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Numerous angle-resolved photoemission spectroscopy (ARPES) studies of a wide class of low-density metal-
lic systems, ranging from doped transition metal oxides to quasi-two-dimensional interfaces between insulators,
exhibit phonon sidebands below the quasiparticle peak as a unique hallmark of polaronic correlations. Here,
we single out properties of ARPES spectra that can provide a robust estimate of the effective range (screening
length) of the electron-phonon interaction, regardless of the limited experimental resolution, dimensionality, and
particular features of the electronic structure, facilitating a general methodology for an analysis of a whole class
of materials.

DOI: 10.1103/PhysRevB.102.121108

Introduction. It has been well established, both exper-
imentally and theoretically, that for low concentrations of
itinerant charge carriers the electron-phonon interaction (EPI)
produces phonon sidebands, appearing as satellites in angle-
resolved photoemission spectroscopy (ARPES) spectra below
the quasiparticle peak (QP) [1]. It has been argued [2,3] that
energy and momentum intensity distributions of these satel-
lites depend on the spatial range of the EPI, the unscreened
polar Fröhlich interaction having the longest and the Hol-
stein on-site interaction the shortest range. However, despite
extensive ARPES data available [4–13], we are not aware
of any systematic theoretical study which would consider
the dependence of these very unique manifestations of the
EPI on the screening length. We can mention only a study
[2] of the screened Fröhlich interaction for a few particular
cases in specific materials and the theoretical study [3] of
the EPI with a hypothetical forward scattering. Hence, an
accurate theoretical description of ARPES spectra in depen-
dence on the screening length is of primary importance for a
knowledge of the effective interaction that governs polaronic
correlations in a plethora of materials [4–13], exhibit-
ing metal-insulator transitions, colossal magnetoresistance,
commensurate-incommensurate transition, quantum Hall
effect, etc.

Recently, first-principle calculations [14] have been used,
considering the leading-order expansion of the electron self-
energy [15,16] and the cumulant expansion [10,12,17], to
simulate measured ARPES spectra of some specific polaronic
materials. In their implementation of the cumulant expansion,
the latter works are restricted to self-energy diagrams with
electron Green’s functions propagating in one direction of
time only [18], giving approximate results for finite electron
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densities, including the lowest-order case. For the higher-
order corrections, additional approximations are introduced
by treating higher phonon processes as uncorrelated [19].
On the other hand, our calculations are based on a direct
evaluation of self-energy diagrams, considering the exact mo-
mentum and frequency dependence of the leading corrections
to the phonon sidebands, including the exact leading (second-
order) vertex correction to the second sideband. Instead of
focusing on some particular system, our analysis identifies
different behaviors across all ranges of EPI and provides a
general procedure for the estimation of the EPI range from
experimental data, prior to material-specific calculations.

Modeling. We consider the standard EPI model for a D-
dimensional lattice, describing the interaction between bare
electrons in a band, Ĥel = ∑

k εka†
kak, and dispersionless op-

tical phonons with frequency ω0, Ĥph = ω0
∑

q b†
qbq. The

screened Fröhlich interaction is given by

Ĥel-ph =
∑
k,q

V d
q a†

k+qak(b†
−q + bq), (1)

where |V d
q |2 = ad/(|q|d−1 + qd−1

T F ), with ad=3 = 2
√

2πα

for three-dimensional (3D) and ad=2 = √
2πα for two-

dimensional (2D) systems [20–24], and α characterizing the
strength of the EPI [23]. We assume a static screening char-
acterized by the Thomas-Fermi wave number qT F . rT F =
π/qT F roughly gives the screening range in the lattice con-
stant units, with qT F → 0 (qT F → ∞) for the unscreened
Fröhlich (Holstein) EPI.

