consider a gradient flow in the Sobolev space
H�l, for l > 0 where the choice l ¼ 0 one recovers Allen-Cahn
equation and l ¼ 1 yields CHE. At this point, further generalizations
could be obtained by allowing the other Laplacian in (25) to be of
fractional order. For more details please see [2].

Numerical method

In order to introduce a discretization procedure, we shall first
rewrite (1), (2) with

H uð Þ ¼ a
2
u2 ð26Þ

in a more suitable way for the numerical treatment. Denote by
k0 > 0 a positive constant (in the applications below, we take
k0 ¼ 1), by kx ¼ k0vXnx for the indicator function vXnx of the
X nx. Namely, we will investigate the following equivalent variant
of (1), (2)

kx �Dð Þl au� �2 �Dð Þmu� �þ k0 � kxð Þ u� fð Þ ¼ 0 in X: ð27Þ
Fractional derivatives can be defined in several, essentially

equivalent, ways (see e.g. the classical books [26,29]). However,
depending on the situation, certain variants of the definition of
fractional derivatives provide better operational aspects.

The fractional power of the discrete Laplace operator can be
found in [12, Theorem 1.1].

Theorem 1. Let 0 < l < 1 and Zh ¼ hj : j 2 Zf g. Furthermore, let
v : Zh ! R be such that

X
m2Z

jvmj
1þ jmjð Þ1	2l < 1: ð28Þ

Then

�Dð Þlv j ¼
X

m�Z;m–j

v j � vm
� �

Kl j�mð Þ; ð29Þ

where the discrete kernel Kh
l is given by

Kh
l mð Þ ¼ 4lC 1=2þ lð Þffiffiffiffiffiffiffi

pð Þp jC �lð Þj �
C jmj � lð Þ

h2lC jmj þ 1þ lð Þ
: ð30Þ
using integer order and fractional order equations with l ¼ 0:8 on x ¼ 250;550½ �.
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Discretization of the integer order problem

In this section, motivated by applicability of the algorithm and
methodical reasons, we want to lay out the main ideas of the
numerical scheme in the integer order case, i.e. l ¼ m ¼ 1 that will
be extended to the non-integer case.

We discretize at grid points in the square domain which are at
xi; yj
� �

with xi ¼ ih and yj ¼ jh, with h ¼ 1
nþ1, where n represents the

resolution of the image. Let us abbreviate ui;j ¼ u ih; jhð Þ and
f i;j ¼ f ih; jhð Þ. By using the standard three-point discretization to
approximate uxx x; yð Þjx¼xi ;y¼yi

and uyy x; yð Þ�yyjx¼xi ;y¼yi
, and applying

it to Du, one can derive the following:

uxx x; yð Þð Þxxjx¼xi ;y¼yi
¼ uxxxx x; yð Þjx¼xi ;y¼yi

� uiþ2;j�4uiþ1;jþ6ui;j�4ui�1;jþui�2;j

h4
;

uxx x; yð Þð Þyyjx¼xi ;y¼yi
¼ uxxyy xi; yið Þ

� 1
h4

uiþ1;jþ1 � 2uiþ1;j þ uiþ1;j�1 � 2ui;jþ1 þ 2ui;jþ1
�
þui;j � 2ui;j�1 þ ui�1;jþ1 � 2ui�1;j þ ui�1;j�1

�
: ð31Þ

Using this approximation we can write the first term on the left
hand side of (27) in the following form

�D �2Du
� �� aDu ¼
�2

h4
uiþ2;j þ 8�2

h4
� a

h2

� �
uiþ1;j þ � 20�2

h4
þ 4a

h2

� �
ui;j

þ �2

h4
þ �2

h4
� a

h2

� �
ui�1;j � �2

h4
ui�2;j � �2

h4
ui;jþ2

þ 8�2

h4
� a

h2

� �
ui;jþ1 þ 8�2

h4
� a

h2

� �
ui;j�1 � �2

h4
ui;j�2

� 2�2

h4
uiþ1;jþ1 � 2�2

h4
uiþ1;j�1 � 2�2

h4
ui�1;jþ1 � 2�2

h4
ui�1;j�1 þ si;j;

