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We compute the β-decay f t values within the frameworks of the energy density functional (EDF) and the
interacting boson model (IBM). Based on the constrained mean-field calculation with the Gogny-D1M EDF, the
IBM Hamiltonian for an even-even nucleus and essential ingredients of the interacting boson-fermion-fermion
model (IBFFM) for describing the neighboring odd-odd nucleus are determined in a microscopic way. Only the
boson-fermion and residual neutron-proton interaction strengths are determined empirically. The Gamow-Teller
(GT) and Fermi (F) transition rates needed to compute the β-decay f t values are obtained without any additional
parameter or quenching of the gA factor. The observed log f t values for the β+ decays of the even-even Ba into
odd-odd Cs nuclei, and of the odd-odd Cs to the even-even Xe nuclei, with mass A ≈ 130 are reasonably well
described. The predicted GT and F transition rates represent a sensitive test of the quality of the IBM and IBFFM
wave functions.

DOI: 10.1103/PhysRevC.101.044318

I. INTRODUCTION

The β decay of atomic nuclei is a consequence of elec-
troweak fundamental processes and its ability to convert pro-
tons in neutrons and vice versa make it a very relevant reaction
mechanism in many nuclear physics scenarios. For instance,
β decay plays an important role in modeling the creation of
elements in astrophysical nucleosynthesis scenarios. Precise
measurement and the theoretical description of the (single) β

decay are also crucial to better estimating the matrix element
of the ββ decay, especially the one that does not emit neutri-
nos (neutrinoless ββ decay), a rare event that would signal the
existence of physics beyond the standard model of elementary
particles [1,2].

The quantitative understanding of the β-decay process
requires a good and consistent description of the low-lying
spectrum of both parent and daughter nuclei. A variety of the-
oretical methods have been used for this purpose. Without try-
ing to be exhaustive, we can mention the quasiparticle random
phase approximation (QRPA) used at various levels of sophis-
tication [3–8], the beyond mean-field approaches within the
nuclear energy density functional (EDF) framework [9,10],
the description based on large-scale interacting shell model
calculations [11–15], or that based on the interacting boson
model (IBM) [16–25]. Each of the theoretical methods have
their own advantages and drawbacks that defined their range
of applicability in the nuclear chart.

*knomura@phy.hr

In the present work, we employ the IBM framework with
input from microscopic EDF calculations [26]. Our principal
aim is a consistent theoretical description of the low-lying
states and β decay of even-A nuclei, including even-even
and odd-odd ones. Within this approach, the potential energy
surface (PES) for a given even-even nucleus is computed mi-
croscopically by means of the constrained mean-field method
based on a nuclear EDF. The mean-field PES is mapped
onto the expectation value of the IBM Hamiltonian in the
intrinsic state of the s (with spin and parity 0+) and d
(2+) boson system. This procedure completely determines the
strength parameters of the IBM Hamiltonian, which provides
excitation spectra and transition strengths in arbitrary nuclear
systems. The method can be extended to odd-mass and odd-
odd nuclear systems by using the particle-boson coupling
scheme. In such an extension, an additional EDF mean-field
calculation is carried out to provide the required spherical
single-particle energies and occupation numbers for unpaired
nucleon(s) in the odd-A or odd-odd nucleus. Those mean-field
quantities represent an essential input to build the Hamiltonian
of the interacting boson-fermion-fermion model (IBFFM)
[18,27]. The strength parameters for the boson-fermion and
residual neutron-proton coupling terms are determined so as
to reproduce reasonably well the experimental low-energy
spectra in the neighboring odd-A nucleus, and the odd-odd
nucleus of interest. At the price of having to determine
these few coupling constants empirically, the method allows
for a systematic, detailed and simultaneous description of
spectroscopy in even-even, odd-A, and odd-odd nuclei in a
computationally feasible manner as also required in β-decay
studies.
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In Ref. [28], we implemented the EDF-based interacting
boson-fermion model (IBFM) [18,29] approach in the study
of the β decay of odd-A nuclei. There we studied the allowed
β decays, where the spin of the parent nucleus changes ac-
cording to the �I = 0,±1 rule and parity is conserved. Both
the Gamow-Teller (GT) and Fermi (F) transition strengths
were considered in the evaluation of the f t values of the
β decay. One of the advantages of our approach is that the
calculation for the GT and F transition rates does not involve
any additional free parameter, and that can be considered a
very stringent test for the IBFM wave functions for the parent
and daughter nuclei.