The spectral function A(k, ω), measured by ARPES for
ω < 0 (electron removal processes), is determined by the elec-
tron Green’s function G(k, ω), A(k, ω) = |ImG(k, ω)|/π . In
terms of the self-energy �(k, ω), appearing due to the EPI in
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Eq. (1), it is given by

A(k, ω) = |Im�(k, ω)|
[ω − ξk − Re�(k, ω)]2 + [Im�(k, ω)]2 , (2)

with ξk = εk − μ < 0, the hole energy measured from the
Fermi level μ. For a weak EPI, the self-energy contributions
in the denominator of Eq. (2) may be neglected. For a stronger
EPI, the real part of the self-energy may be absorbed [25]
into a renormalized dispersion ε̃k, ε̃k = εk + Re�(k, ω). This
facilitates experimental analysis, because ε̃k is a measured
quantity. We neglect the imaginary part Im�(k, ω) in the
denominator of Eq. (2) since it barely affects the k and ω

dependence of the spectral density A(k, ω).
Our attention is on recent ARPES studies of polaronic

materials, when only a small part of the conduction band εk
is filled. The EPI leads to a complex structure of A(k, ω),
where in addition to the QP peak one observes phonon side-
bands, with the nth sideband being shifted downward from
the Fermi level by nω0 [2,3]. Since the ARPES seldom show
more than two sidebands [6,8,10,12], we concentrate our anal-
ysis on these. In particular, we consider the μ < ω0 case
that ensures a pattern of spectrally separated phonon side-
bands, experimentally reported for many different systems
[4–8,10–12]. Within the zero-temperature diagrammatic ex-
pansion, the first-order contribution in α to Im� [26],

Im�(1)(k, ω) = π

BZ∑
q

∣∣V d
q

∣∣2

×�(−ξk+q)δ(ω − ξk+q + ω0), (3)

corresponds to the leading contribution to the first phonon
sideband, restricted to the frequency window [−ω0 −
μ,−ω0]. The second sideband is found in the window
[−2ω0 − μ,−2ω0], with the leading contribution given by
second-order α2 terms derived here (for details, see the
Supplemental Material [27]),

Im�(2)(k, ω)

= π

BZ∑
q

�(−ξq)δ(ω − ξq + 2ω0)
BZ∑
q′

∣∣V d
q′
∣∣2∣∣V d

q−k−q′
∣∣2

(ξq − ξk+q′ − ω0)

× [(ξq − ξk+q′ − ω0)−1 + (ξq − ξq−q′ − ω0)−1]. (4)

The first term in the last line of Eq. (4) is given by the non-
crossing two-phonon diagram, whereas the crossing diagram
with the leading vertex correction gives the second term.

We set ω0 = 1 and consider the dispersion for a cubic
lattice in 3D/2D, εk = 2t

∑D
i=1 [1 − cos(ki )], where t is the

nearest-neighbor hopping. With the lattice constant a = 1,
the effective mass of the noninteracting electron at the bottom
of the band is m0 = 1/2t . To search for general properties
of ARPES sideband components in various systems, we use
two very different sets of parameters for the broad and the
narrow electron bands: S1 (S2) denotes μ = 0.5 (μ = 0.1)
and t = 1 (t = 1/24), with mass m0 = 0.5 (m0 = 12). In both
these cases, only a small fraction of the lowest band states is
occupied.

Phonon sidebands. A typical example of the ARPES in-
tensity and of the corresponding Im� intensity for the first

FIG. 1. Contour plot of the (a) ARPES component A(1)(k, ω) and
(b) Im� (1)(k, ω) for the first sideband for the 3D parameter set S1
and strong screening rT F = 0.1. Right panels show EDCs for the
corresponding cross sections in the left panels. Note, two EDCs for
Im� coincide.