ð32Þ

where the truncation error si;j is bounded by O h2
� �

. For f


i;j defined

by (40), Eq. (40) yields a set of n2 linear equations in n2 unknowns
ui;j as follows

�2uiþ2;jþ 8�2�ah2
� �

uiþ1;jþ �20�2þ4ah2
� �

ui;j

þ 8�2�ah2
� �

ui�1;j��2ui�2;j��2ui;jþ2þ 8�2�ah2
� �

ui;jþ1

þ 8�2�ah2
� �

ui;j�1��2ui;j�2�2�2uiþ1;jþ1�2�2uiþ1;j�1�2�2ui�1;jþ1

�2�2ui�1;j�1¼h4f
~

i;j;16i;j6n:

ð33Þ

Let us now rewrite the n2 equations given by (33) as a single
matrix equation by making the following arrangement of the n2

unknowns ui;j;1 6 i; j 6 n. We will use the linear isomorphism

vec : Rn�n ! Rn2 that reshapes an n� n matrix into a vector of n2

elements, in the following way

X ¼ vec

u1;1 u1;2 � � � u1;n

u2;1 u2;2 � � � u2;n

..

. ..
. . .

. ..
.

un;1 un;2 � � � un;n

2
66664

3
77775

0
BBBB@

1
CCCCA#

u1;1

..

.

un;1

u1;2

..

.

un;2

..

.

u1;n

..

.

un;n

2
666666666666666666666664

3
777777777777777777777775

: ð34Þ
This approach leads to a n2 � n2 symmetric block pentadiagonal
matrix

S ¼

A B C 0 0 0 � � � 0
B A B C 0 0 � � � 0
C B A B C 0 � � � 0
0 C B A B C � � � 0
..
. . .

. . .
. . .

. . .
. . .

. � � � ..
.

0 � � � 0 C B A B C

0 � � � 0 0 C B A B

0 � � � 0 0 0 C B A

2
666666666666664

3
777777777777775

ð35Þ

abbreviated by S ¼ diag A;B; Cð Þ, where the matrices A;B and C are
defined as follows

A ¼ diag �20�2 þ a4h2
;8�2 � ah2

; �2
� �

; ð36Þ

B ¼ diag 8�2 � ah2
;�2�2

� �
; ð37Þ

C ¼ diag ��2� �
: ð38Þ

Thus we arrive at the problem of solving the sparse symmetric
n2 � n2 linear system SX ¼ F. If we consider the columns of S to

be vectors in Rn2 , we can easily conclude that they are linearly inde-
pendent, so S is a regular matrix. Hence we can conclude that the
linear system SX ¼ F has a unique solution. Before turning to the
question of solving it, we make a small note, relevant for the prac-
tical implementation. Namely, for implementation purposes, the
matrix S can be constructed easily using the Kronecker product

S ¼ I � Aþ I�1 � Bþ Iþ1 � Bþ I�2 � C þ Iþ2 � C; ð39Þ
where I is n� n identity matrix, I�1 ¼ di;jþ1 , Iþ1 ¼ diþ1;j and I	2 ¼ I2	1,
where di;j is the standard Kronecker symbol.

Formulation of the linear system

Now we shift our focus to the discrete form of (27). Taking into
account the finite difference equations from the previous section
we want to solve

Zu ¼ k0 � kxð ÞF; ð40Þ
where Z is defined as Z ¼ kxSþ k0 � kxð ÞI, where I is the identity
matrix, F ¼ vec fð Þ is the original image and kx is the characteristic
function of the setx defined as in (27). Note that, in general, Z is not
a symmetric matrix.

Solutions of the linear system

We aim to apply a suitable factorization to the symmetric
matrix ZTZ so that ZTZ ¼ LLT , where L is a lower-diagonal matrix.
To this end we suppose that L (and LT ) is a lower (upper) triangular
matrix of the following form

ZTZ¼

A1 B2 C3 D4 E5 0 0 0 � � � 0
B2 A2 B3 C4 D5 E6 0 0 � � � 0
C3 B3 A3 B4 C5 D6 E7 0 � � � 0
D4 C4 B4 A4 B5 C6 D7 E8 � � � 0
E5 D5 C5 B5 A5 B6 C7 D8 � � � 0
0 E6 D6 C6 B6 A6 B7 C8 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. � � � ..

