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Abstract: The pT-differential non-linear flow modes, v4,22, v5,32, v6,33 and v6,222 for π±,

K±, K0
S, p + p, Λ + Λ and φ-meson have been measured for the first time at

√
sNN =

5.02 TeV in Pb-Pb collisions with the ALICE detector at the Large Hadron Collider. The

results were obtained with a multi-particle technique, correlating the identified hadrons

with reference charged particles from a different pseudorapidity region. These non-linear

observables probe the contribution from the second and third order initial spatial anisotropy

coefficients to higher flow harmonics. All the characteristic features observed in previous

pT-differential anisotropic flow measurements for various particle species are also present in

the non-linear flow modes, i.e. increase of magnitude with increasing centrality percentile,

mass ordering at low pT and particle type grouping in the intermediate pT range. Hydro-

dynamical calculations (iEBE-VISHNU) that use different initial conditions and values of

shear and bulk viscosity to entropy density ratios are confronted with the data at low trans-

verse momenta. These calculations exhibit a better agreement with the anisotropic flow

coefficients than the non-linear flow modes. These observations indicate that non-linear

flow modes can provide additional discriminatory power in the study of initial conditions

as well as new stringent constraints to hydrodynamical calculations.
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1 Introduction

Lattice quantum chromodynamics (QCD) calculations [1, 2] suggest that at extremely high

temperature and energy density a state of matter is produced in which quarks and gluons

are no longer confined into hadrons. This state of matter is called the quark-gluon plasma

(QGP) [3–5]. The main goal of heavy-ion collision experiments is to study the properties

of the QGP, such as the speed of sound, the equation of state and its shear and bulk

viscosities.

One of the observables sensitive to these properties is the azimuthal angular distri-

bution of particles emitted in the plane perpendicular to the beam axis. In a heavy-ion

collision, the overlap region of the colliding nuclei exhibits an irregular shape [6–12]. This

spatial irregularity is a superposition of the geometry, i.e. centrality [13] of the collision

reflected in the value of the impact parameter, and the initial energy density in the trans-

verse plane which fluctuates from event to event. Through interactions between partons
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and at later stages between the produced particles, this spatial irregularity is transferred

into an anisotropy in momentum space. The latter is usually decomposed into a Fourier

expansion of the azimuthal particle distribution [14] according to

dN

dϕ
∝ 1 + 2

∞∑
n=1

vn(pT, η) cos[n(ϕ−Ψn)], (1.1)

where N , pT, η and ϕ are the particle yield, transverse momentum, pseudorapidity and

azimuthal angle of particles, respectively, and Ψn is the azimuthal angle of the nth-order

symmetry plane [7–10, 12]. The coefficient vn is the magnitude of the nth-order flow vector

coefficient Vn, defined as Vn = vne
inΨn , and can be calculated according to

vn = 〈cos[n(ϕ−Ψn)]〉, (1.2)

where the angle brackets denote an average over all particles in all events. Since the

symmetry planes are not accessible experimentally, the flow coefficients are estimated

solely from the azimuthal angles of the particles emitted in the transverse plane. Mea-

surements of different anisotropic flow coefficients at both the Relativistic Heavy Ion Col-

lider (RHIC) [15–31] and the Large Hadron Collider (LHC) [32–46] not only confirmed

the production of a strongly coupled quark-gluon plasma (sQGP) but also contributed in

constraining the value of the ratio between shear viscosity and entropy density (η/s) which

is very close to the lower limit of 1/4π conjectured by AdS/CFT [47]. In addition, the

comparison between experimental data [41] and viscous hydrodynamical calculations [48]

showed that higher order flow coefficients and more importantly their transverse momen-

tum dependence are more sensitive probes than lower order coefficients, i.e. v2 and v3, to

the initial spatial irregularity and its fluctuations [10].

This initial state spatial irregularity is usually quantified with the standard (moment-

defined) anisotropy coefficients, εn. In the Monte Carlo Glauber model, εn and its corre-

sponding initial symmetry plane, Φn can be calculated from the transverse positions of the

nucleons participating in a collision according to [9, 49]

εne
inΦn =

〈rneinϕ〉
〈rn〉

(for n > 1), (1.3)

where the brackets denote an average over the transverse position of all participating

nucleons that have an azimuthal angle ϕ and a polar distance from the centre r. Model

calculations show that v2 and to a large extent, v3 are for a wide range of impact parameters

linearly proportional to their corresponding initial spatial anisotropy coefficients, ε2 and ε3,

respectively [9], while for larger values of n, vn scales with ε′n, a cumulant-based definition

of initial anisotropic coefficients. As an example, the fourth order spatial anisotropy is

given by [50, 51]

ε′4e
i4Φ′4 = ε4e

i4Φ4 +
3〈r2〉2

〈r4〉
ε22e

i4Φ2 , (1.4)

where the second term in the right hand side of eq. (1.4) reveals a non-linear dependence

of ε′4 on the lower order ε2. This further supports the earlier ideas that the higher order
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flow vector coefficients, Vn (n > 3) obtain contributions not only from the linear response

of the system to εn, but also a non-linear response proportional to the product of lower

order initial spatial anisotropies [52, 53].

In particular, for a single event, Vn with n = 4, 5, 6 can be decomposed to the linear

(V L
n ) and non-linear (V NL

n ) modes according to

V4 = V L
4 + V NL

4 = V L
4 + χ4,22(V2)2,

V5 = V L
5 + V NL

5 = V L
5 + χ5,32V3V2,

V6 = V L
6 + V NL

6 = V L
6 + χ6,222(V2)3 + χ6,33(V3)2 + χ6,42V2V

L
4 , (1.5)

where χn,mk, known as non-linear flow mode coefficients, quantify the contributions of

the non-linear modes to the total Vn [53, 54]. For simplicity, the magnitude of the total

Vn will be referred to as anisotropic flow coefficient (vn) in the rest of this article. The

magnitude of the pT-differential non-linear modes for higher order flow coefficients, vNL
n ,

can be written as:

v4,22(pT) =
〈v4(pT)v2

2 cos(4Ψ4 − 4Ψ2)〉√
〈v4

2〉
≈ 〈v4(pT) cos(4Ψ4 − 4Ψ2)〉, (1.6)

v5,32(pT) =
〈v5(pT)v3v2 cos(5Ψ5 − 3Ψ3 − 2Ψ2)〉√

〈v2
3v

2
2〉

≈ 〈v5(pT) cos(5Ψ5 − 3Ψ3 − 2Ψ2)〉, (1.7)

v6,33(pT) =
〈v6(pT)v2

3 cos(6Ψ6 − 6Ψ3)〉√
〈v4

3〉
≈ 〈v6(pT) cos(6Ψ6 − 6Ψ3)〉, (1.8)

v6,222(pT) =
〈v6(pT)v3

2 cos(6Ψ6 − 6Ψ2)〉√
〈v6

2〉
≈ 〈v6(pT) cos(6Ψ6 − 6Ψ2)〉, (1.9)

where brackets denote an average over all events. The approximation is valid assuming

a weak correlation between the lower (n = 2, 3) and higher (n > 3) order flow coeffi-

cients [52, 55].

Various measurements of the pT-differential anisotropic flow, vn(pT), of charged parti-

cles [33, 38, 43, 45, 46, 56] provided a testing ground for model calculations that attempt to

describe the dynamical evolution of the system created in heavy-ion collisions. Early predic-

tions showed that the pT-differential anisotropic flow for different particle species can reveal

more information about the equation of state, the role of the highly dissipative hadronic

rescattering phase as well as probing particle production mechanisms [57, 58]. In order

to test these predictions, vn(pT) coefficients were measured for different particle species at

RHIC [15–18] and at the LHC [39, 40, 42, 44]. These measurements reveal a character-

istic mass dependence of vn(pT) in the low transverse momentum region (pT < 3 GeV/c),

a result of an interplay between radial and anisotropic flow, and mass dependent thermal

velocities [57, 58]. In the intermediate pT region (3 . pT . 8 GeV/c) the measurements

indicate a particle type grouping where baryons have a larger vn than the one of mesons.

