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1 Introduction

One of the primary goals in the ultra-relativistic heavy-ion collision programs at the Rel-

ativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) is to study the

nuclear matter at extreme conditions. The pressure gradients in the strongly interacting

matter, known as the Quark-Gluon Plasma (QGP), are believed to drive the hydrodynamic

expansion observed through anisotropy in multi-particle correlations in high energy colli-

sions at RHIC and the LHC [1, 2]. The anisotropic expansion of the medium, commonly

referred to as anisotropic flow [1], can be characterized by a Fourier decomposition of the

azimuthal particle distribution with respect to the reaction plane [3, 4]

dN

dϕ
∝ 1 + 2

∞∑
n=1

vn cos(n(ϕ− ψRP)), (1.1)

where the flow coefficient vn is the magnitude of the n-th order flow, and the reaction

plane ψRP defined by the beam direction and impact parameter which is defined as the

distance between the centers of two colliding nuclei. Due to fluctuations in the initial

state energy density profile, it is useful to define symmetry planes of different orders,

where the n-th order plane ψn defines the orientation of the n-th order complex flow vector

Vn ≡ vneinψn . The expansion of the azimuthal distribution about ψn also yields finite values

of odd coefficients [5, 6]. Anisotropic flow measurements through two- and multi-particle

azimuthal correlations [6–13] have provided important information on the medium response

and in particular its transport coefficients such as the shear viscosity to entropy density

ratio (η/s), bulk viscosity to entropy density ratio (ζ/s) and the equation of state [14].

Studies have shown the relativistic hydrodynamic nature of the medium [1, 2, 15–22], with

η/s close to the AdS/CFT minimum 1/(4π) [23].
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The initial state eccentricity, determined from the energy density profile, is obtained

from the definition [5]

εneinΦn = −{rneinϕ}/{rn}, n ≥ 2, (1.2)

where the curly brackets denote the average over the transverse plane, i.e.

{· · · } =
∫

dxdy e(x, y, τ0)(· · · ), r is the distance to the system’s center of mass, ϕ is the

azimuthal angle, e(x, y, τ0) is the energy density at the initial time τ0, and Φn is the

participant plane angle, defining the spatial symmetry of the nuclear constituents in the

participant region (see refs. [24, 25]). Hydrodynamic models demonstrate that the second

and the third harmonic flow coefficients exhibit an almost linear dependence on the ini-

tial eccentricity coefficients εn [26]. Considering that the anisotropic expansion is a result

of a hydrodynamic evolution governed by η/s, a measurement of the second and third

harmonics combined with hydrodynamic calculations can constrain the properties of the

medium. Several estimates for the limits of η/s were determined through measurements

of elliptic flow coefficient v2 [27–32] and their comparison with hydrodynamic calculations.

Consequently, the early constraints placed the value of η/s between 0.08 to 0.16 [33–35].

However, the limited sensitivity of the elliptic flow to η/s and the large uncertainty in the

initial state anisotropy inhibit a precise determination of the value of η/s [34, 36–38], and

its temperature dependence, which was recently shown to be explorable during the second

run of LHC [39, 40]. In addition, part of the anisotropic flow can also originate from the

hadronic phase [41–43]. It has been shown in [43, 44] that the inclusion of the temperature

dependent bulk viscosity ζ/s(T) in hydrodynamic simulation lead to a better description

of the average transverse momentum of charged hadrons and on the elliptic flow coefficient.

The effects of bulk viscosity should be considered when extracting any transport coefficient

from the data [45–47].

Flow harmonics of order n ≥ 3 reveal finer details of initial conditions [6, 8, 10, 11, 13],

enabling to constrain η/s better [39, 40, 48, 49]. Higher flow harmonics n > 3 do not

exhibit a linear response to the initial anisotropy [26] as a finite contribution is induced by

the initial state anisotropy of the lower orders [50, 51]. For example, the fourth order flow

vector V4 gains contributions not only from the fourth order flow (linear flow mode), but

also from the second order flow (non-linear flow mode). Starting from the Vn estimators

studied in [50], the flow can be expressed as a vector sum of the linear and non-linear modes

V4 = V4L + χ4,22V
2

2 ,

V5 = V5L + χ5,23V2V3,

V6 = V6L + χ6,222V
3

2 + χ6,33V
2

3 + χ6,24V2V4L,

V7 = V7L + χ7,223V
2

2 V3 + χ7,34V3V4L + χ7,25V2V5L,

V8 = V8L + χ8,2222V
4

2 + χ8,233V2V
2

3 + E(V4L, V5L, V6L),

(1.3)

where χn,mk is called non-linear flow mode coefficient, characterizing the non-linear flow

mode induced by the lower order harmonics. The high order linear component is denoted

by VnL, while the many higher order linear couplings are depicted by E(. . . ) for V8. The

– 2 –
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VnL is linearly related to a cumulant-defined anisotropy [52]

ε′4ei4Φ′
4 = ε4ei4Φ4 +

3〈r2〉2
〈r4〉 ε2ei4Φ2 (1.4)

as opposed to the relation vn ∝ εn, where vn is the magnitude of the total contribution

and εn is given by eq. (1.2).