.

0 0 0 En�2 Dn�2 Cn�2 Bn�2 An�2 Bn�1 Cn

0 0 0 0 En�1 Dn�1 Cn�1 Bn�1 An�1 Bn

0 0 0 0 0 En Dn Cn Bn An

2
66666666666666666664

3
77777777777777777775

; ð41Þ
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LT ¼

aT
1 bT

2 cT3 dT4 eT5 0 0 0 � � � 0

0 aT
2 bT

3 cT4 dT5 eT6 0 0 � � � 0

0 0 aT
3 bT

4 cT5 dT6 eT7 0 � � � 0

0 0 0 aT
4 bT

5 cT6 dT7 eT8 � � � 0

0 0 0 0 aT
5 bT

6 cT7 dT8 � � � 0

0 0 0 0 0 aT
6 bT

7 cT8 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. � � � ..

.

0 � � � 0 0 0 0 0 aT
n�2 bT

n�1 cTn
0 � � � 0 0 0 0 0 0 aT

n�1 bT
n

0 � � � 0 0 0 0 0 0 aT
n

2
6666666666666666666664

3
7777777777777777777775

; ð42Þ

Let us note that this is a very general form and that for practical
purposes the matrix ZTZ might be even more sparse, depending of
the size of the inpainting domain. We also observe that the special
form of the matrix Z enables us to perform this symmetrisation in
only O n2

� �
operations. Furthermore, keeping in mind that each

ai;bi; ci; di and ei are n� n matrices we obtain the following recur-
sive scheme for determining the elements of the lower-diagonal
matrix L by using only the definition of the matrix ZTZ:

ei ¼Ei aT
i�4

� ��1
; ð43Þ

di ¼ Di � eibT
i�3

� �
aT
i�3

� ��1
; ð44Þ

ci ¼ Ci � dib
T
i�2 � eicTi�2

� �
aT
i�2

� ��1
; ð45Þ

bi ¼ Bi � cib
T
i�1 � eidTi�1 � dicTi�1

� �
aT
i�1

� ��1
; ð46Þ

aiaT
i ¼Ai � bib

T
i � cic

T
i � did

T
i � eieTi ; i ¼ 5; . . . ;n; ð47Þ

where a1 to a4;b2 to b4; c3; c4 and d4 are given by

a1aT
1 ¼A1; ð48Þ

b2 ¼B1 aT
1

� ��1
; ð49Þ

a2aT
2 ¼A2 � b2b

T
2; ð50Þ

c3 ¼ C3ð Þ aT
1

� ��1
; ð51Þ

b3 ¼ B3 � c3b
T
2

� �
aT
2

� ��1
; ð52Þ

a3aT
3 ¼A3 � b3b

T
3 � c3c

T
3; ð53Þ

d4 ¼ D4ð Þ aT
1

� ��1
; ð54Þ

c4 ¼ C4 � d4b
T
2

� �
aT
2

� ��1
; ð55Þ

b4 ¼ B4 � c4b
T
3 � d4cT3

� �
aT
3

� ��1
; ð56Þ

a4aT
4 ¼A4 � b4b

T
4 � c4c

T
4 � d4d

T
4: ð57Þ

Note that in each step one needs to compute the inverse of ai

and this can be done in O n3
� �

operations. Now we proceed in
two steps: a) solve LY ¼ F, b) use the computed Y to solve
LTX ¼ Y and obtain the solution X. After the computation of the
lower-diagonal matrix L we have the following recursion

aiY i þ biYi�1 þ ciYi�2 þ diYi�3 þeiYi�4 ¼ Fi;

i ¼ 5; . . .n;
ð58Þ
where Yi�1;Yi�2;Yi�3 and Yi�4 have already been determined, begin-
ning with

a1Y1 ¼ F1; ð59Þ

a2Y2 þ b2Y1 ¼ F2; ð60Þ

a3Y3 þ b3Y2 þ c3Y1 ¼ F3; ð61Þ

a4Y4 þ b4Y3 þ c4Y2 þ d4Y1 ¼ F4: ð62Þ
Because the matrices ai have already been computed (during the
decomposition step) we can perform a forward substitution