This feature was explained in a dynamical model where flow develops at the partonic level

followed by quark coalescence into hadrons [59, 60]. In this picture the invariant spectrum

of produced particles is proportional to the product of the spectra of their constituents

and, in turn, the flow coefficient of produced particles is the sum of the vn values of their
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constituents. This leads to the so-called number of constituent quarks (NCQ) scaling,

observed to hold at an approximate level of ±20% for pT > 3 GeV/c [18, 39, 40, 61].

The measurements of non-linear flow modes in different collision centralities could pose

a challenge to hydrodynamic models and have the potential to further constrain both the

initial conditions of the collision system and its transport properties, i.e. η/s and ζ/s (the

ratio between bulk viscosity and entropy density) [54, 62]. The pT-dependent non-linear

flow modes of identified particles, in particular, allow the effect of late-stage interactions in

the hadronic rescattering phase, as well as the effect of particle production to be tested via

the coalescence mechanism to the development of the mass ordering at low pT and particle

type grouping in the intermediate pT region, respectively [33, 42].

In this article, we report the first results of the pT-differential non-linear flow modes,

i.e. v4,22, v5,32, v6,33 and v6,222 for π±, K±, K0
S, p + p, Λ + Λ and φ measured in Pb-Pb

collisions at a centre of mass energy per nucleon pair
√
sNN = 5.02 TeV, recorded by the

ALICE experiment [63] at the LHC. The detectors and the selection criteria used in this

analysis are described in section 2 and 3, respectively. The analysis methodology and

technique are presented in section 4. In this article, the identified hadron under study and

the charged reference particles are obtained from different, non-overlapping pseudorapidity

regions. The azimuthal correlations not related to the common symmetry plane (known as

non-flow), including the effects arising from jets, resonance decays and quantum statistics

correlations, are suppressed by using multi-particle correlations as explained in section 4

and the residual effect is taken into account in the systematic uncertainty as described

in section 5. All coefficients for charged particles were measured separately for particles

and anti-particles and were found to be compatible within statistical uncertainties. The

measurements reported in section 6 are therefore an average of the results for both charges.

The results are reported within the pseudorapidity range |η| < 0.8 for different collision

centralities between 0–60% range of Pb-Pb collisions.

2 Experimental setup

ALICE [63, 64] is one of the four large experiments at the LHC, particularly designed

to cope with the large charged-particle densities present in central Pb-Pb collisions [65].

By convention, the z-axis is parallel to the beam direction, the x-axis is horizontal and

points towards the centre of the LHC, and the y-axis is vertical and points upwards. The

apparatus consists of a set of detectors located in the central barrel, positioned inside a

solenoidal magnet which generates a maximum of 0.5 T field parallel to the beam direction,

and a set of forward detectors.

The Inner Tracking System (ITS) [63] and the Time Projection Chamber (TPC) [66]

are the main tracking detectors of the central barrel. The ITS consists of six layers of silicon

detectors employing three different technologies. The two innermost layers, positioned at

r = 3.9 cm and 7.6 cm, are Silicon Pixel Detectors (SPD), followed by two layers of Silicon

Drift Detectors (SDD) (r = 15 cm and 23.9 cm). Finally, the two outermost layers are

double-sided Silicon Strip Detectors (SSD) at r = 38 cm and 43 cm. The TPC has a

cylindrical shape with an inner radius of about 85 cm, an outer radius of about 250 cm,
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and a length of 500 cm and it is positioned around the ITS. It provides full azimuthal

coverage in the pseudorapidity range |η| < 0.9.

Charged particles were identified using the information from the TPC and the TOF de-

tectors [63]. The TPC allows for a simultaneous measurement of the momentum of a par-

ticle and its specific energy loss (〈dE/dx〉) in the gas. The detector provides a separation

more than two standard deviations (2σ) for different hadron species at pT < 0.7 GeV/c

and the possibility to identify particles on a statistical basis in the relativistic rise region of

dE/dx (i.e. 2 < pT < 20 GeV/c) [64]. The dE/dx resolution for the 5% most central Pb-Pb

collisions is 6.5% and improves for more peripheral collisions [64]. The TOF detector is

situated at a radial distance of 3.7 m from the beam axis, around the TPC and provides

a 3σ separation between π-K and K-p up to pT = 2.5 GeV/c and pT = 4 GeV/c, respec-

tively [64]. This is done by measuring the flight time of particles from the collision point

with a resolution of about 80 ps. The start time for the TOF measurement is provided

by the T0 detectors, two arrays of Cherenkov counters positioned at opposite sides of the

interaction points covering 4.6 < η < 4.9 (T0A) and −3.3 < η < −3.0 (T0C). The start

time is also determined using a combinatorial algorithm that compares the timestamps of

particle hits measured by the TOF to the expected times of the tracks, assuming a common

event time tev. Both methods of estimating the start time are fully efficient for the 80%

most central Pb-Pb collisions [64].

A set of forward detectors, the V0 scintillator arrays [67], were used in the trigger

logic and for the determination of the collision centrality. The V0 consists of two detec-

tors, the V0A and the V0C, positioned on each side of the interaction point, covering the

pseudorapidity intervals of 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively.

For more details on the ALICE apparatus and the performance of the detectors, see

refs. [63, 64].

3 Event sample, track selection and particle identification

3.1 Trigger selection and data sample

The analysis is performed on minimum bias Pb-Pb collision data at
√
sNN = 5.02 TeV col-

lected by the ALICE detector in 2015. These events were triggered by the coincidence

between signals from both V0A and V0C detectors. An offline event selection, exploiting

the signal arrival time in V0A and V0C, measured with a 1 ns resolution, was used to

discriminate beam induced-background (e.g. beam-gas events) from collision events. This

led to a reduction of background events in the analysed samples to a negligible fraction

(< 0.1%) [64]. Events with multiple reconstructed vertices were rejected by comparing

multiplicity estimates from the V0 detector to those from the tracking detectors at midra-

pidity, exploiting the difference in readout times between the systems. The fraction of

pileup events left after applying these dedicated pileup removal criteria is negligible. All

events selected for the analysis had a reconstructed primary vertex position along the beam

axis (zvtx) within 10 cm from the nominal interaction point. After all the selection criteria,

a filtered data sample of approximately 40 million Pb-Pb events in the 0–60% centrality

interval was analysed to produce the results presented in this article.
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Events were classified according to fractions of the inelastic hadronic cross section. The

0–5% interval represents the most central interactions (i.e. smallest impact parameter) and

is referred to as most central collisions. On the other hand, the 50–60% centrality interval

corresponds to the most peripheral (i.e. largest impact parameter) collisions in the analysed

sample. The centrality of the collision was estimated using the signal amplitude measured

in the V0 detectors which is related to the number of particles crossing their sensitive areas.

Details about the centrality determination can be found in [68].

3.2 Selection of primary π±, K± and p + p

In this analysis, tracks are reconstructed using the information from the TPC and the

ITS detectors. The tracking algorithm, based on the Kalman filter [69, 70], starts from a

collection of space points (referred to as clusters) inside the TPC and provides the quality

of the fit by calculating its χ2 value. Each space point is reconstructed at one of the

TPC pad rows [63], where the deposited ionisation energy is also measured. The specific

ionisation energy loss 〈dE/dx〉 is estimated using a truncated mean, excluding the 40%

highest-charge clusters associated to the track. The obtained 〈dE/dx〉 has a resolution,

which we later refer to as σTPC. The tracks are propagated to the outer layer of the ITS,

and the tracking algorithm attempts to identify space points in each of the consecutive

layers, reaching the innermost ones (i.e. SPD). The track parameters are then updated

using the combined information from both the TPC and the ITS detectors.