In the present work, since we are focusing on β decay
between even-mass nuclei, the calculation of the f t values
requires the IBM and IBFFM wave functions for the parent
and daughter (or vise versa) even-even and odd-odd nuclei,
respectively. Calculation of the single-β decay between such
even-A nuclei is also required for computing the ββ decay nu-
clear matrix elements, which are suggested to occur between a
number of even-even nuclei. As in Ref. [28], we consider the
β decays of those nuclei in the A ≈ 130 mass region. There
are a number of (phenomenological) IBFM calculations for
the low-lying states and β decay of odd-A nuclei. However,
application of the IBFFM framework to the spectroscopy in
odd-odd nuclear systems has rarely been pursued, let alone
their β decays. To the best of our knowledge, the IBFFM
has been employed to study the β decays only in Refs. [22]
and [24]. The former study is a first attempt to implement
IBFFM in the β decay of even-even system, but only one
nucleus 124Ba was considered there. In the latter reference,
two-neutrino ββ decays from Te to Xe isotopes was explored.
The results of both studies are encouraging, since they show
that the IBFFM framework is capable of describing the β

decay of even-A nuclei, even though the IBFFM Hamiltonian
was determined in a fully phenomenological way.

We have used the parametrization D1M [30] of the Gogny-
EDF [31,32] for the microscopic calculation of the PES.
Previous studies, using the EDF-to-IBM mapping procedure,
have shown that the Gogny-D1M EDF provides a reason-
able description of the spectroscopic properties of odd-A and
odd-odd nuclei [33–36] in variety of mass regions including
medium mass and heavy nuclei.

This paper is outlined as follows. In Sec. II we briefly
describe the procedures to build the IBFFM Hamiltonians
from the constrained Gogny-EDF calculations, and introduce
the β-decay operators. The results of our calculations for the
low-lying energy levels of the even-even Xe and Ba, and
odd-odd Cs nuclei are briefly reviewed in Sec. III. The log f t
values obtained for the β decays of the studied even-A nuclei
are discussed in Sec. IV. Finally, Sec. V is devoted to the
summary and the concluding remarks.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

Let us first introduce the IBFFM Hamiltonian Ĥ for odd-
odd systems. Note that we use the version of the IBFFM
(called IBFFM-2) that distinguishes between neutron and

proton degrees of freedom. The IBFFM-2 Hamiltonian con-
sists of the IBM (called IBM-2) Hamiltonian ĤB for an even-
even nucleus, the Hamiltonians Ĥρ

F for the odd neutron (ρ =
ν) and proton (ρ = π ), the Hamiltonians Ĥρ

BF that couple the
odd neutron and the odd proton to the IBM-2 core, and finally
the residual neutron-proton interaction V̂res:

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + Ĥ ν
BF + Hπ

BF + V̂res. (1)

The IBM-2 Hamiltonian reads

ĤB = ε
(
n̂dν

+ n̂dπ

) + κQ̂νQ̂π , (2)

where n̂dρ
= d†

ρ d̃ρ is the d-boson number operator, and Q̂ρ =
d†

ρ sρ + s†ρ d̃†
ρ + χρ (d†

ρ × d̃ρ )(2) is the quadrupole operator. The
parameters of the Hamiltonian are denoted by ε, κ , χν , and
χπ . The doubly magic nucleus 132Sn is taken as the inert core
for the boson space. The numbers of neutron Nν and proton
Nπ bosons are computed as the numbers of neutron-hole and
proton-particle pairs, respectively [37]. In the following, we
will simplify the notation and we will refer to the IBM-
2 and IBFFM-2 Hamiltonians simply as IBM and IBFFM,
respectively.