Yi ¼ a�1
i Fi � biYi�1 � ciYi�2 � diYi�3 � eiYi�4ð Þ; i ¼ 5; . . .n; ð63Þ

in order to obtain Y. The solution X is finally computed through the
backward substitution given by

Xi ¼ aT
i

� ��1
Yi � bT

iþ1Xiþ1 � cTiþ2Xiþ2 � dTiþ3Xiþ3 � eTiþ4Xiþ4
� �

; i

¼ 1; . . .n� 4: ð64Þ
Here, the boundary cases are defined in the following way

aT
nXn ¼ Yn; ð65Þ

aT
n�1Xn�1 þ bT

nXn ¼ Yn�1; ð66Þ

aT
n�2Xn�2 þ bT

n�1Xn�1 � cTnXn ¼ Yn�2; ð67Þ

aT
n�3Xn�3 þ bT

n�2Xn�2 � cTn�1Xn�1 � dTnXn ¼ Yn�3: ð68Þ
Because the inverses of aT

i are known, it is easy to see that both, for-
ward and backward substitutions can be done in O n2

� �
operations.

In total, this yields O n4
� �

operations.

Discretization of fractional differential equations

Now, we are ready to deal with the fractional variant of (1), (2).
In our simulations we have fixed lþ m ¼ 2 because numerical
experiments have indicated that this could be the compromise
between the quality of the inpainting results and keeping the
numerical scheme relatively simple. In this way, with the appropri-
ate selection of the parameters a and �2, Eq. (1) can be viewed as a
fractional inpainting with a corrective local term of high order.
Using Theorem 1 (and notations from there) and assuming a ¼ 1,
we have

�Dð Þlu� �2D2u ¼
��2 � K 2ð Þ� �

uiþ2;j þ 8�2 � K 1ð Þ� �
uiþ1;j þ �20�2 þ 4K 1ð Þ þ 4K 2ð Þ� þ

4K 3ð Þ þ 4K 4ð Þ þ 4K 5ð Þ þ 4K 6ð ÞÞui;j þ 8�2 � K 1ð Þ� �
ui�1;jþ

��2 � K 2ð Þ� �
ui�2;j � ��2 � K 2ð Þ� �

ui;jþ2 þ 8�2 � K 1ð Þ� �
ui;jþ1þ

8�2 � K 1ð Þ� �
ui;j�1 þ ��2 � K 2ð Þ� �

ui;j�2 � 2�2uiþ1;jþ1 � 2�2uiþ1;j�1�
2�2ui�1;jþ1 � 2�2ui�1;j�1 � K 3ð Þ ui;jþ3 þ ui;j�3 þ uiþ3;j þ ui�3;j

� ��
K 4ð Þ ui;jþ4 þ ui;j�4 þ uiþ4;j þ ui�4;j

� �� K 5ð Þ ui;jþ5 þ ui;j�5 þ uiþ5;j þ ui�5;j
� ��

K 6ð Þ ui;jþ6 þ ui;j�6 þ uiþ6;j þ ui�6;j
� �

: ð69Þ

Here we have neglected terms containing the constant K mð Þ, with
m P 7 because the constants K mð Þ rapidly tend to zero for increas-
ing m and because taking more terms does not seem to influence
the subjective assessment of the inpainted image. Thus, it has a
negligible influence in minimizing the relative L2 error (see
Section ‘‘Results”).

Next, we proceed similarly as in the integer case by defining.
S ¼ diag A;B;C;D; E; F;Gð Þ, where the matrices A;B;C;D; E; F and

G are given by

A¼ diag �20�2þ4K 1ð Þþ4K 2ð Þþ4K 3ð Þþ4K 4ð Þþ4K 5ð Þþ4K 6ð Þ;�
8�2�K 1ð Þ;��2�K 2ð Þ;�K 3ð ÞÞ; ð70Þ



Table 1
Values of the parameters for the inpainting results shown on Fig. 1.