Primary charged pions, kaons and (anti-)protons were required to have at least 70

reconstructed space points out of the maximum of 159 in the TPC. The average distance

between space point and the track fit per TPC space point per degree of freedom (see [64]

for details) was required to be below 2. These selections reduce the contribution from short

tracks, which are unlikely to originate from the primary vertex. To reduce the contamina-

tion by secondary tracks from weak decays or from the interaction with the material, only

particles within a maximum distance of closest approach (DCA) between the tracks and the

primary vertex in both the transverse plane (DCAxy < 0.0105 + 0.0350(pT c/GeV)−1.1 cm)

and the longitudinal direction (DCAz < 2 cm) were analysed. Moreover, the tracks were

required to have at least two associated ITS clusters in addition to having a hit in either of

the two SPD layers. This selection leads to an efficiency of about 80% for primary tracks at

pT ∼ 0.6 GeV/c and a contamination from secondaries of about 5% at pT = 1 GeV/c [71].

These values depend on particle species and transverse momentum [71].

The particle identification (PID) for pions (π±), kaons (K±) and protons (p + p) used

in this analysis relies on the two-dimensional correlation between the number of standard

deviations in units of the resolution from the expected signals of the TPC and the TOF

detectors similar to what was reported in [39, 40, 42]. In this approach particles were

selected by requiring their standard deviations from the 〈dE/dx〉 and tTOF values to be

less than a pT-dependent value, maintaining a minimum purity of 90% for π± and 75% for

K± and 80% for p + p. In order to further reduce the contamination from other species,

the standard deviation of a given track was required to be the minimum among other

candidate species.
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In addition, for the evaluation of systematic effects (see section 5) the minimum purity

was varied to more strict values, a condition that becomes essential with increasing trans-

verse momentum where the relevant detector response for different particle species starts

to overlap. The results for all three particle species were extrapolated to 100% purity and

the uncertainty from the extrapolation was also considered in the estimation of the total

systematic uncertainty.

3.3 Reconstruction of K0
S, Λ + Λ and φ meson

In this analysis, the K0
S and Λ + Λ are reconstructed via the following fully hadronic

decay channels: K0
S → π+ + π− and Λ(Λ) → p(p) + π−(π+) with branching ratios of

69.2% and 63.9% [72], respectively. The reconstruction is performed by identifying the

candidates of secondary vertices, denoted as V0s, from which two oppositely-charged decay

products originate. Such candidates are obtained during data processing by looking for a

characteristic V-shaped decay topology among pairs of reconstructed tracks.

The daughter tracks were reconstructed within |η| < 0.8, while the criteria on the

number of TPC space points, the number of crossed TPC pad rows, and the percentage of

the expected TPC space points used to reconstruct a track are identical to those applied for

primary particles. In addition, the minimum DCA of the daughter tracks to the primary

vertex is 0.1 cm. Furthermore, the maximum DCA of the daughter tracks is 0.5 cm to ensure

that they are products of the same decay. To suppress the combinatorial background, the

PID is applied for the daughter particles in the whole pT region by requiring the particle

to be within 3σTPC for a given species hypothesis.

To reject combinatorial background, the cosine of the pointing angle, θp, was required

to be larger than 0.998. This angle is defined as the angle between the momentum vector of

the V0 candidate assessed at its decay vertex and the line connecting the V0 decay vertex

to the primary vertex and has to be close to 1 as a result of momentum conservation. In ad-

dition, only the candidates reconstructed between 5 and 100 cm from the nominal primary

vertex in radial direction were accepted. The lower value was chosen to avoid any bias

from the efficiency loss when secondary tracks are being wrongly matched to clusters in

the first layer of the ITS, where the occupancy is the largest. To assess the systematic un-

certainty related to the contamination from Λ+ Λ and electron-positron pairs coming from

γ-conversions to the K0
S sample, a selection in the Armenteros-Podolanski variables [73]

was applied for the K0
S candidates, rejecting the ones with q ≤ 0.2|α|. Here q is the mo-

mentum projection of the positively charged daughter track in the plane perpendicular to

the V0 momentum and α = (p+
L − p

−
L )/(p+

L + p−L ) with p±L the projection of the positive or

negative daughter track momentum onto the momentum of the V0.

The reconstruction of φ meson candidates is done via the hadronic decay channel: φ→
K+ +K− with a branching ratio of 48.9% [72]. The φ meson candidates were reconstructed

from the charged tracks passing all criteria for charged kaons. These kaon daughters were

identified utilising the Bayesian PID approach [74] with a minimum probability threshold of

85% using the TPC and TOF detectors. Additionally, to reduce combinatorial background,

a track was identified as a kaon if it had the highest probability among all considered species

(e±, µ±, π±, K± and p + p). The vector sum of all possible pairs of charged kaons are

– 7 –
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called φ candidates. The invariant mass distribution (MK+K−
inv ) of φ candidates was then

obtained in various pT intervals by subtracting a combinatorial background yield from the

candidate yield. This combinatorial background yield was estimated from like-sign kaon

pairs (unphysical φ state with total charge of ±2) normalised to the candidate yield.

4 Analysis method

In this article the pT-differential non-linear flow modes are calculated based on

eqs. (1.6)–(1.9). Each event is divided into two subevents “A” and “B”, covering the

ranges −0.8 < η < 0.0 and 0.0 < η < 0.8, respectively. Thus vn,mk(pT) is a weighted

average of vA
n,mk(pT) and vB

n,mk(pT). The measured v
A(B)
n,mk(pT) coefficients are calculated

using dn,mk(pT) and cmk,mk multi-particle correlators given by

dn,mk(pT) = 〈vn(pT)vmvk cos(nΨn −mΨm − kΨk)〉, (4.1)

cmk,mk = 〈v2
mv

2
k〉. (4.2)

These correlators were obtained using the Generic Framework with sub-event method

originally used in [54, 75, 76], which allows precise non-uniform acceptance and efficiency

corrections. In this analysis, dn,mk(pT) is measured by correlating the azimuthal angle of the

particle of interest (ϕ1(pT)) from subevent “A”(“B”) with that of reference particles1 from

subevent “B”(“A”) and cmk,mk by selecting half of the reference particles from subevent

“A” and the other half from “B”. Thus, eqs. (1.6) to (1.9) for vA
n,mk(pT) translate to

vA
4,22(pT) =

dA
4,22(pT)
√
c22,22

=
〈〈cos(4ϕA

1 (pT)− 2ϕB
2 − 2ϕB

3 )〉〉√
〈〈cos(2ϕA

1 + 2ϕA
2 − 2ϕB

3 − 2ϕB
4 )〉〉

, (4.3)

vA
5,32(pT) =

dA
5,32(pT)
√
c32,32

=
〈〈cos(5ϕA

1 (pT)− 3ϕB
3 − 2ϕB

2 )〉〉√
〈〈cos(3ϕA

1 + 2ϕA
2 − 3ϕB

3 − 2ϕB
4 )〉〉

, (4.4)

vA
6,33(pT) =

dA
6,33(pT)
√
c33,33

=
〈〈cos(6ϕA1 (pT)− 3ϕB

2 − 3ϕB
3 )〉〉√

〈〈cos(3ϕA
1 + 3ϕA

2 − 3ϕB
3 − 3ϕB

4 )〉〉
, (4.5)

vA
6,222(pT) =

dA
6,222(pT)
√
c222,222

=
〈〈cos(6ϕA

1 (pT)− 2ϕB
2 − 2ϕB

3 − 2ϕB
4 )〉〉√

〈〈cos(2ϕA
1 + 2ϕA

2 + 2ϕA
3 − 2ϕB

4 − 2ϕB
5 − 2ϕB

6 )〉〉
, (4.6)

where 〈〈 〉〉 denotes an average over all particles and events. This multi-particle correlation

technique by construction removes a significant part of non-flow correlations. In order to

further reduce residual non-flow contributions, a pseudorapidity gap was applied between

the two pseudorapidity regions (|∆η| > 0.4). In addition, particles with like-sign charges

were correlated. These two variations do not significantly affect the results but any variation

was included in the final systematics in table 1.