sideband and strong screening is shown in Fig. 1. In experi-
mental works, it is often concluded that the higher intensity
accumulated within the Fermi surface (FS), k � kF � π ,
identifies the weakly screened Fröhlich interaction. However,
a more careful inspection of Eq. (2) leads to a different
interpretation. A(1)(k, ω) in Fig. 1(a) exhibits a strong mo-
mentum dependence, due to (ω − ξ̃k )−2 in the denominator
in Eq. (2), which highlights the area within the FS. In fact,
the latter easily camouflages the fact that the EPI might
be over-screened. Indeed, as shown in Fig. 1(b), for strong
screening Im�(1)(k, ω) is momentum independent and uni-
formly spread over the whole Brillouin zone (BZ): in the right
panel of Fig. 1(b), the two energy distribution curves (EDCs)
for Im�(1)(k, ω) are almost indistinguishable. The ω depen-
dence is determined solely by the density of occupied electron
states at the bottom of the band. This may easily be derived
from Eq. (3), assuming a momentum-independent interaction
V d

q . Different behaviors of A(1)(k, ω) and Im�(1)(k, ω) in
Fig. 1 explain the universality of the experimentally found
confinement of the intensity of the ARPES sidebands in the
momentum-space region near the band minimum [4–8,10,12].
However, it emphasizes as well that very different con-
finements may characterize the ARPES spectrum and the
corresponding Im� intensity, rendering Im� as a quantity
that is far more suitable for estimation of the range of EPI.

In contrast to strong screenings, for weak screenings
(rT F � 20) the map of Im� in Fig. 2 exhibits maxima
that almost exactly follow the QP dispersion. In fact, using
this property the weak-screening regime can be unam-
biguously identified from the behavior of the first phonon
sideband. On the other hand, in our results the EDC and
momentum distribution curves (MDCs) maxima of Im�

for the second sideband are absent, with its typical inten-
sity shown in Fig. 3(a). By taking the second derivative
d2Im�(2)(k, ω)/dk2, which is fully in line with the con-
ventional experimental ARPES-data processing that uses the
curvature analysis, one recovers a dispersion resembling that
of the QP peak. This is a general property of the second
sideband, well illustrated by Fig. 3, in which the intensities
of Im�(2)(k, ω) and d2Im�(2)(k, ω)/dk2 are compared, to-
gether with the intensity dependence along the EDCs and the
MDCs. We note that the necessity for the differential analysis
of the second sideband follows purely from theoretical results,
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FIG. 2. Contour plots of Im� for the QP band, the first and the
second phonon sideband for the 3D parameter set S1, and for weak
screening rT F = 100.

rather than being a consequence of a limited quality of partic-
ular experimental data.

Anomalous phonon sideband dispersions. Between the
strong and the weak screening regimes, exhibiting clearly
different and characteristic behaviors of Im�, another regime
sets in, which can be recognized from anomalous phonon
sideband dispersions. For intermediate EPI ranges, the struc-
ture of Im� is very sensitive on parameters, which is
illustrated by Fig. 4. The curve that follows the EDC maxima

FIG. 3. Contour plots of (a) Im� (2)(k, ω) and (b) its second
derivative d2Im� (2)(k, ω)/dk2 for the 3D parameter set S1 and
rT F = 100. Right panels in (a) and (b) are the EDCs and the upper
panels are the MDCs along the cuts shown in the left-bottom panels
of (a) and (b). The dashed curves represent the QP dispersion, shifted
by 2ω0.

FIG. 4. (a) Contour plot of Im� (1)(k, ω) for the 3D parameter
set S1 and rT F = 7. The dashed curve represents the QP dispersion
εk, shifted downward by ω0. The circles follow the maxima of
EDCs, fitted by a parabola (solid line) that corresponds to the mass
m∗ = 0.76m0. (b) EDCs for cross sections shown in panel (a). (c) m∗

derived from the first sideband for parameters when EDCs maxima
do not follow the QP dispersion. (d) Upward shift ε0 characterizing
the EDC maxima for the first phonon sideband.

appears shifted upward by ε0 from the lower edge of the first
sideband. In comparison to the QP dispersion, parabolic fits
of the EDCs maxima give different effective masses, e.g., for
the Im� intensity shown in Fig. 4 one obtains m∗ = 0.76m0.
Such anomalous phonon sideband dispersions are found for
all eight studied cases. Furthermore, anomalies in 3D and
2D are different: Figs. 4(c) and 4(d) show that m∗ is smaller
(larger) in 3D (2D) and ε0 varies (being zero) in 3D (2D).
While in the 3D cases the EDC maxima follow the parabolic
dispersion over the whole first sideband, in the 2D cases the
parabolic dispersion at small momenta transforms, exhibiting
a jump toward the large momenta.