Inpainting method �2 min max L2rel

Image (a) – 0.00 0.53 –
Integer order biharmonic eq. 1 0.06 0.53 0.223

Integer order CHTE 10 0.14 0.53 0.746
Fractional order CHTE l ¼ 0:30 1 0.00 0.53 0.014

Image (b) – 0.00 1.00 –
Integer order biharmonic eq. 1 0.60 1.15 0.878

Integer order CHTE 10 0.63 0.96 0.757
Fractional order CHTE l ¼ 0:80 1 �0.18 1.17 0.320

Image (c) – 0.14 0.75 –
Integer order biharmonic eq. 1 0.14 0.66 0.118

Integer order CHTE 100 0.14 0.63 0.163
Fractional order CHTE l ¼ 0:40 1 0.14 0.74 0.010

Fig. 3. Comparison of different solvers for the system. PM denotes the approach proposed in this paper.
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B ¼ diag 8�2 � K 1ð Þ;�2�2
� �

; ð71Þ

C ¼diag ��2 � K 2ð Þ� �
; ð72Þ

D ¼diag �K 3ð Þð Þ; ð73Þ

E ¼diag �K 4ð Þð Þ; ð74Þ

F ¼diag �K 5ð Þð Þ; ð75Þ

G ¼diag �K 6ð Þð Þ: ð76Þ
Now we define the matrix Z as in (40) and follow the same steps as
in the integer case.

Results

In Fig. 2 we set a ¼ 1 and compare applications of different
equations on a 1D inapainting problem on the domain
x ¼ 250;550½ �. Let us note that the simple integer order inpainting
using the Laplace equation resulted in a relative L2-error of
0.59974, the linear integer order CHTE (�2 ¼ 10) (27) produced a
relative L2-error of 0.38415, and on the other hand the (linear) frac-
tional order CHTE (�2 ¼ 1) produced a relative L2-error of 0.05859.
Besides the lower L2 relative error, fractional order equations seem
to preserve the image features (also see Fig. 1) and thereby pro-
duces images that look more natural. Clearly, the fractional order
CHTE delivers superior results compared to the linear integer order
equations.
Furthermore, we have performed the experiment on 100 1D test
images with 3 different inpainting domains and different fractional
orders in (69) and compared it to the results obtained by the inte-
ger order equations. By choosing the result of the fractional order
inpainting with the least L2-relative error (with respect to the
undamaged image) and comparing it to the error produced by inte-
ger order inpainting, we conclude that the fractional order inpaint-
ing approach yields on average 28:68% lower L2-relative error. The
selection of the parameters was done by exhaustive enumeration
method. Selected images from this experiment are presented in
Fig. 1. Further details are given in Table 1.

Moreover, for different dimensions n of the system and different
numerical methods we have performed 6 independent measure-
ments of the running times required for solving the inpainting
problem. The average computational times are presented in
Fig. 3, where one can compare the computational performance of
the proposed approach as compared to the classical numerical
methods for solving such a system. Note that the running time of
the algorithm under the consideration in the case n2 ¼ 40000
was only 1.87 s whereas other methods were not able to yield a
solution within 100 s. This experiment was performed on the stan-
dard desktop computer.

In Fig. 4, the test example consists of a gray scale image that
contains a wide damaged area in the shape of a rectangle in the
middle of the image. For three different parameters l the proposed
method was tested against the MATLAB inpainting function called
inpaintn, transport equation of Bertalmío [5], Laplace and bihar-
monic inpainting as well as integer order CHTE and two total vari-
ation (TV and high order TV denoted by TV4) inpainting methods.
The MATLAB files for Laplace, transport and total variation meth-



Fig. 4. Inpainted gray scale stripes image using different PDE based inpainting methods. (a) Original image, (b) Image with the inpainting domain, (c) Matlab inpaintn

function, (d) Transport equation of Bertalmío, (e) Local Laplace inpainting, (f) Local biharmonic inpainting, (g) Integer order CHTE, (h) TV inpainting, (i) TV4 inpainting, and
fractional order CHTE with (j) l ¼ 0:7, k) l ¼ 0:8, (l) l ¼ 0:9.

Table 2
Results for the gray scale stripes inpainting using different models, presented on Fig. 4.