In earlier measurements performed by ALICE [53], the non-linear flow mode coefficients

were measured up to the sixth harmonic order in Pb-Pb collisions at
√
sNN = 2.76 TeV. It

was indicated that the coefficients χ5,23 and χ6,33 are sensitive not only to η/s, but also to

the distinctive energy density profiles generated by different initial conditions. It was ob-

served that the hydrodynamic models with their respective initial conditions Monte-Carlo

(MC)-Glauber [54, 55], MC-KLN [33, 56], and IP-Glasma [57]), are unable to reproduce

these measurements, which indicates that the model tuning and η/s parameterization re-

quire further work.

In this paper, measurements of high order flow coefficients in Pb-Pb collisions at√
sNN = 5.02 TeV are presented. The flow coefficients vn are measured up to the ninth

harmonic, v9, extending the previous measurements of v2–v6 [58]. The data recorded dur-

ing the 2015 heavy-ion run of the LHC allow the measurements of non-linear flow mode

and correlations between symmetry planes to be extended. A total of six non-linear flow

mode coefficients are measured, including the non-linear flow mode coefficient χ7,223, for

which the sensitivity to η/s is expected to be significantly stronger than for the lower odd-

harmonic coefficient χ5,23 [37, 59]. The results are compared with those in Pb-Pb collisions

at
√
sNN = 2.76 TeV [53] and various state of the art hydrodynamical calculations.

2 Formalism and observables

In order to separate the linear and non-linear contributions from eq. (1.3), one assumes the

respective contributions to be uncorrelated [60]. For example for the fourth order V4, by

mean-squaring the equations in eq. (1.3) and setting 〈(V ∗2 )2V4L〉 ' 〈V 2
2 V
∗

4L〉 ' 0, the linear

part can be derived

〈|V4L|2〉
1
2︸ ︷︷ ︸

v4L

= (〈|V4|2〉︸ ︷︷ ︸
v24

−χ2
4,22〈|V2|4〉︸ ︷︷ ︸
v24,NL

)
1
2 . (2.1)

Here 〈〉 denotes an average over all events and ∗ the complex conjugate. The magnitudes

of the linear and non-linear flow coefficients are denoted with v4L and v4,NL, respectively.

The observables of the non-linear response mode are constructed from the projections

of flow vectors on to the symmetry planes of lower harmonics [61, 62]. For n = 4, the

magnitude of the non-linear response mode is given by

v4,22 =
<〈V4(V ∗2 )2〉√
〈|V2|4〉

≈ 〈v4 cos(4ψ4 − 4ψ2)〉, (2.2)

where v2
4,22 ≡ v2

4,NL ≡ χ2
4,22〈|V2|4〉. The right-hand side approximation holds if the low

(n = 2, 3) and high order flow is weakly correlated. Only the fourth harmonic is shown

here and the complete list of other harmonics are provided in appendix A.

– 3 –
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The contributions from short-range correlations unrelated to the common symme-

try plane, commonly referred to as “non-flow”, are suppressed by using the subevent

method where the event is divided into two subevents separated by a pseudorapid-

ity gap [4]. The underlying multi-particle correlation coefficient for subevent A is

vA
4,22 = 〈〈cos(4ϕA

1 − 2ϕB
2 − 2ϕB

3 )〉〉/〈〈cos(2ϕA
1 + 2ϕA

2 − 2ϕB
3 − 2ϕB

4 〉〉1/2 as determined using

eq. (2.2),1 and a similar treatment is applied for the subevent B, for which vB
4,22 is obtained

by swapping B for A in the aforegiven expression. The final result is then the average of

the results from subevents A and B.

The symmetry-plane correlations are defined as the ratio between the magnitude of

the non-linear flow modes and flow coefficients [63]. For n = 4, one obtains

ρ4,22 =
v4,22

v4
≈ 〈cos(4ψ4 − 4ψ2)〉. (2.3)

A value close to zero indicates weakly correlated symmetry planes, while a value reaching

one implies a strong correlation. The correlations between symmetry planes reflect those of

the corresponding initial state participant planes [53, 64], therefore providing valuable in-

formation on the evolution of the QGP. Correlations between symmetry planes have been

previously studied using the event-plane method [64, 65], event plane describing an experi-

mentally approximated symmetry plane. However, these results depend on the event-plane

resolution [66], which complicates the comparison between data and theoretical calcula-

tions. Recently, the ALICE Collaboration has measured symmetry-plane correlations [53].

It was found that the correlations of symmetry planes of higher harmonics with second and

third order symmetry planes increased for less central collisions. Furthermore, the com-

parison with hydrodynamic calculations revealed the importance of final-state collective

dynamics in addition to the initial-state density fluctuations [33] as it is known that the

observation of correlated final state symmetry planes implies the existence of fluctuations

in the initial state eccentricity vectors.

The fourth non-linear flow mode coefficient, with the aforementioned assumptions, is

given by [59]

χ4,22 =
v4,22√
〈v4

2〉
. (2.4)

3 Experimental setup and data analysis

The data sample consists of about 42 million minimum bias Pb-Pb collisions at
√
sNN =

5.02 TeV, recorded by ALICE [67, 68] during the 2015 heavy-ion run at the LHC. Detailed

descriptions of the detector can be found in [67, 69, 70]. The trigger plus crossing of beam

is provided by signals from the two scintillator arrays, V0A and V0C [67, 71], covering

the pseudorapidity intervals 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. A primary

vertex position less than 10 cm in beam direction from the nominal interaction point is

required. Pile-up events are removed by correlating the V0 multiplicity with the multiplicity

from the first Silicon Pixel Detector (SPD) [67, 72] layer. To further remove pile-up events,

1For practical usage, the self-correlation is recursively removed from three- and four-particle correlations,

resulting in modified equations.
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information from the Time-of-Flight (TOF) [73] detector is used: the multiplicity estimates

from the SPD are correlated with those imposed with a TOF readout requirement. The

centrality of the collision is determined using information from the V0 arrays. Further

details on the centrality determination in ALICE are given in [74]. Only events in the

centrality range 0% to 60% are used in the analysis.