For charged hadrons, i.e. π±, K± and p + p, the dn,mk correlators are calculated on a

track-by-track basis as a function of pT for each centrality percentile. For particle species

1Later in the text particle of interest and reference particles will be referred to as POI and RFP,

respectively.
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reconstructed on a statistical basis from the decay products, i.e. K0
S, Λ+Λ and φ meson, the

selected sample contains both signal and the background. Therefore, the dn,mk correlators

are measured as a function of invariant mass (Minv) and pT for each centrality percentile.

The dn,mk vs. Minv method is based on the additivity of correlations and is a weighted sum

of the dsig
n,mk and dbkg

n,mk according to

dtotal
n,mk(Minv, pT)=

N sig

N sig+Nbkg
(Minv, pT) dsig

n,mk(pT)+
Nbkg

N sig+Nbkg
(Minv, pT) dbkg

n,mk(Minv, pT),

(4.7)

where N sig and Nbkg are signal and background yields obtained for each pT interval and

centrality percentile from fits to the K0
S, Λ + Λ and φ meson invariant mass distributions.

To obtain the pT-differential yield of K0
S and Λ + Λ, the invariant mass distributions at

various pT intervals were parametrised as a sum of two Gaussian distributions and a third-

order polynomial function. The latter was introduced to account for residual contamination

(background yield) that is present in the K0
S and Λ + Λ signals after the topological and

daughter track selections. The K0
S and Λ + Λ yields were extracted by integration of the

Gaussian distribution. The obtained yields were not corrected for feed-down from higher

mass baryons (Ξ±,Ω±) as earlier studies have shown that these have a negligible effect

on the measured vn [39]. Similarly, to obtain the pT-differential yield of φ-mesons, the

invariant mass distributions of the candidate yield was parametrized as a sum of a Breit-

Wigner distribution and a third-order polynomial function, the latter introduced to account

for residual contamination.

To extract dsig
n,mk in a given pT range, dtotal

n,mk(Minv) was fitted together with the fit

values from the invariant mass distribution and parametrising dbkg
n,mk(Minv) with a first

order polynomial function. Figure 1 illustrates this procedure for the φ-meson, with the

invariant mass distribution in the upper panel and the measurement of dtotal
4,22 (Minv) in the

lower panel.

5 Systematic uncertainties

The systematic uncertainties were estimated by varying the selection criteria for all par-

ticle species as well as the topological reconstruction requirements for K0
S, Λ + Λ and φ.

The contributions from different sources were extracted from the relative ratio of the pT-

differential vn,mk between the default selection criteria described in section 3 and their

variations summarised in this section. Sources with a statistically significant contribution

(where significance is evaluated as recommended in [77]) were added in quadrature to form

the final value of the systematic uncertainties on the non-linear flow modes. An overview

of the magnitude of the relative systematic uncertainties per particle species is given in

table 1 for π±, K± and p + p and table 2 for K0
S, Λ + Λ and the φ-meson. The system-

atic uncertainties are grouped into five categories, i.e. event selection, tracking, particle

identification, topological cuts and non-flow contribution and are described below.

The effects of event selection criteria on the measurements were studied by: (i) varying

the primary vertex position along the beam axis (zvtx) from a nominal ±10 cm to ±8 cm
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Figure 1. Reconstruction and d4,22 measurement of φ-mesons. Upper panel: extraction of N sig

and Nbkg by fitting the invariant mass (Minv) distribution for φ-meson candidates from pairs of

kaons with opposite charges for 3 < pT < 4.5 GeV/c and the 10–20% centrality interval, lower

panel: extraction of dsig
4,22 by fitting eq. (4.7) to the invariant mass dependence of dtotal

4,22 .

and ±6 cm; (ii) changing the centrality estimator from the signal amplitudes in the V0

scintillator detectors to the number of clusters in the first or second layer of the SPD,

(iii) analysing events recorded for different magnetic field polarities independently; (iv) not

rejecting all events with tracks caused by pileup.

Systematic uncertainties induced by the selection criteria imposed at the track level

were investigated by: (i) changing the tracking from global mode, where combined track

information from both TPC and ITS detectors are used, to what is referred to as hybrid

mode. In the latter mode, track parameters from the TPC are used if the algorithm is

unable to match the track reconstructed in the TPC with associated ITS clusters; (ii)

increasing the number of TPC space points from 60 up to 90 and (iii) decreasing the value

of the χ2 per TPC space point per degree of freedom from 4 to 3; (iv) varying the selection

criteria on both the transverse and longitudinal components of the DCA to estimate the

impact of secondary particles from a strict pT-dependent cut to 0.15 cm and 2 cm to 0.2 cm,

respectively.

Systematic uncertainties associated with the particle identification procedure were

studied by varying the PID method from a pT-dependent one described in section 3.2

to an even stricter version where the purity increases to higher than 95% (π±), 80% (K±)

and 80% (p + p) across the entire pT range of study. The second approach relied on the

Bayesian method with a probability of at least 80% which gives an increase in purity to at

least 97% (π±), 87% (K±) and 90% (p + p) across the entire pT range of study. To further

check the effect of contamination the purity of these species was extrapolated to 100%.
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v4,22 v5,32 v6,33 v6,222

Uncertainty source π± K± p + p π± K± p + p π± K± p + p π± K± p + p

Primary zvtx 0–2% 1–3% 0–3% 0–3% 1–3% 1–4% 3–5% 2–5% 3–5% 2–7% 2–7% 4–7%

Centrality estimator 0–4% 1–4% 1–5% 0–4% 1–3% 2–4% 4–10% 4–10% 5–10% 3–10% 5–10% 4–10%

Magnetic field polarity 0–2% 0–3% 0–3% 0–4% 0–5% 0–5% 0–10% 0–10% 0–10% 0–10% 0–10% 0–10%

Pileup rejection 0–4% 0–3% 0–4% 0–5% 1–5% 0–5% 5–7% 5–10% 5–8% 4–10% 4–10% 2–10%

Tracking mode 1–4% 1–5% 1–4% 2–6% 3–5% 2–8% 0–8% 0–7% 3–8% 1–10% 4–10% 2–10%

Number of TPC space points 1–2% 0–2% 0–2% 0–3% 1–3% 1–3% 4–8% 3–8% 3–8% 2–8% 4–8% 4–8%

χ2 per TPC space point 0–2% 1–2% 1–3% 1–3% 1–3% 2–4% 3–5% 3–6% 3–6% 2–6% 4–7% 4–7%

DCAxy 0–2% 0–2% 1–3% 0–3% 1–3% 1–3% 2–7% 2–8% 4–8% 2–8% 4–8% 3–8%

DCAz 0–3% 0–2% 1–2% 1–2% 1–3% 2–3% 3–7% 3–7% 5–7% 2–7% 4–8% 2–8%

Particle identification 1–5% 1–5% 1–3% 1–5% 2–5% 1–5% 5–10% 5–10% 6–12% 4–12% 6–15% 4–15%

POI vs. RFP charges 0–2% 0–3% 2–3% 0–4% 0–4% 2–4% 0–4% 0–6% 0–6% 0% 0% 0%

η gap 1–3% 1–4% 1–2% 1–4% 1–4% 1–5% 0–5% 0–5% 0–5% 0% 0% 0%

Table 1. List of the maximum relative systematic uncertainties of each individual source for vn,mk

of π±, K± and p + p. The uncertainties depend on the transverse momenta. Percentage ranges are

given to account for all centrality intervals.

The topological cuts were also varied to account for the V0 and φ-meson reconstruction.