The anomalous sideband dispersion, which can be obtained
either from the EDCs or from the standard curvature analysis,
characterizes the ARPES spectra as well. Importantly, as seen
from Fig. 5(a), the values of ε0 and m∗ obtained from these
spectra and from Im� are different. For the intermediate

FIG. 5. Contour plot of the (a) ARPES component A(1)(k, ω) and
(b) Im� (1)(k, ω) for the 3D parameter set S2 and rT F = 5. Circles
follow maxima of EDCs. These are fitted by parabolas, giving cor-
responding effective masses m∗ and shifts ε0 of the phonon sideband
dispersion.
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screening length in Fig. 5, rT F = 5, the confinement of the
ARPES intensity is enhanced in comparison to that obtained
from Im�, being reduced to momenta, k < kr , where kr is
considerably smaller than kF . This effect is experimentally
observed as well [4,8,12]. In general, for all the considered
models and dimensionalities, we find that all anomalous be-
haviors are restricted to the specific screening range, 3 �
rT F � 20.

Confinement estimators. Depending on the behavior of the
first phonon sideband, our analysis identified three different
regimes as a function of the range of the EPI. The calculations
as well elucidated few features of ARPES sidebands that are
independent of specific details of a measurement or material
parameters, like the direction [klm]/[kl], the dimensionality
3D/2D or the parameter set S1/S2. In particular, the con-
finement of the ARPES sidebands in the Brillouin zone is
a common property for all three screening regimes. On the
other hand, the confinement of the Im� intensity depends
strongly on rT F . In fact, a procedure based on this confinement
may be developed to determine the range of the EPI from
experimental ARPES spectra.

Let us start by considering the Im� intensity integrated
over the energies within the nth phonon sideband for a given
k, Rn(k) = ∫ −nω0

−nω0−μ
dω Im�(n)(k, ω). Then, using Rn(k), the

confinement within the FS may be expressed by an estimator
corresponding to the ratio of the intensity within and outside
the FS,

Rn =
(∫ kF

0
dk

Rn(k)

kF

)/(∫ π

kF

dk
Rn(k)

π − kF

)
. (5)

Such estimator of the confinement is particularly suitable for
an analysis of the experimental data since it involves aver-
aging over frequency and momenta intervals, reducing the
effects of noise in experimental ARPES spectra. Moreover,
it is unaffected by the arbitrariness in the normalization of the
experimental ARPES intensity, as well as it is independent
of the coupling strength α. Furthermore, the regime of strong
screening, when Im� is k independent, may be identified
directly from Rn, Rn → 1 when rT F → 0.

With the exception of the rT F → 0 limit, Rn is insufficient
to estimate rT F . Namely, for different systems the maximal
value of Rn may change by an order of magnitude. Instead of
Rn, thus, in such situations we consider another estimator of
the confinement,

Cn(rT F ) = [Rn(rT F ) − 1][Rn(∞) − 1]−1. (6)

For all eight cases (parameter sets S1/S2, 3D/2D, diago-
nal [k′k′k′]/[k′k′], and nondiagonal [k′00]/[k′, 0] directions)
and for both sidebands, the estimator in Eq. (6) exhibits a
fairly universal behavior, which is well illustrated by Fig. 6.
Cn(rT F ) is scaled in Eq. (6) by the unscreened rT F → ∞ value
of Rn. This value may be obtained from measurements of
the reference material with unscreened EPI (small dopings),
particularly for systems and experimental setups for which
the charge density may easily be controlled. Alternatively, for
the first sideband, R1(∞) may easily be obtained numerically
from closed expressions for Im�(1)(k, ω) for the 2D [27] and
3D [26] systems. Namely, all parameters that define R1(∞)

FIG. 6. Confinement parameter Cn(rT F ) (6) for the parameter
sets S1 and S2, the first O1 and the second O2 phonon sidebands
in (a) 3D and (b) 2D.