The track reconstruction is based on combined information from the Time Projection

Chamber (TPC) [67, 75] and the Inner Tracking System (ITS) [67, 72]. To avoid contribu-

tions from secondary particles, the tracks are required to have a distance of closest approach

to the primary vertex of less than 3.2 cm and 2.4 cm in the longitudinal and transverse

directions, respectively. Such a loose Distance of Closest Approach (DCA) track cut is

chosen to improve the uniformity of the ϕ-distribution for the Qn-vector calculation. Fur-

thermore, each track is required to have at least 70 TPC space points out of the maximum

159, and the average χ2 per degree of freedom of the track fit to the TPC space points

to be less than 2. Minimum 2 hits are required in the ITS. In order to counteract the

effects of track reconstruction efficiency and contamination from secondary particles [76],

a HIJING simulation [77, 78] with GEANT3 [79] detector model is employed to construct

a pT-dependent track weighting correction. The track reconstruction efficiency is approxi-

mately 65% at pT = 0.2 GeV/c and 80% at pT > 1.0 GeV/c, while the contamination from

secondaries is less than 10% and 5%, respectively. Only particle tracks within the trans-

verse momentum interval 0.2 < pT < 5.0 GeV/c and pseudorapidity range 0.4 < |η| < 0.8

are considered. A pseudorapidity gap |∆η| > 0.8 is used to suppress the non-flow. The

observables in this analysis are measured with multi-particle correlations obtained using

the generic framework for anisotropic flow analysis [80].

4 Systematic uncertainties

The systematic uncertainties are estimated by varying criteria for selecting the events and

tracks. The systematic evaluation is done by independently varying the selection criteria,

and the results given by this variation are then compared to the default criteria given in

section 3. The total uncertainty is obtained by assuming that the individual sources are

uncorrelated, which are then quadratically summed.

Summaries of the relative systematic uncertainties are given in tables 1–4. Uncertain-

ties stemming from the event selection criteria are estimated by changing the rejection

based on the vertex position from 10 cm to 8 cm and by adjusting the pile-up rejection

criteria. It is found that the contribution to the uncertainty is generally negligible, below

1%. An alternative centrality determination is employed using the event multiplicity esti-

mates from the SPD layers. The uncertainty related to the centrality determination is less

than 2% for all observables, except for v7 to v9 for which the uncertainty increases to 10%.

The ALICE detector can be operated with either positive or negative solenoid magnetic

field polarity. The polarity of the field affects the direction of the charged particle curvature,

while also subjecting the structural materials of the detector itself to either a positive or

negative magnetic field. The default data set is composed of events recorded with both

polarities. The results produced with exclusively either negative or positive magnetic field

configurations deviate from the default by up to 15% in case of flow coefficients, and 28% for

– 5 –
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Type v2 v3 v4 v5 v6 v7 v8 v9

Event Selection

z-vertex cut < 0.1 < 0.1 < 0.1 0.5 1.2 1.6 1.8 1.7

Pile-up rejection < 0.1 < 0.1 < 0.1 0.2 0.8 1.3 1.7 2.0

Centrality Determination

SPD 0.6 0.3 0.3 1.1 3.9 6.6 9.1 11.5

Tracking

Magnetic field polarity 0.1 0.1 1.7 2.4 4.1 6.8 10.5 15.2

Tracking mode 0.1 0.2 < 0.1 2.4 5.4 7.2 7.6 6.8

Number of TPC space points 0.7 1.2 1.4 1.5 1.6 1.7 1.7 1.8

Space charge distortion < 0.1 < 0.1 < 0.1 0.2 0.7 1.2 1.7 2.3

Non-flow

Charge combinations (−−/++) 1.1 0.7 0.8 2.9 6.2 9.3 12.3 15.2

Overall 1.5 1.4 2.4 4.9 10.3 15.4 20.4 25.6

Table 1. Relative systematic uncertainties of the flow coefficients. The uncertainties are given

in percents and are categorized into four groups: event selection, centrality determination, track-

ing and non-flow. The overall systematic uncertainty is obtained by summing in quadrature the

uncertainties from each source.

Type v4,22 v5,23 v6,222 v6,33 v6,24 v7,223

Event Selection

z-vertex cut 0.1 0.1 0.2 0.3 0.2 0.1

Pile-up rejection < 0.1 0.1 0.4 0.5 0.4 < 0.1

Centrality Determination

SPD 1.5 0.7 0.3 0.3 0.7 1.4

Tracking

Magnetic field polarity 0.5 0.5 1.9 3.2 4.4 5.5

Tracking mode 0.1 0.4 1.4 1.7 1.1 < 0.1

Number of TPC space points 3.8 2.3 1.5 1.4 2.1 3.5

Space charge distortion 0.2 0.1 1.8 4.0 6.7 9.9

Non-flow

Charge combinations (−−/++) 4.2 4.7 5.8 7.4 9.6 14.3

Overall 5.9 5.3 6.7 9.3 12.7 18.6

Table 2. Relative systematic uncertainties of the harmonic projections vn,mk.