The single-nucleon Hamiltonian Ĥρ
F is given as

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1

(
a†

jρ
× ã jρ

)(0)
(3)

with ε jρ being the single-particle energy of the odd nucleon.
Here, jν ( jπ ) stands for the angular momentum of the single
neutron (proton). The fermion creation and annihilation oper-
ators are denoted by a(†)

jρ
and ã jρ , with ã jm = (−1) j−maj−m.

For the fermion valence space, we consider the full neutron
and proton major shell N, Z = 50 − 82, i.e., the 3s1/2, 2d3/2,
2d5/2, 1g7/2, and 1h11/2 orbitals.

The boson-fermion coupling Hamiltonian Ĥρ
BF takes the

form

Ĥρ
BF = 
ρQ̂ρ ′ q̂ρ + �ρV̂ρ ′ρ + Aρ n̂dρ

n̂ρ, (4)

where ρ ′ �= ρ. The first, second, and third terms in the ex-
pression above are the quadrupole dynamical, exchange, and
monopole terms, respectively. The strength parameters are
denoted by 
ρ , �ρ , and Aρ . As in previous studies [38,39]
we assume that both the quadrupole dynamical and exchange
terms are dominated by the interaction between unlike par-
ticles (i.e., between the odd neutron and proton bosons and
between the odd proton and neutron bosons). On the other
hand, for the monopole term we only consider the interaction
between like-particles (i.e., between the odd neutron and neu-
tron bosons and between the odd proton and proton bosons).
The bosonic quadrupole operator Q̂ρ in Eq. (4) is the same as
the one used in Eq. (2). The fermionic quadrupole operator q̂ρ

reads

q̂ρ =
∑
jρ j′ρ

γ jρ j′ρ
(
a†

jρ
× ã j′ρ

)(2)
, (5)

where γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ and Qjρ j′ρ = 〈l 1
2 jρ ||

Y (2)||l ′ 1
2 j′ρ〉 represents the matrix element of the fermionic

quadrupole operator in the considered single-particle basis.
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The exchange term V̂ρ ′ρ in Eq. (4) reads

V̂ρ ′ρ = − (s†ρ ′ d̃ρ ′ )(2)

⎧⎨
⎩

∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ :

((
d†

ρ × ã j′′ρ

)( jρ ) × (
a†

j′ρ
× s̃ρ

)( j′ρ ))(2)
:

⎫⎬
⎭ + (H.c.) (6)

with β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ . In the second line of the
expression above the notation : (· · · ) : indicates normal or-
dering. The definition of the number operator for the odd
fermion in the monopole interaction has already appeared in
Eq. (3).

For the residual neutron-proton interaction V̂res, we adopted
the following form:

V̂res = 4πuDδ(r) + uT

{
3(σν · r)(σπ · r)

r2
− σνσπ

}
, (7)

where the first and second terms denote the δ and tensor
interactions, respectively. We have found that these two terms
are enough to provide a reasonable description of the low-
lying states in the considered odd-odd nuclei. Note that by
definition r = rν − rπ and that uD and uT are the parameters
of this term. Furthermore, the matrix element V ′

res of the
residual interaction V̂res can be expressed as [24]

V ′
res = (

u j′ν u j′π u jν u jν + v j′ν v j′π v jν v jν

)
V J

j′ν j′π jν jπ

−(
u j′ν v j′π u jν v jπ + v j′ν u j′π v jν u jπ

)
×

∑
J ′

(2J ′ + 1)

{
j′ν jπ J ′
jν j′π J

}
V J ′

j′ν jπ jν j′π
, (8)

where

V J
j′ν j′π jν jπ = 〈 j′ν j′π ; J|V̂res| jν jπ ; J〉 (9)

represents the matrix element between the neutron-proton pair
with angular momentum J . The bracket in Eq. (8) represents
the corresponding Racah coefficient. As was done in Ref. [40],
the terms resulting from contractions are neglected in Eq. (8).