These selection criteria were varied by (i) changing the reconstruction method for V0 par-

ticles to an alternate technique that uses raw tracking information during the Kalman

filtering stage (referred to as online V0 finder); (ii) varying the minimum radial distance

from the primary vertex at which the V0 can be produced from 5 cm to 10 cm; (iii) chang-

ing the minimum value of the cosine of pointing angle from 0.998 to 0.99; (iv) varying the

minimum number of crossed TPC pad rows by the V0 daughter tracks from 70 to 90; (v)

changing the requirement on the minimum number of TPC space points that are used in

the reconstruction of the V0 daughter tracks form 70 to 90; (vi) requesting a minimum

ratio of crossed to findable TPC clusters from 0.8 to 1.0; (vii) changing the minimum DCA

of the V0 daughter tracks to the primary vertex from 0.1 cm to 0.3 cm; (viii) changing the

maximum DCA of the V0 daughter tracks from 0.5 cm to 0.3 cm; (ix) requiring a minimum

pT of the V0 daughter tracks of 0.2 GeV/c.

In addition, the non-flow contribution was studied by (i) selecting like sign pairs of

particles of interest and reference particles to decrease the effect from the decay of resonance

particles; (ii) applying pseudorapidity gaps between the two subevents from |∆η| > 0.0 to

|∆η| > 0.4.

Tables 1 and 2 summarise the maximum relative systematic uncertainties for each

individual systematic source described above for all transverse momenta. The systematic

uncertainties are expressed for each non-linear mode and particle species in a range to

account for all centrality intervals in this article.

6 Results and discussion

In this section, the results of the pT-dependent non-linear flow modes v4,22, v5,32, v6,33

and v6,222 of identified particles are presented for various centrality intervals in Pb-Pb

collisions at
√
sNN = 5.02 TeV. We first present the centrality and pT dependence of vn,mk

in section 6.1. The scaling properties of the non-linear flow modes are also discussed
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v4,22 v5,32 v6,33

Uncertainty source K0
S Λ + Λ φ K0

S Λ + Λ K0
S Λ + Λ

Primary zvtx 0% 0-2% 1% 0% 0–3% 0% 1–3%

Tracking mode - - 2% - - - -

Number of TPC space points 0–3% 1–2% 2% 0% 2% 0% 2%

Particle identification - - 4–6% - - - -

Reconstruction method (V0 finder) 3–5% 2–3% N/A 5% 1% 5% 1%

Decay radius 3–5% 1–3% N/A 5–6% 0–2% 5% 2%

Ratio of crossed to findable TPC clusters 0–2% 0–3% N/A 0% 1–2% 0% 3%

DCA decay products to primary vertex 2–5% 2–4% N/A 4–5% 2–3% 5% 2–3%

DCA between decay products 0–3% 1–2% N/A 0–4% 0–4% 0% 0–4%

Pointing angle cos(θp) 3–4% 0–2% N/A 3–4% 0–3% 3% 1%

Minimum pT of daughter tracks 1–3% 0–1% N/A 2–3% 2–3% 0% 0–3%

Table 2. List of the maximum relative systematic uncertainties of each individual source for vn,mk

of K0
S, Λ + Λ and φ-meson. The uncertainties depend on the transverse momenta and centrality

interval. Percentage ranges are given to account for all centrality intervals. ”N/A” indicates that

a certain check was not applicable to the given particle of interest. If a source was checked and

proved to have a negligible effect, the field is marked as ”–”.

in this section. These results are compared with vn measurements for the same particle

species in section 6.2. Finally, the comparison with two model calculations is shown in

section 6.3. Note that in some of the following sections the same data are used in different

representations to highlight the various physics implications of the measurements in each

section.

6.1 Centrality and pT dependence of non-linear flow modes

Figure 2 presents the magnitude of the non-linear mode for the fourth order flow coefficient,

v4,22(pT), for π±, K±, K0
S, p + p, Λ + Λ and the φ-meson in a wide range of centrality

intervals, i.e. 0–5% up to 50–60%. For the φ-meson, the results are reported from the 10–

20% up to the 40–50% centrality interval, where v4,22 can be measured accurately. The

magnitude of this non-linear flow mode rises steeply with increasing centrality interval

from 0–5% to 40–50% for all particle species. This increase is expected as v4,22 reflects the

contribution of the second order eccentricity, ε2, which increases from central to peripheral

collisions, in v4 [9, 54]. For more peripheral collisions (i.e. 50–60%), the magnitude of v4,22

does not increase further with respect to the neighbouring centrality interval (40–50%).

This effect that was observed also in vn measurements [39, 42] is probably due to the

shorter lifetime of the produced system in more peripheral collisions, which prevents v4,22

from developing further.

Figure 3 presents the non-linear mode for the fifth order flow coefficient, i.e. v5,32(pT),

of π±, K±, K0
S, p + p, and Λ + Λ for the same range of centrality intervals, i.e. 0–5% up to

50–60%. Statistical precision limits extending the measurements of non-linear flow modes

of the φ-meson for n > 4. The measurements show a significant increase in the magnitude

of this non-linear flow mode with increasing centrality percentile. This is due to the fact

that v5,32(pT) has a contribution from both ε2 and ε3. It is shown in MC studies that ε2

and to a smaller extent, ε3 increase for peripheral collisions [9].
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Figures 4 and 5 present the non-linear terms for the sixth order flow coefficient, i.e.

v6,33(pT) for π±, K±, K0
S, p + p and Λ + Λ for the 0–5% up to 40–50% centrality intervals

and v6,222(pT) for π±, K±, p + p for the 0–5% up to 50–60% centrality intervals. As

expected, measurements of v6,222(pT) which probe the contribution of ε2, show an increase

in the magnitude of this non-linear flow mode with increasing centrality percentile. On the

other hand, the v6,33(pT) measurements, which probe the contribution of ε3, present little

to no dependence on centrality as previously observed for charged particles in [54].
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Figure 6. The pT-differential v4,22 for different particle species grouped into different centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic uncertainties are shown

as bars and boxes, respectively.

In figure 6 the same data points are grouped by centrality interval to highlight how

v4,22 develops for a given centrality for various particle species as a function of pT. A

clear mass ordering can be seen in the low pT region (i.e. pT < 2.5 GeV/c) for all collision

centralities. This mass ordering arises from the interplay between radial flow and the initial

spatial anisotropy, generated from both the geometry and the fluctuating initial energy

density profile. This creates a depletion in the particle spectra at lower pT values which

becomes larger in-plane than out-of plane due to the velocity profile. This naturally leads

to lower v4,22(pT) values for heavier particles [57, 58, 78]. Similarly, figures 7, 8 and 9 show

the pT-differential v5,32, v6,33 and v6,222, respectively, of different particle species for each

centrality interval. A clear mass ordering is seen in the low pT region, (i.e. pT < 2.5 GeV/c),

for v5,32(pT) and to a smaller extent for v6,33(pT) as well as for some centrality intervals

of v6,222(pT).

In addition, in the intermediate pT region (for pT > 2.5 GeV/c) the data points of

figures 6–9 exhibit a particle type grouping. In particular, the data points form two groups,
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Figure 7. The pT-differential v5,32 for different particle species grouped into different centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic uncertainties are shown

as bars and boxes, respectively.

one for mesons and one for baryons with the values of vn,mk of the latter being larger. This

particle type grouping was previously observed in vn measurements of various particle

species [15–18, 39, 40, 42]. This grouping was explained in ref. [60] in the picture of

particle production via quark coalescence indicating that flow develops at the partonic

stage. In this picture, known as NCQ scaling, the flow of mesons (baryons) is roughly

twice (thrice) the flow of their constituent quarks in the intermediate transverse momentum

region [59, 60]. The ALICE measurements show that this scaling at the LHC energies holds

at an approximate level of 20% for vn [39, 40, 42].

Figures 10, 11, 12 and 13 present v4,22, v5,32, v6,33 and v6,222, respectively, scaled by

the number of constituent quarks (nq) as a function of pT/nq for π±, K±, K0
S, p + p,

Λ + Λ and the φ-meson grouped in different centrality intervals. The scaling is consistent

with the observations reported for higher order anisotropic flow coefficients [42]. It is seen

that for the non-linear flow modes this scaling holds at an approximate level (±20%) for

pT > 1 GeV/c, where quark coalescence is expected to be the dominant process.
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√
sNN = 5.02 TeV. Statistical and systematic uncertainties are shown

as bars and boxes, respectively.