ρ7,223. In order to estimate the non-flow contributions from resonance decays, the like-sign

technique [2] which correlates exclusively either positively or negatively charged particles,

is employed. The difference with respect to the results obtained by selecting all charged

particles is assigned as a systematic uncertainty. In general, this uncertainty ranges from

2% to 15%. The effect from the space charge distortions in the TPC drift volume because

– 6 –
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Type ρ4,22 ρ5,23 ρ6,222 ρ6,33 ρ6,24 ρ7,223

Event Selection

z-vertex cut 0.1 0.3 0.1 0.2 0.8 2.5

Pile-up rejection 0.1 0.3 0.1 0.3 1.0 2.2

Centrality Determination

SPD 0.9 0.3 0.7 0.9 1.2 1.5

Tracking

Magnetic field polarity < 0.1 1.8 6.8 10.1 13.8 18.0

Tracking mode 0.1 0.3 0.8 2.6 6.1 11.2

Number of TPC space points < 0.1 0.7 0.1 < 0.1 1.0 2.8

Space charge distortion 0.2 0.2 1.5 3.5 6.7 11.1

Non-flow

Charge combinations (−−/++) 3.1 3.6 3.6 5.6 8.7 12.9

Overall 3.3 4.2 7.9 12.4 18.8 27.5

Table 3. Relative systematic uncertainties of the symmetry-plane correlations ρn,mk.

Type χ4,22 χ5,23 χ6,222 χ6,33 χ6,224 χ7,223

Event Selection

z-vertex cut < 0.1 0.1 0.3 0.3 0.3 0.1

Pile-up rejection < 0.1 0.1 0.5 0.6 0.5 0.1

Centrality Determination

SPD 0.2 0.6 1.0 1.0 0.7 0.1

Tracking

Magnetic field polarity 0.6 0.2 2.5 4.1 5.1 5.5

Tracking mode < 0.1 0.2 1.4 1.7 1.2 0.2

Number of TPC space points < 0.1 0.2 0.5 0.7 0.9 1.1

Space charge distortion 0.2 0.1 1.9 4.4 7.1 10.1

Non-flow

Charge combinations (−−/++) 0.2 1.5 7.7 12.0 14.4 15.0

Overall 0.7 1.7 8.5 13.6 17.0 19.0

Table 4. Relative systematic uncertainties of the non-linear flow mode coefficients χn,mk.

of the higher interaction rates is estimated by comparing results from different regions of

the TPC, one for η > 0 and the other η < 0. The maximum uncertainty is evaluated less

than 15%. The track reconstruction related uncertainty, referred to as tracking mode, is

evaluated by comparing the results obtained with tracks for which the requirement for the

number of hits in the ITS layers is changed. In this case, the uncertainty is generally less

than 15%, and a maximum 20% is evaluated for ρ7,223. Furthermore, the track selection

criteria is tightened by increasing the minimum number of the TPC space points from 70

to 90, resulting in uncertainties around 1% to 3%.
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5 Results

In this section, the measurements of the flow coefficients, the non-linear modes, symmetry-

plane corre-lations and the non-linear flow mode coefficients are presented. They are com-

pared with hydrodynamic calculations with various settings [25, 57, 81, 82]. The first

calculation is based on an event-by-event viscous hydrodynamic model with EKRT ini-

tial conditions [25, 81] using a value of η/s = 0.20 (param0) and a temperature dependent

η/s(T ) (param1). For both configurations, ζ/s is set to zero. The visualization of the model

parameters can be found in figure 1. The second calculation employs the iEBE-VISHNU

hybrid model [83] with AMPT [84–86] and TRENTo [87] initial conditions. The η/s = 0.08

and ζ/s = 0 are taken for param2, while the η/s(T ) and ζ/s(T ) (param3), extracted using

Bayesian analysis [45] (except for the normalization factors) from a fit to the final multi-

plicities of the charged hadron spectra in Pb-Pb collisions at
√
sNN = 5.02, are used for

the TRENTo initial conditions. The third calculation uses the MUSIC model [88] with

IP-Glasma [89] initial conditions with a value of η/s = 0.095 and ζ/s(T ) (param4). Each

of the η/s(T ) parameterizations is adjusted to reproduce the measured charged hadron

multiplicity, the low-pT region of the charged-hadron spectra, and vn from central to mid-

peripheral collisions up to the fourth harmonic at RHIC and the LHC [25, 44, 57, 84, 90–92].

The model configurations are summarized in table 5.

In figure 2, the measurements of the flow coefficients from v2 to v9 are presented. The

first two coefficients up to v6 have been extensively measured at RHIC and LHC [6–13],

and more recently also v7 [49]. The present analysis reports the first results on higher

harmonic coefficients from v7 to v9 in ALICE, where v8 and v9 are measured for the first

time at the LHC energies. The coefficients exhibit a modest centrality dependence, and

their magnitude is similar to that of v7 within statistical and systematic uncertainties. The

measurements up to v6 are compatible with those published previously [58].

Figure 2 also shows the comparison between the measured vn and model calculations.