The matrix form of the IBFFM Hamiltonian of Eq. (1) is
obtained in the basis |[Lν ⊗ Lπ ](L) ⊗ [ jν ⊗ jπ ](J )](I )〉. Here,
Lρ is the angular momentum of proton or neutron boson
system, L is the total angular momentum of the boson system,
and I is the total angular momentum of the coupled boson-
fermion-fermion system.

B. Procedure to build the IBFFM Hamiltonian

As the first step to build the IBFFM Hamiltonian, we have
carried out (constrained) Hartree-Fock-Bogoliubov (HFB)
calculations, based on the parametrization D1M of the Gogny-
EDF. Those HFB calculations provide the potential en-
ergy surfaces (PESs), in terms of the quadrupole deforma-
tion parameters β and γ , for the even-even core nuclei
124–132Xe and 124–132Ba. For a given nucleus, the Gogny-
D1M PES is then mapped onto the expectation value of the
IBM-2 Hamiltonian in the boson coherent state [41] (see,
Refs. [26,42] for details). This mapping procedure uniquely

determines the parameters ε, κ , χν , and χπ in the bo-
son Hamiltonian. Their values have already been given in
Ref. [28].

Second, the single-particle energies ε jν (ε jπ ) and occupa-
tion probabilities v2

jν (v2
jπ ) of the unpaired neutron (proton)

for the neighboring odd-N (odd-Z) nucleus are computed with
the help of Gogny-D1M HFB calculations constrained to zero
deformation [33]. Those energies are used as input to the
Hamiltonians Ĥ ν

F (Ĥπ
F ) and Ĥ ν

BF (Ĥπ
BF), for the odd-N Xe and

odd-Z Cs isotopes, respectively. The optimal values of the
strength parameters for the boson-fermion Hamiltonian Ĥν

BF
(Ĥπ

BF), i.e., 
ν , �ν , and Aν (
π , �π , and Aπ ), are chosen sep-
arately for positive and negative parity, so as to reproduce the
experimental low-energy spectrum for each of the considered
odd-N Xe (odd-Z Cs) nuclei.

Third, the use the previous strength parameters 
ν , �ν ,
and Aν (
π , �π , and Aπ ) for the IBFFM Hamiltonian for the
odd-odd nuclei 124–132Cs. In this case, the values of ε jρ and
v2

jρ are calculated again for each of these odd-odd nuclei. The
employed boson-fermion interaction strengths, and ε jρ and
v2

jρ for the odd-odd Cs nuclei can be found in Ref. [36]. Fi-
nally, the strength parameters for the residual neutron-proton
interaction, uD = 0.7 MeV and uT = 0.02 MeV, are taken also
from Ref. [36].

C. Gamow-Teller and Fermi transition operators

To obtain the β-decay f t values, the Gamow-Teller (GT)
and Fermi (F) matrix elements should be computed by using
the IBM and IBFFM wave functions that correspond to the
initial state (with spin |Ii〉) for the parent nucleus and the final
state (with spin |If〉) for the daughter nucleus, or vice versa.
The building blocks are the following one-fermion transfer
operators [16]:

A( j)†
m = ζ ja

†
jm +

∑
j′

ζ j j′s
†
ρ (d̃ρ × a†

j′ )
( j)
m , (10)

B( j)†
m = θ j s

†
ρ ã jm +

∑
j′

θ j j′ (d
†
ρ × ã j′ )

( j)
m . (11)

Both operators increase the number of valence neutrons (pro-
tons) n j + 2Nρ by one. Note, that the index of jρ is omitted
for the sake of simplicity. The conjugate operators read

Ã( j)
m = ζ ∗

j ã jm +
∑

j′
ζ ∗

j j′sρ (d†
ρ × ã j′ )

( j)
m , (12)

B̃( j)
m = −θ∗

j sρa†
jm −

∑
j′

θ∗
j j′ (d̃ρ × a†

j′ )
( j)
m . (13)

These operators decrease the number of valence neutrons
(protons) n j + 2Nρ by one.