Inpainting method a �2 PSNR SSIM L2rel

Image with crack – – 9.8941 0.78550 0.46369
Matlab inpaintn function – – 26.266 0.56987 0.064359

Transport eq. – – 18.284 0.80683 0.17605
Integer order Laplace eq. 0 1 24.257 0.80114 0.088172

Integer order biharmonic eq. 1 0 27.307 0.81967 0.061465
Integer order CHTE 1 10 25.742 0.81167 0.073854

TV – – 19.762 0.78139 0.14869
TV4 – – 24.460 0.78756 0.085689

Fractional order CHTE l ¼ 0:7 10 1 37.580 0.89977 0.019116
Fractional order CHTE l ¼ 0:8 10 1 31.774 0.82172 0.037167
Fractional order CHTE l ¼ 0:9 10 1 28.810 0.80908 0.052209
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ods are available on the Web.1 2 All simulations are run with stan-
dard parameters that were determined by the exhaustive enumera-
tion approach (Fig. 4, results (d)–(i)).

For further details on values of the parameters please see
Table 2.

In the Fig. 5 we have applied the same methods as in the Fig. 4,
but this time to a real and more complex image – the famous Lena
with a 2.5� zoom covering details of the nose and right eye region.
For further details on values of the parameters please see Table 3.

Moreover, we have performed thousands of experiments with
above mentioned approaches (shown in Fig. 4 and Fig. 5, results
(d)–(i)), however, we do not exclude the possibility that even better
results for the other approaches could be obtainedby afine tuningof
theparameters. Basedon the tests performed for the fractional order
CHTE, it seems that the best inpainting results are obtained for the
values of l close to 0:7, although this is probably subjected to the
features of the image under the consideration.

In addition, in Fig. 6, we have applied the proposed method on
the RGB image where each color channel was treated separately.
We see that the difference between the original image and the
inpainted one is almost not detectable.
Conclusions and further work

The success of the inpainting depends on the choice of curves
which can be used to interpolate damaged parts of the image. If
we have only linear curves or third order polynomials as in the case



Fig. 5. Inpainted gray scale Lena using different PDE based inpainting methods with 2.5� zoom over the nose and right eye region. (a) Original image, (b) Image with the
inpainting domain in blue, (c) Matlab inpaintn function, (d) Transport equation of Bertalmío, (e) Local Laplace inpainting, (f) Local biharmonic inpainting, (g) Integer order
CHTE, (h) TV inpainting, (i) TV4 inpainting, and fractional order CHTE with (j) l ¼ 0:7, (k) l ¼ 0:8, (l) l ¼ 0:9.

Table 3
Results for gray scale Lena image inpainting using different models, presented on Fig. 5.

Inpainting method a �2 PSNR SSIM L2rel

Image with crack – – 20.612 0.92782 0.146790
Matlab inpaintn function – – 39.661 0.98699 0.008313

Transport eq. – – 35.339 0.97638 0.022761
Integer order Laplace eq. 0 1 38.639 0.98532 0.009822

Integer order biharmonic eq. 1 0 40.080 0.98733 0.009100
Integer order CHTE 1 10 38.982 0.98602 0.009420

TV – – 30.468 0.45713 0.019342
TV4 – – 30.746 0.54271 0.010896

Fractional order CHTE l ¼ 0:7 10 1 40.892 0.98958 0.007518
Fractional order CHTE l ¼ 0:8 10 1 39.643 0.98802 0.008540
Fractional order CHTE l ¼ 0:9 10 1 39.265 0.98700 0.009382
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Fig. 6. Example of the image produced by the proposed equation. (a) Original image, (b) Image with inpainting domain, (c) Result of the inpainting.
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of the harmonic or biharmonic inpainting approach, we cannot
obtain satisfactory results. One way to overcome this limitation
and still remain in the framework of analysis of harmonic and
biharmonic PDEs is to add nonlinear terms (this is the case with
the CHE), but such an approach decreases computational efficiency
and usually requires a non-standard numerical treatment.

In the current contribution, we extended the choice of possible
interpolating curves not by adding a nonlinear (correcting) terms,
but by replacing integer by fractional order derivatives, staying at
the same time in the linear setting. This significantly simplifies the
numerical treatment of the problem and decreases computational
costs. On theother hand,wefind theobtained results at least equally
convincing as the ones obtained using the integer order CHTE.

In future work, we shall try to extend this approach by intro-
ducing equations with nonlinear coefficients and derivatives of
variable order [14] or derivatives of complex order [29]. We shall
also continue in the direction of rigorously proving the conver-
gence of the scheme and optimizing the order of the equation used
for the inpainting.
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