The hydrodynamic calculations qualitatively reproduce the vn measurements, and the over-

all model depiction is very good for v2 and v3. For n ≥ 4 however, the calculations show

noticeable overestimations, especially in mid-peripheral collisions. For v5 and v6, the data

are well described by EKRT+param0, showing a better agreement than the temperature

dependent EKRT+param1. The data are also described by AMPT+param2, for which the

agreement for v5 and v6 is good in mid-central and mid-peripheral collisions. IP-Glasma+

param4 and TRENTo+param3 overestimate the measurements by a factor of 1.5∼2. Val-

ues of v7 are well estimated by AMPT+param2, and v8 by both AMPT+param2 and

TRENTo+param3 within uncertainties. In other cases, the data are overestimated by the

other models.

To study the dependence on the harmonic order of the anisotropy coefficients [97],

figure 3 shows values of different coefficients as a function of n for all centralities. This

presentation is particularly well suited in visualizing the harmonic dependence, and the

acoustic scaling [97] observed across the harmonic orders. The decrease in vn with in-

creasing harmonic order up to n = 7 indicates viscous damping [97]. This means that

the higher frequency waveform propagating through the medium should get more damped

– 8 –
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0.8

KSS bound 1/(4π)

param0 (EKRT)
param1 (EKRT)
param2 (AMPT)
param3 (TRENTo)
param4 (IP-Glasma)

param0 (EKRT)
param1 (EKRT)
param2 (AMPT)
param3 (TRENTo)
param4 (IP-Glasma)
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T (MeV)

0.0

0.1

0.2

0.3

0.4
param3
(TRENTo)
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(IP-Glasma)

η
/s

ζ
/s

Figure 1. The five different parameterizations of η/s and ζ/s used for the different hydrodynamic

model calculations are shown in the left and right panel. Note that the functional form of ζ/s(T )

is the same for param3 and param4 and taken from eq. 5 in [45] motivated by refs. [43, 93–95]. For

the parameters with TRENTo initial condition, the ones based on identified yields are taken from

table 4 in [45]. The ζ/s normalization factor used with IP-Glasma (TRENTo) initial conditions is

0.9 (1.25). The models with ζ/s = 0 are not shown on the right.

Model Hydrodynamic code Initial conditions η/s ζ/s

EKRT+param0 [25, 81] EbyE [25, 96] EKRT [25, 81] 0.20 0

EKRT+param1 [25, 81] EbyE [25, 96] EKRT [25, 81] η/s(T ) [25] 0

AMPT+param2 [82] iEBE-VISHNU [83] AMPT [84–86] 0.08 0

TRENTo+param3 [82] iEBE-VISHNU [83] TRENTo(p = 0) [87] η/s(T ) [45, 82] ζ/s(T ) [45, 82]

IP-Glasma+param4 [57] MUSIC [88] IP-Glasma [89] 0.095 ζ/s(T ) [57]

Table 5. Hydrodynamic model configurations. Shown are the key components such as initial

condition models, and η/s and ζ/s parameterizations. With TRENTo initial conditions, an entropy

deposition parameter p = 0 [82] is used for all calculations.

until freeze-out takes place. In [98, 99] the viscosity effect is explained as the main contrib-

utor to the observed damping. It is speculated, that another driving factor is the phase

of the oscillation itself, which also contributes to the magnitude at the time of freeze-out.

The measurements show that there is a hint of v9 > v8, as also predicted in the acoustic

model [97].

Figure 4 presents the higher order flow coefficients as well as their linear and non-linear

flow modes up to the seventh order as a function of centrality. For the flow harmonics v4

and v5, presented in panels (a) and (b), respectively, the non-linear contributions are

small in central collisions, where the linear contribution is dominant. A weak centrality

dependence is observed for the linear component. In case of v4, significant contributions

from the second order arise in less central collisions. The v5 coefficient, on the other hand,

is largely induced by the low order v2 and v3, indicated by the large v5,23.
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Figure 2. Flow harmonics up to the ninth order as a function of centrality, along with five different

hydrodynamic calculations shown as color bands, each representing different configurations. For

the black markers representing the measured data points, the sytematic uncertainty is indicated

by the gray patches around the markers. The bands indicate the extent of the uncertainty of the

corresponding calculation. On the bottom part of each panel, the ratios between model calculations

and the data are shown with symbols. Ratios with uncertainties larger than 1 are not shown in the

ratio panel. For some panels, the points are scaled by an indicated factor for better visibility across

the panels.
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Figure 3. vn as a function of the harmonic order n for various centrality intervals.

Panels (c) and (d) of figure 4 show the flow modes of v6 and v7. Only the non-linear

flow modes of v6 and v7 are presented. The v6,222 increases from zero to approximately half

of the total v6 in mid-central collisions, while the other mode, v6,33, has a much weaker

centrality dependence. The relatively large magnitude of these flow modes imply strong

contributions from the second and third order harmonics. Finally, v6,24 follows the trend

of the total magnitude. The magnitude of v6,24 comes close to the total, which in turn

suggests not only strong contributions from the second harmonic order, but also the fourth

one. The v6,24 induced by the fourth order is seen to be the dominant contribution to the

sixth order from 10% centrality classes and higher. For the seventh order v7, there are

three non-linear contributions, of which v7,223 is measured. The centrality dependence is

similar as with the v6 coefficient, and there is a similar general trend as for the lower order

harmonics among the non-linear flow modes.

The coefficients ρn,mk, quantifying the correlations amongst different symmetry planes,

are presented as a function of centrality in figure 5. Except for ρ6,33, all coefficients indi-

cate an increase in correlation between symmetry planes with increasing centrality class

of the collision. The measurements generally agree with the ones obtained at the lower

energy. The ρ6,222 is the only coefficient for which an energy dependence can be observed.