6.2 Comparison with vn of identified particles

The comparison of the features discussed before i.e. mass ordering and particle type group-

ing between the non-linear and the anisotropic flow coefficient is of particular interest.

Based on a naive expectation the mass ordering should develop quantitatively in a dif-

ferent way between the non-linear (i.e. due to the dependence on ε2
2) and the anisotropic

flow coefficient. In parallel, if coalescence is the dominant particle production mechanism

in the intermediate pT region, one expects a similar grouping between vNL
n and vn. Such

a comparison could only be performed for v4,22(pT) (this study) and the v4(pT) measure-

ments [42] and was done by taking the difference between pions and protons at a given

pT in both modes and normalising it by the integrated flow of the corresponding mode for

charged particles [41] ([vπ
±

4 − vp+p̄
4 ](pT)/vh±

4 ). This comparison is shown in figure 14 for

the 0–5% up to the 40–50% centrality interval. It can be seen that in the low pT region

(pT < 2.5− 3 GeV/c) where the mass ordering is prominent, the data points exhibit a gen-

eral agreement for all centrality intervals. However, there is a hint that the relative ratio

for v4,22 is smaller than the one of the v4 for pT < 0.8 GeV/c and for the centrality intervals

0–30%. If this difference and its centrality dependence persist for low values of pT, it could

indicate that the hydrodynamic evolution is reflected differently in v4 and v4,22 and could

be explained by the contribution of ε2
2. As stated earlier, the mass splitting is a result of an

interplay of radial and anisotropic flow, leading to a stronger in-plane expansion compared

to out-of-plane, and the particle thermal motion. Particles with larger mass have smaller
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Figure 9. The pT-differential v6,222 for different particle species grouped into different centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic uncertainties are shown

as bars and boxes, respectively.

thermal velocities, and are thus affected stronger by the difference between in- and out-of-

plane expansion velocities, thus leading to the mass splitting of vn(pT). The comparison of

the pT dependence of vNL
n and vn can therefore provide a unique opportunity to test this

picture, as it would allow results for the cases of exactly the same average radial flow and

temperature, but differing in anisotropic flow to be compared. On the other hand, in the

intermediate pT region (pT > 2.5 GeV/c), the same comparison shows that the results are

compatible in all centrality intervals within one standard deviation. This implies a similar

particle type grouping between v4 and v4,22 which is in line with the expectation that quark

coalescence affects both flow modes similarly.

6.3 Comparison with models

The comparison of various anisotropic flow measurements and hydrodynamic calculations

are presented and discussed in great detail in [79–81]. A recent comparison between vn

measurements reported by the ALICE collaboration [42] and two hydrodynamic calcula-
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Figure 10. The pT/nq-dependence of v4,22/nq for different particle species grouped into different

centrality intervals of Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic uncertainties

are shown as bars and boxes, respectively.

tions from [81] shed new light on the initial conditions and the transport properties of

the created system in Pb-Pb collisions. Both hydrodynamic calculations are based on

iEBE-VISHNU [82], an event-by-event version of the VISHNU hybrid model [83] coupling

2 + 1 dimensional viscous hydrodynamics (VISH2+1) [84] to a hadronic cascade model

(UrQMD). The initial conditions used for these calculations are described by AMPT [85]

and TRENTo [86], both with τ0=0.6 fm/c and Tsw =148 MeV [87]. For AMPT initial con-

ditions, constant values of specific shear viscosity over entropy density (η/s = 0.08, the

lower limit conjectured by AdS/CFT) and bulk viscosity over entropy density (ζ/s = 0)

are utilised. The version of the model that uses TRENTo [86] initial conditions incorpo-

rates temperature dependent specific shear and bulk viscosities extracted from the global

bayesian analysis [87].2

2For simplicity in the rest of this article the model with AMPT initial conditions, η/s = 0.08 and ζ/s = 0

is referred to as AMPT and the model with TRENTo initial conditions, η/s(T) and ζ/s(T) is referred to

as TRENTo.
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Figure 11. The pT/nq-dependence of v5,32/nq for different particle species grouped into different

centrality intervals of Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic uncertainties

are shown as bars and boxes, respectively.

The comparison between vn measurements and these two hydrodynamic calcula-

tions illustrates a qualitative agreement. This agreement between the data and the

models depends on the particle species, transverse momentum range and centrality per-

centile. Overall, the AMPT model reproduces the measurements more accurately than the

TRENTo model [42]. In order to further investigate the performance of these two models in

reproducing the vn measurements, and provide a quantitative comparison, the relative ra-

tios between each model and the measurements of π±, K± and p + p are obtained. Table 3

summarises these relative ratios. The values represent the ranges across all centralities

that each model is able to describe the measurements of vn for each particle species. Com-

parisons between the performance of the two models show that the AMPT calculations

reproduce v2 slightly better that TRENTo. Both models reproduce the v3 measurements

relatively better than the v2, however AMPT performs better than TRENTo. Finally, the

comparison between the models and the v4 measurements show that AMPT has an abso-

lute better performance compared to TRENTo. These values should be taken with caution

as v4 has larger uncertainties with respect to v3 and v2.
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sNN = 5.02 TeV. Statistical and systematic uncertainties

are shown as bars and boxes, respectively.

v2 v3 v4

Model π± K± p + p π± K± p + p π± K± p + p

AMPT calculations 3–13% 0–16% 0–20% 0–8% 5–12% 0–4% 6–12% 5–12% 0–4%

TRENTo calculations 6–17% 0–19% 3–19% 2–15% 7–22% 0–11% 7–25% 16–28% 0–21%

Table 3. List of minimum and maximum values of the fit with a constant function to relative

ratios between data and each model for vn(n = 2, 3, 4) of π±, K± and p + p. The percentages show

deviations of the fit from unity obtained for the 0–5% up to 40–50% centrality intervals.

To achieve additional constraints on the initial conditions and transport properties of

the system and test the validity of these hydrodynamic models, a comparison is performed

between the measured pT-dependent non-linear flow modes for π±, K±, p + p, K0
S and

Λ + Λ with the same two hydrodynamical calculations reported in [81]. Figures 15–18

present the comparison between the measurements and the two model predictions for the

pT-differential v4,22, v5,32, v6,33 and v6,222, respectively, for π±, K± and p + p and fig-

ures 19–21 present these comparisons for the pT-differential v4,22, v5,32 and v6,33 for K0
S and

Λ + Λ for the 0–10% up to 50–60% centrality interval (40–50% centrality interval for

v6,33) of Pb-Pb collisions at
√
sNN = 5.02 TeV. The solid bands show the AMPT model

and the hatched bands represent the TRENTo calculations. The bottom panels in each

plot in figures 15–21 show the difference between the models and the measurement. Both

TRENTo and AMPT reproduce the mass ordering feature at pT < 2.5 GeV/c for all non-

linear flow modes. In particular, the comparison between the models and the measurements
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Figure 13. The pT/nq-dependence of v6,222/nq for different particle species grouped into different

centrality intervals of Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic uncertainties

are shown as bars and boxes, respectively.

of v4,22 reveals that TRENTo reproduces the data very well from the 0–10% up to 30–40%

centrality interval and fails to reproduce the measurements for the remaining more pe-

ripheral centrality intervals. On the other hand, AMPT overestimates the measurements

from the 0–10% up to 30–40% centrality interval. For the 40–50% centrality interval, it

reproduces the measurements for all particle species except π±, where it slightly under-

estimates the results. For more peripheral collisions, it reproduces the K±, p + p and

Λ + Λ measurements and underestimates the results for π± and K0
S.

In a similar attempt to the comparison between the vn measurement and the model

calculation in table 3, the performance of these models were further studied for vn,mk by

taking the relative ratios between each model and the measurements of π±, K± and p + p.