(effective mass m∗, Fermi level μ and kF ) may be extracted
directly from the experimental QP dispersion.

Experimental data. We end our analysis with an illustrative
example, dealing with a particularly complex experimental re-
alization of EPI effects for low electron densities. We consider
the ARPES spectrum of oxygen-deficient LaAlO3/SrTiO3

interface [28], involving different phonons and limited exper-
imental resolution (0.04 eV), making a theoretical modeling
difficult. Yet, even in such circumstances, our approach may
provide valuable insights on the range of the EPI. Figure 7(a)
shows the details of the APRES spectrum, after the sub-
traction of the structureless background. kF ≈ 0.37 A−1 and
μ ≈ 0.07 eV may easily be estimated from the QP dispersion.

As explained in the discussion that follows Eq. (2), with
QP properties known, one may obtain Im� in Fig. 7(b) from
the ARPES data in Fig. 7(a) (for details, see [27]). The
frequency window in Fig. 7(b) dominated by the coupling
to the LO3 phonon is highlighted separately, corresponding
to the first LO3 sideband (ωLO3 ≈ 0.12 eV [8]). By averag-
ing R1(k) over these frequencies, −μ − ωLO3 � ω � −ωLO3,
one obtains R1 = 1.03. This is almost the minimal value that
the estimator R1 can take, which alone clearly indicates the
short-range EPI and the strong screening limit. The latter,
as analyzed theoretically in Fig. 1, is characterized by the
almost k-independent Im�. For a more complicated structure
of Im�, further considerations based on C1(rT F ) in Eq. (6)
would be required. We are stressing that the confinement
of ARPES spectral weight in Fig. 7(a) is much stronger
(R1 = 1.85), because of which one may incorrectly conclude

FIG. 7. (a) Raw ARPES data with the constant background re-
moved. (b) Im� corresponding to (a). (c) Measure of confinement
R1(kx )/MAX{R1(kx )} for data in (a) (black) and (b) (red) panel.
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about the long-range character of the coupling to the LO3
phonons.

Conclusions. Our study provides a means to estimate the
range/screening length of the EPI directly from the ARPES
spectra, giving important insights into the polaronic correla-
tions present in a wide class of real systems involving many
puzzling physical phenomena. The k and ω dependencies of
the first and the second sideband are analyzed in detail as
a function of screening, in terms of exact leading correc-
tions obtained from the diagrammatic expansion, including
the leading vertex correction. It is shown that the range of the
EPI may be extracted from the confinement of Im� within
the Brillouin zone, even when the experimental resolution is
very limited. Our results apply to all recently investigated

low-density metallic systems, characterized by the screened
Fröhlich interaction, while our methodology is not restricted
to phonons only, since coupling to excitations of other nature
(plasmons, magnons, paramagnons, charge-order fluctuations,
etc.) may be analyzed in a similar manner.
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A. Magrez, Y. J. Chang, K. S. Kim, A. Bostwick, E. Rotenberg
et al., Phys. Rev. Lett. 110, 196403 (2013).

[5] C. Chen, J. Avila, E. Frantzeskakis, A. Levy, and M. C. Asensio,
Nat. Commun. 6, 8585 (2015).

[6] S. Moser, S. Fatale, P. Krüger, H. Berger, P. Bugnon, A. Magrez,
H. Niwa, J. Miyawaki, Y. Harada, and M. Grioni, Phys. Rev.
Lett. 115, 096404 (2015).

[7] R. Yukawa, K. Ozawa, S. Yamamoto, H. Iwasawa, K.
Shimada, E. F. Schwier, K. Yoshimatsu, H. Kumigashira, H.
Namatame, M. Taniguchi et al., Phys. Rev. B 94, 165313
(2016).

[8] C. Cancellieri, A. S. Mishchenko, U. Aschauer, A. Filippetti,
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