The hydrodynamic calculations reproduce the measurements within the large theoretical

uncertainties. For ρ4,22, ρ5,23, and ρ6,222, TRENTo+param3 however underestimates the

data in mid-central collisions.

Finally, the non-linear flow mode coefficients are presented in figure 6. Six coefficients

are measured, of which four are compared with the lower beam energy results available
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Figure 4. Linear and non-linear flow modes as a function of centrality. The total contribution

measured in Pb-Pb collisions at
√
sNN = 5.02 TeV is shown as black squares. Various non-linear

contributions are presented in different red and blue colors, while the linear part, extracted from

the aforementioned contributions, is shown as a red band. For panel (b), the data points are scaled

by 2.5 for better visibility across the panels.

in [53]. For χ4,22 and χ5,23, the centrality dependence and overall magnitude agree well

with the results from the lower beam energy. The centrality dependence of the new data

is similar to the previous results: a larger value in more central collisions, decreasing close

to unity towards 50% centrality.

All of the non-linear flow mode coefficients for the sixth harmonic agree with the

previous measurements. The centrality dependence of χ6,222 is similar to the ones of the

lower order coefficients, and the overall magnitude similar to χ4,22. As for χ6,33, no clear

centrality dependence is observed within the current experimental uncertainties. Whereas

the previous measurements are unable to distinguish between the magnitudes of χ6,222 and

χ6,33, the current results show that χ6,222 > χ6,33 across the whole centrality interval. For

χ7,223, the overall magnitude is larger than for the other non-linear flow mode coefficients.

The hydrodynamic calculations for the non-linear flow mode coefficients show slightly

more variation compared to the symmetry-plane correlations. As seen from the panels

of figure 6, one observes the reproduction of the data points by EKRT+param0 up to
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Figure 5. Symmetry-plane correlations as a function of centrality in Pb-Pb collisions at√
sNN = 5.02 TeV (black markers) compared with those in Pb-Pb collisions at

√
sNN = 2.76 TeV [53],

along with five different hydrodynamic calculations shown as color bands. On the bottom part of

each panel, the ratios between model calculations and the data are shown. For some panels, the

data points are scaled by an indicated factor for better visibility.

the modes of the sixth harmonic, and TRENTo+param3 in all harmonics. The EKRT+

param1 calculations slightly overestimate the centrality dependence of the non-linear flow

mode coefficients. It can be seen that the parameterizations of the EKRT presented here

imply χn,mk across all harmonic orders to have sensitivity to η/s, whereas in the previous

calculations in [53], weak η/s dependence was found for χ4,22 and χ6,222. The fifth order

coefficient χ5,23 is expected to be quite sensitive to η/s in central collisions as can be seen

from the difference of the predicted values from EKRT+param0 and EKRT+param1. The

AMPT+param2 calculations underestimate the magnitude of some of the measured non-

linear flow mode coefficients in various centrality classes, especially χ5,23, χ7,223 as well

as χ6,24. The IP-Glasma+param4 calculations overestimate the measurements in some

centrality intervals.
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Figure 6. Non-linear mode coefficients as a function of centrality in Pb-Pb collisions at√
sNN = 5.02 TeV (black markers) compared with those from

√
sNN = 2.76 TeV (red markers) [53],

along with five different hydrodynamic calculations shown as color bands. On the bottom part of

each panel, the ratios between model calculations and the data are shown. For some panels, the

points are scaled by an indicated factor for better visibility across the panels.

The agreement between data and the model calculations is quantified by calculating

the reduced χ2/Ndof defined as

χ2/Ndof =
1

Ndof

Ndof∑
i=1

(yi − fi)2

σ2
i

, (5.1)

where yi and fi are the values for data and calculations, respectively, and σ2
i = σ2

i,stat +

σ2
i,syst + σ2

fi,stat is the quadratic uncertainty in terms of statistical measurement σi,stat,

model uncertainties σfi,stat, and systematic uncertainties σi,syst in centrality bin i. Here

Ndof represents the number of data points across the centrality interval.

The χ2/Ndof for the flow coefficients are presented in figure 7, panel (a). It is observed

that IP-Glasma+param4 gives the best description of v2 and v3 compared to the other

models, indicated by the overall low value of χ2/Ndof . However, the overall performance
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Figure 7. Overview of various model comparisons with data, quantified by χ2/Ndof . Lower χ2/Ndof

represents a better overall description for a given observable.

of IP-Glasma+param4 is considerably worse at n ≥ 4, for which the data are overesti-

mated, as seen in figure 2. For v4 to v6, EKRT+param0 gives the lowest value of χ2/Ndof .

In the case of EKRT+param1, the χ2/Ndof is slightly worse than EKRT+param0. The

χ2/Ndof of TRENTo+param3 is very close to that of IP-Glasma+param4, indicating a

comparable description of data between the two model configurations. At low harmonic

orders, TRENTo+param3 performs slightly worse than IP-Glasma+param4. For n ≥ 4,

description of the data between these two models are comparable except for n = 8, where

TRENTo+param3 clearly has a better magnitude and centrality depiction. Notably this

can be seen for v8 where the χ2/Ndof value is the lowest across all models. Finally, the

performance of AMPT+param2 can be considered good within the reported χ2/Ndof val-

ues. It is noted that the magnitude of v7 is best depicted by AMPT+param2 amongst the

three models used.