These relative ratios are summarised in table 4 where TRENTo calculations reproduce

v4,22 better than AMPT by ∼7%. Comparisons between table 4 and 3 show that the

AMPT calculations reproduce v4,22 with ∼20% higher discrepancy on average compared to

v4, and, the TRENTo calculations perform equally well for v4,22 as for v4. It is necessary
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±
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4 ](pT)/vh±

4 grouped

into different centrality intervals of Pb-Pb collisions at
√
sNN = 5.02 TeV. Statistical and systematic

uncertainties are shown as bars and boxes, respectively.

v4,22 v5,32 v6,33 v6,222

Model π± K± p + p π± K± p + p π± K± p + p π± K± p + p

AMPT calculations 5–32% 2–30% 3–30% 3–28% 5–29% 1–65% 0–46% 0–46% 0–97% 6–52% 0–80% 0–118%

TRENTo calculations 0–30% 4–33% 0–21% 24–49% 33–97% 12–58% 0–43% 0–46% 0–95% 0–20% 0–34% 0–78%

Table 4. List of minimum and maximum values of the fit with a constant function to relative ratios

between the data and each model for vn,mk of π±, K± and p + p. The percentages show deviations

of the fit from unity obtained for the 0–10% up to 50–60% (40–50% for v6,33) centrality intervals.

to stress, however, that the non-linear flow modes have smaller magnitudes with respect to

vn and any discrepancy between the models and the data becomes magnified in the ratios

reported in table 4.

For v5,32, the comparison is different, with the TRENTo predictions overestimating

the measurements for all centrality intervals, and AMPT reproducing the data better than

TRENTo. The AMPT model overestimates the measurements from the 0–10% to 20–30%

centrality interval. It underestimates the measurements of π±, K± and p + p for more

peripheral collisions while it reproduces the measurements of K0
S and Λ + Λ relatively well

up to the 40–50% centrality interval. These comparisons are reflected in table 4 where

AMPT performs on average 20–27% better than TRENTo for π±, K± and p + p.

For v6,33, both models reproduce the data for the 0–10% centrality interval. For the

10–20% up to 30–40% centrality interval, AMPT reproduces the data while TRENTo over-
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Figure 15. The pT-differential v4,22 of π±, K± and p + p in the 0–10% up to 50–60% centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeVcompared with iEBE-VISHNU hybrid models with

two different sets of initial parameters: AMPT initial conditions (η/s= 0.08 and ζ/s = 0) shown

as solid bands and TRENTo initial conditions (η/s(T) and ζ/s(T)) as hatched bands. The bottom

panels show the difference between the measurements and each model. Statistical and systematic

uncertainties are shown as bars and boxes, respectively.

estimates the measurements. Finally, the comparison with v6,222 shows an agreement

between both models and the measurements of π±, K± and p + p at 0–10% up to 30–40%

centrality intervals.3

All in all, this study shows larger differences between the model calculations and the

vn,mk measurements with respect to that of vn, indicating a larger sensitivity to the initial

conditions and transport properties for the non-linear flow modes. As a result, it is useful

to tune the input parameters of hydrodynamic models considering also the non-linear flow

measurements.

3The ratios reported for v6,33 and v6,222 in table 4 are not to be taken at face value as the magnitudes

of these two non-linear flow modes are almost zero.
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Figure 16. The pT-differential v5,32 of π±, K± and p + p in the 0–10% up to 50–60% centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeVcompared with iEBE-VISHNU hybrid models with

two different sets of initial parameters: AMPT initial conditions (η/s= 0.08 and ζ/s = 0) shown

as solid bands and TRENTo initial conditions (η/s(T) and ζ/s(T)) as hatched bands. The bottom

panels show the difference between the measurements and each model. Statistical and systematic

uncertainties are shown as bars and boxes, respectively.

7 Summary

In this article, the measurements of the non-linear flow modes, v4,22, v5,32, v6,222 and v6,33

are for the first time reported as a function of transverse momentum for different particle

species, i.e. π±, K±, K0
S, p + p, Λ+Λ and φ-meson. The results are presented in a wide range

of centrality intervals from 0–5% up to 50–60% in Pb-Pb collisions at
√
sNN = 5.02 TeV.

The magnitude of the non-linear flow modes, vn,mk, were obtained with a multi-particle

correlation technique, namely the generic framework, selecting the identified hadron un-

der study and the reference flow particles from different, non-overlapping pseudorapidity

regions.
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Figure 17. The pT-differential v6,33 of π±, K± and p + p in the 0–10% up to 40–50% centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeVcompared with iEBE-VISHNU hybrid models with

two different sets of initial parameters: AMPT initial conditions (η/s= 0.08 and ζ/s = 0) shown

as solid bands and TRENTo initial conditions (η/s(T) and ζ/s(T)) as hatched bands. The bottom

panels show the difference between the measurements and each model. Statistical and systematic

uncertainties are shown as bars and boxes, respectively.

The measured v4,22, v5,32 and v6,222 exhibit a distinct centrality dependence. This cen-

trality dependence originates from the contribution of initial state eccentricity, ε2, as shown

in eq. (1.5). As expected, v6,33 does not exhibit a considerable centrality dependence since

ε3 quantifies primarily the event-by-event fluctuations of the initial energy density profile.

This is supported by the relatively large magnitude of v6,33 in the most-central collisions

(0–5%). A clear mass ordering is observed in the low pT region (pT < 2.5 GeV/c). A closer

comparison between v4 and v4,22 shows that this mass ordering seems slightly larger for v4,22

than v4 at very low pT (pT < 0.8 GeV/c). In the intermediate pT region (pT > 2.5 GeV/c),

a particle type grouping is observed where the magnitude of the non-linear modes for

baryons is larger than for mesons similar to observations in vn measurements. The NCQ

scaling holds at an approximate level of ±20% within the current level of statistical and

systematic uncertainties, similar to that of the anisotropic flow coefficients [42].
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Figure 18. The pT-differential v6,222 of π±, K± and p + p in the 0–10% up to 50–60% centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeVcompared with iEBE-VISHNU hybrid models with

two different sets of initial parameters: AMPT initial conditions (η/s= 0.08 and ζ/s = 0) shown

as solid bands and TRENTo initial conditions (η/s(T) and ζ/s(T)) as hatched bands. The bottom

panels show the difference between the measurements and each model. Statistical and systematic

uncertainties are shown as bars and boxes, respectively.

The comparison of two models based on the iEBE-VISHNU hybrid model, with two

different initial conditions (AMPT and TRENTo) and transport properties shows that nei-

ther of the models is able to fully describe the measurements. The quality of the model

description depends on the centrality percentile and particle species similar to the model-

data comparisons of the anisotropic flow coefficients [42]. The measurements are better

predicted by the models in more central collisions. All in all, the model using AMPT initial

conditions (η/s = 0.08 and ζ/s = 0) exhibits a magnitude and shape closer to the mea-

surements. As a result, in order to further constrain the values of the transport properties

and the initial conditions of the system, it is necessary to tune the input parameters of

future hydrodynamic calculations attempting to describe these measurements.
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Figure 19. The pT-differential v4,22 of K0
S and Λ + Λ in the 0–10% up to 50–60% centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeVcompared with iEBE-VISHNU hybrid models

with two different sets of initial parameters: AMPT initial conditions (η/s= 0.08 and ζ/s = 0)

shown as solid bands and TRENTo initial conditions (η/s(T) and ζ/s(T)) as hatched bands. The

bottom panels show the difference between the measurements and each model. Statistical and

systematic uncertainties are shown as bars and boxes, respectively.
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Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for In-

dependent Research — Natural Sciences, the VILLUM FONDEN and Danish National

– 29 –



J
H
E
P
0
6
(
2
0
2
0
)
1
4
7

0.5 1 1.5 2

0

0.005

0.01

0.015

0.02

6
,3

3
v

10%−0 = 5.02 TeV
NN

sPb −Pb

| < 0.8η|

ALICE

s
0

K

Λ

iEBE-VISHNU

AMPT IC

TRENTo IC

0.5 1 1.5 2

0.01−

0

0.01

6
,3

3
v

∆

Solid markers: AMPT IC

Open markers: TRENTo IC

0

0.005

0.01

0.015

0.02 20%−10

0.5 1 1.5 2

0.01

0

0.01
0.5 1 1.5 2

0

0.005

0.01

0.015

0.02 30%−20

0.5 1 1.5 2

0.01

0

0.01

0.5 1 1.5 2

0

0.005

0.01

0.015

0.02

6
,3

3
v

40%−30

0.5 1 1.5 2

)c (GeV/
T

p

0.01−

0

0.01

6
,3

3
v

∆

0.5 1 1.5 2

0

0.005

0.01

0.015

0.02 50%−40

0.5 1 1.5 2

)c (GeV/
T

p

0.01

0

0.01

Figure 21. The pT-differential v6,33 of K0
S and Λ + Λ in the 0–10% up to 40–50% centrality

intervals of Pb-Pb collisions at
√
sNN = 5.02 TeVcompared with iEBE-VISHNU hybrid models

with two different sets of initial parameters: AMPT initial conditions (η/s= 0.08 and ζ/s = 0)

shown as solid bands and TRENTo initial conditions (η/s(T) and ζ/s(T)) as hatched bands. The

bottom panels show the difference between the measurements and each model. Statistical and
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A Additional figures