The performance of the models with respect to the symmetry-plane correlations is

quantified in panel (b) of figure 7. IP-Glasma+param4 has by far the best estimates of

ρn,mk for ρ4,22 and ρ5,23. For other models, the model depiction is comparable. In low

harmonic orders, EKRT+param0 shows good agreement with the data, as well as AMPT+

param2, which has the best agreement in higher harmonic orders. For TRENTo+param3,

the agreement is slightly worse for ρ5,23 and ρ6,222.

The panel (c) of figure 7 shows the χ2/Ndof for non-linear flow mode coefficients. As

seen also in figure 6, TRENTo+param3 consistently provides the most successful overall

description of the data. For other models the data are more frequently over- or under-

estimated. TRENTo+param3 estimates χn,mk better than it does the vn coefficients, for

which significant overestimation was present at almost every harmonic order (see figure 2).

For EKRT+param0 the agreement is good, but the calculation over- or underestimates in

some cases especially in most central or mid-peripheral collisions. Most of the observables

are better described by the calculations using EKRT+param0 with a const η/s = 0.2 as

compared to results from EKRT+param1 which uses a temperature dependent η/s value.
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AMPT+param2 performs worse for low-order harmonics as it overpredicts the data in cen-

tral and mid-central collisions. Of the five configurations, IP-Glasma+param4 describes

the data worse in all harmonic orders.

The deviation of the calculated results from the measured value of each observable is of

the same order of magnitude for the different models. Even where the model results show

gross agreement with overall features in data, the values of χ2/Ndof vary considerably

from one harmonic order to another. Considering the χ2/Ndof to be a goodness-of-fit

estimate to validate any model, these variations suggest that the sensitivity of the different

observables on the initial conditions, η/s, and ζ/s are reflected differently in the model

calculations. Since the current uncertainties in the model calculations are large for higher

order harmonics, the absolute χ2 test should not be over-interpreted. Both, improved

statistical uncertainties in the model calculations and different values of input parameters

would be beneficial. However, large sets of calculations in many parameter spaces require

substantial computing power. In order to constrain the model parameters Bayesian analysis

can provide a plausible approach as demonstrated in [45, 47]. At present it is limited to

low harmonic-order observables, and the extracted parameters have large uncertainties.

Extending the Bayesian analysis to include the results in this paper will help reduce the

uncertainties of the model parameters.

6 Summary

The measurements of anisotropic flow coefficients (vn), non-linear flow mode coefficients

(χn,mk), and correlations among different symmetry planes (ρn,mk) in Pb-Pb collisions

at
√
sNN = 5.02 TeV are presented. The anisotropic flow coefficients are measured up

to v9, where v8 and v9 are measured for the first time at LHC energies. It is observed

that vn decreases as n increases, observing n-ordered damping up to n = 7. The vn is

found to be enhanced for n > 7. The non-linear contribution becomes dominant towards

peripheral collisions in all harmonic orders. The strength of the non-linear flow mode

and the symmetry-plane correlations depends also on harmonic orders. The non-linear

flow mode coefficients show a clear centrality and harmonic order dependencies and the

strongest non-linear mode coefficients is observed for the fifth and seventh harmonic orders.

These results are compared with various hydrodynamic model calculations with dif-

ferent initial conditions, as well as different parameterizations of η/s and ζ/s. None of

the models presented in this paper simultaneously describe the vn coefficients, χn,mk, or

ρn,mk. Based on the model and data comparisons, among all the models, the event-by-

event viscous hydrodynamic model with EKRT initial conditions and a constant η/s = 0.2

is observed to describe the data best, as far as the harmonics up to the sixth order are

concerned. As a result further tuning is required to find the accurate parameterization of

η/s and ζ/s. It is found that the different order harmonic observables presented in this

paper have different sensitivities to the initial conditions and the system properties. These

results allow further model parameters to be optimized and the initial conditions and the

transport properties of nuclear matter in ultra-relativistic heavy-ion collisions to be better

constrained.
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A List of observables

In this section the complete list of the measured observables is presented. By root-mean-

squaring the equations in eq. (1.3), one obtains a starting point for the definitions presented

in this section. Provided that the linear and non-linear parts are uncorrelated, the following

harmonic projections are obtained

v4,22 =
<〈V4(V ∗2 )2〉√
〈|V2|4〉

v5,23 =
<〈V5V

∗
2 V
∗

3 〉√
〈|V2|2|V3|2〉

≈ 〈v4 cos(4ψ4 − 4ψ2)〉, ≈ 〈v5 cos(5ψ5 − 3ψ3 − 2ψ2)〉,

v6,222 =
<〈V6(V ∗2 )3〉√
〈|V2|6〉

v6,24 =
<〈V6V

∗
2 V
∗

4 〉√
〈|V2|2|V4|2〉

≈ 〈v6 cos(6ψ6 − 6ψ2)〉, ≈ 〈v6 cos(6ψ6 − 4ψ4 − 2ψ2)〉,

v6,33 =
<〈V6(V ∗3 )2〉√
〈|V3|4〉

v7,223 =
<〈V7(V ∗2 )2V ∗3 〉√
〈|V2|4|V3|2〉

≈ 〈v6 cos(6ψ6 − 6ψ3)〉, ≈ 〈v7 cos(7ψ7 − 4ψ2 − 3ψ3)〉,

v8,233 =
<〈V8V

∗
2 (V ∗3 )2〉√

〈|V2|2|V3|4〉
≈ 〈v8 cos(8ψ8 − 2ψ2 − 6ψ3)〉,

(A.1)

with v2
4,22 = χ2

4,22〈|V2|4〉, v2
5,23 = χ2

5,23〈|V2|2|V3|2〉, . . . . The rest of the observables we define

using the harmonic projections in eq. (A.1). The symmetry plane correlations are defined as

ρ4,22 =
v4,22

v4
, ρ5,23 =

v5,23

v5
,

ρ6,222 =
v6,222

v6
, ρ7,223 =

v7,334

v7
,

ρ6,33 =
v6,33

v6
,

(A.2)
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and the non-linear mode coefficients

χ4,22 =
v4,22√
〈v4

2〉
, χ5,23 =

v5,23√
〈v2

2v
2
3〉
,

χ6,222 =
v6,222√
〈v6

2〉
, χ7,223 =

v7,223√
〈v4

2v
2
3〉
,

χ6,33 =
v6,33√
〈v4

3〉
,

χ6,24 = <〈V6V
∗

2 V
∗

4 〉〈v4
2〉 − 〈V6(V ∗2 )3〉〈V4(V ∗2 )2〉

(〈v2
4〉〈v4

2〉 − 〈V4(V ∗2 )2〉2)〈v2
2〉

.

(A.3)

The higher order superpositions in eq. (1.3) include the coupling constants for the

higher order linear responses. In a more complete treatment [100], the extraction of the

higher order non-linear flow mode coefficients are performed by correlating the correspond-

ing superpositions with those of the relevant harmonics, effectively resulting in a more gen-

eral projection. The results agree with the expressions in eq. (2.4), and generate additional

high order linear coupling coefficients

χ6,24 = <〈V6V
∗

2 V
∗

4 〉〈v4
2〉 − 〈V6(V ∗2 )3〉〈V4(V ∗2 )2〉

(〈v2
4〉〈v4

2〉 − 〈V4(V ∗2 )2〉2)〈v2
2〉

,

χ7,25 = <〈V7V
∗

2 V
∗

5 〉〈v2
2v

2
3〉 − 〈V7(V ∗2 )2V ∗3 〉〈V5V

∗
2 V
∗

3 〉
(〈v2

5〉〈v2
2v

2
3〉 − 〈V5V ∗2 V

∗
3 〉2)〈v2

2〉
,

χ7,34 = <〈V7V
∗

3 V
∗

4 〉〈v4
2〉 − 〈V7(V ∗2 )2V ∗3 〉〈V4(V ∗2 )2〉

(〈v2
4〉〈v4

2〉 − 〈V4(V ∗2 )2〉2)〈v2
3〉

.
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S. Acharya141, D. Adamová94, A. Adler74, J. Adolfsson80, M.M. Aggarwal99, G. Aglieri Rinella33,

M. Agnello30, N. Agrawal10,53, Z. Ahammed141, S. Ahmad16, S.U. Ahn76, A. Akindinov91,

M. Al-Turany106, S.N. Alam141, D.S.D. Albuquerque122, D. Aleksandrov87, B. Alessandro58,

H.M. Alfanda6, R. Alfaro Molina71, B. Ali16, Y. Ali14, A. Alici10,26,53, A. Alkin2, J. Alme21,

T. Alt68, L. Altenkamper21, I. Altsybeev112, M.N. Anaam6, C. Andrei47, D. Andreou33,

H.A. Andrews110, A. Andronic144, M. Angeletti33, V. Anguelov103, C. Anson15, T. Antičić107,
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S. Panebianco137, P. Pareek49,141, J. Park60, J.E. Parkkila126, S. Parmar99, S.P. Pathak125,

R.N. Patra141, B. Paul23, H. Pei6, T. Peitzmann63, X. Peng6, L.G. Pereira70, H. Pereira Da

Costa137, D. Peresunko87, G.M. Perez8, E. Perez Lezama68, V. Peskov68, Y. Pestov4,
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S. Pochybova145, i, M.G. Poghosyan95, B. Polichtchouk90, N. Poljak98, A. Pop47,

H. Poppenborg144, S. Porteboeuf-Houssais134, V. Pozdniakov75, S.K. Prasad3, R. Preghenella53,

F. Prino58, C.A. Pruneau143, I. Pshenichnov62, M. Puccio25,33, J. Putschke143, L. Quaglia25,

R.E. Quishpe125, S. Ragoni110, S. Raha3, S. Rajput100, J. Rak126, A. Rakotozafindrabe137,

L. Ramello31, F. Rami136, R. Raniwala101, S. Raniwala101, S.S. Räsänen43, R. Rath49, V. Ratza42,

I. Ravasenga89, K.F. Read95,130, A.R. Redelbach38, K. Redlich84, vi, A. Rehman21, P. Reichelt68,

F. Reidt33, X. Ren6, R. Renfordt68, Z. Rescakova37, J.-P. Revol10, K. Reygers103, V. Riabov97,

T. Richert80,88, M. Richter20, P. Riedler33, W. Riegler33, F. Riggi27, C. Ristea67, S.P. Rode49,
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INFN Sezione di Torino, Alessandria, Italy
32 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
33 European Organization for Nuclear Research (CERN), Geneva, Switzerland
34 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of

Split, Split, Croatia
35 Faculty of Engineering and Science, Western Norway University of Applied Sciences,

Bergen, Norway
36 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,

Prague, Czech Republic
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Orsay, France
62 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
63 Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
64 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
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