A.1 KET scaling

One suggestion to further study the scaling properties of flow coefficients was to extend

the scaling to lower pT values by studying the transverse kinetic energy dependence of

anisotropic flow harmonics. Transverse kinetic energy is defined as KET = mT − m0,

where mT =
√
m2

0 + p2
T is the transverse mass. Figures 22, 23, 24 and 25 present KET

scaling for v4,22, v5,32, v6,33 and v6,222 respectively, for π±, K±, p + p, K0
S, Λ + Λ and

φ-meson grouped in different centrality intervals.
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Figure 22. The (mT −m0)/nq-dependence of v4,22/nq for different particle species grouped into

different centrality intervals of Pb-Pb collisions
√
sNN = 5.02 TeV. Statistical and systematic un-

certainties are shown as bars and boxes, respectively. It is seen that the KET scaling holds for v4,22

at an approximate level.
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Figure 23. The (mT −m0)/nq-dependence of v5,32/nq for different particle species grouped into

different centrality intervals of Pb-Pb collisions
√
sNN = 5.02 TeV. Statistical and systematic un-

certainties are shown as bars and boxes, respectively. It is seen that the KET scaling holds for v5,32

at an approximate level.
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Figure 24. The (mT −m0)/nq-dependence of v6,33/nq for different particle species grouped into

different centrality intervals of Pb-Pb collisions
√
sNN = 5.02 TeV. Statistical and systematic un-

certainties are shown as bars and boxes, respectively. It is seen that the KET scaling holds for v6,33

at an approximate level.
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Figure 25. The (mT − m0)/nq-dependence of v6,222/nq for different particle species grouped

into different centrality intervals of Pb-Pb collisions
√
sNN = 5.02 TeV. Statistical and systematic

uncertainties are shown as bars and boxes, respectively. It is seen that the KET scaling holds for

v6,222 at an approximate level.
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Ramirez74, V. Gonzalez106, P. González-Zamora44, S. Gorbunov38, L. Görlich118, S. Gotovac34,

V. Grabski71, L.K. Graczykowski142, K.L. Graham110, L. Greiner79, A. Grelli63, C. Grigoras33,

V. Grigoriev92, A. Grigoryan1, S. Grigoryan75, O.S. Groettvik21, F. Grosa30,

J.F. Grosse-Oetringhaus33, R. Grosso106, R. Guernane78, M. Guittiere114, K. Gulbrandsen88,

T. Gunji132, A. Gupta100, R. Gupta100, I.B. Guzman44, R. Haake146, M.K. Habib106,

C. Hadjidakis61, H. Hamagaki81, G. Hamar145, M. Hamid6, R. Hannigan119, M.R. Haque63,85,

A. Harlenderova106, J.W. Harris146, A. Harton11, J.A. Hasenbichler33, H. Hassan95,

D. Hatzifotiadou10,53, P. Hauer42, S. Hayashi132, S.T. Heckel68,104, E. Hellbär68, H. Helstrup35,

A. Herghelegiu47, T. Herman36, E.G. Hernandez44, G. Herrera Corral9, F. Herrmann144,

K.F. Hetland35, H. Hillemanns33, C. Hills127, B. Hippolyte136, B. Hohlweger104, D. Horak36,

A. Hornung68, S. Hornung106, R. Hosokawa15, P. Hristov33, C. Huang61, C. Hughes130, P. Huhn68,

T.J. Humanic96, H. Hushnud109, L.A. Husova144, N. Hussain41, S.A. Hussain14, D. Hutter38,

J.P. Iddon33,127, R. Ilkaev108, M. Inaba133, G.M. Innocenti33, M. Ippolitov87, A. Isakov94,

M.S. Islam109, M. Ivanov106, V. Ivanov97, V. Izucheev90, B. Jacak79, N. Jacazio53, P.M. Jacobs79,

S. Jadlovska116, J. Jadlovsky116, S. Jaelani63, C. Jahnke121, M.J. Jakubowska142, M.A. Janik142,

T. Janson74, M. Jercic98, O. Jevons110, M. Jin125, F. Jonas95,144, P.G. Jones110, J. Jung68,

M. Jung68, A. Jusko110, P. Kalinak64, A. Kalweit33, V. Kaplin92, S. Kar6, A. Karasu Uysal77,

O. Karavichev62, T. Karavicheva62, P. Karczmarczyk33, E. Karpechev62, U. Kebschull74,

R. Keidel46, M. Keil33, B. Ketzer42, Z. Khabanova89, A.M. Khan6, S. Khan16, S.A. Khan141,

A. Khanzadeev97, Y. Kharlov90, A. Khatun16, A. Khuntia118, B. Kileng35, B. Kim60, B. Kim133,

D. Kim147, D.J. Kim126, E.J. Kim73, H. Kim17,147, J. Kim147, J.S. Kim40, J. Kim103, J. Kim147,

J. Kim73, M. Kim103, S. Kim18, T. Kim147, T. Kim147, S. Kirsch38,68, I. Kisel38, S. Kiselev91,

A. Kisiel142, J.L. Klay5, C. Klein68, J. Klein58, S. Klein79, C. Klein-Bösing144, M. Kleiner68,
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M.G. Munhoz121, R.H. Munzer68, H. Murakami132, S. Murray124, L. Musa33, J. Musinsky64,

C.J. Myers125, J.W. Myrcha142, B. Naik48, R. Nair84, B.K. Nandi48, R. Nania10,53, E. Nappi52,

M.U. Naru14, A.F. Nassirpour80, C. Nattrass130, R. Nayak48, T.K. Nayak85, S. Nazarenko108,

A. Neagu20, R.A. Negrao De Oliveira68, L. Nellen69, S.V. Nesbo35, G. Neskovic38, D. Nesterov112,

L.T. Neumann142, B.S. Nielsen88, S. Nikolaev87, S. Nikulin87, V. Nikulin97, F. Noferini10,53,

P. Nomokonov75, J. Norman78,127, N. Novitzky133, P. Nowakowski142, A. Nyanin87, J. Nystrand21,

M. Ogino81, A. Ohlson80,103, J. Oleniacz142, A.C. Oliveira Da Silva121,130, M.H. Oliver146,

C. Oppedisano58, R. Orava43, A. Ortiz Velasquez69, A. Oskarsson80, J. Otwinowski118,

K. Oyama81, Y. Pachmayer103, V. Pacik88, D. Pagano140, G. Paić69, J. Pan143, A.K. Pandey48,
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25 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
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30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and
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95 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
96 Ohio State University, Columbus, Ohio, United States
97 Petersburg Nuclear Physics Institute, Gatchina, Russia
98 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
99 Physics Department, Panjab University, Chandigarh, India

100 Physics Department, University of Jammu, Jammu, India
101 Physics Department, University of Rajasthan, Jaipur, India
102 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
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