The coefficients ζ j , ζ j j′ , θ j , and θ j j′ in Eqs. (10)–(13) are
given [18] by

ζ j = u j
1

K ′
j

, (14)

ζ j j′ = −v jβ j′ j

√
10

Nρ (2 j + 1)

1

KK ′
j

, (15)
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θ j = v j√
Nρ

1

K ′′
j

, (16)

θ j j′ = u jβ j′ j

√
10

2 j + 1

1

KK ′′
j

. (17)

The parameters K , K ′
j , and K ′′

j entering the previous expres-
sions read [16,18,43]

K =
⎛
⎝∑

j j′
β2

j j′

⎞
⎠

1/2

, (18a)

K ′
j =

(
1 + 2

(
v j

u j

)2
〈(

n̂sρ
+ 1

)
n̂dρ

〉
0+

1

Nρ (2 j + 1)

∑
j′ β

2
j′ j

K2

)1/2

, (18b)

K ′′
j =

(〈
n̂sρ

〉
0+

1

Nρ

+ 2

(
u j

v j

)2
〈
n̂dρ

〉
0+

1

2 j + 1

∑
j′ β

2
j′ j

K2

)1/2

. (18c)

In these definition, n̂sρ
is the number operator for the sρ

boson and 〈· · ·〉0+
1

represents the expectation value of a given
operator in the 0+

1 ground state of the considered even-even
nucleus. For a more detailed account, the reader is referred to
Refs. [16,18,43].

The boson images of the Fermi (t±) and Gamow-Teller
(t±σ ) transition operators, denoted by ÔF and ÔGT, respec-
tively, take the form

t± 	−→ ÔF = −
∑

j

√
2 j + 1

(
P( j)

ν × P( j)
π

)(0)
, (19)

t±σ 	−→ ÔGT =
∑

j′ j

η j′ j
(
P( j′ )

ν × P( j)
π

)(1)
, (20)

where the η j′ j coefficients are proportional to the reduced
matrix elements of the spin operator

η j′ j = − 1√
3

〈
�′ 1

2
; j′||σ ||�1

2
; j

〉

= −δ�′�
√

2(2 j′ + 1)(2 j + 1)W

(
� j′

1

2
1;

1

2
j

)
(21)

with W being a Racah coefficient. In the case of β+ decay
P( j′ )

ν = B̃( j′ )
ν and P( j)

π = Ã( j)
π while for β− decay P( j′ )

ν = B( j′ )†
ν

and P( j)
π = A( j)†

π . Then, the reduced Fermi 〈MF〉 and Gamow-
Teller 〈MGT〉 matrix elements read

〈MF〉 = 1√
2Ii + 1

|〈If ||ÔF||Ii〉|, (22)

〈MGT〉 = 1√
2Ii + 1

|〈If ||ÔGT||Ii〉|. (23)

The f t value for the β decay Ii → If , can be computed, in
seconds, using the expression

f t = 6163

〈MF〉2 + g2
A 〈MGT〉2 . (24)

The quantity gA is the ratio of the axial-vector to vector
coupling constants, gA = GA/GV . We have employed the free
nucleon value gA = 1.2701(25) [44] for all the studied nuclei
without quenching.

III. LOW-ENERGY STRUCTURE OF THE PARENT
AND DAUGHTER NUCLEI

The low-lying level structure and electromagnetic proper-
ties of the even-even Ba and Xe, as well as odd-odd Cs, nuclei
have already been discussed in detail in Ref. [36]. Also in
this reference, the IBFM description of the neighboring odd-N
Ba and Xe as well as odd-Z Cs isotopes has been amply
discussed and shown to be also in reasonable agreement
with experiment. The even-even 124–132Xe nuclei are taken as
the cores for the odd-odd 124–132Cs nuclei. The Gogny-HFB
PESs and mapped IBM description of these even-even Xe
nuclei have shown that quite many of them are γ -soft [34].
Therefore, the low-energy spectra of the odd-odd Cs nuclei are
described in terms of an unpaired neutron hole and a proton
coupled to the γ -soft even-even core Xe nuclei. The low-
energy positive-parity states of the odd-odd Cs nuclei, with
excitation energies typically up to Eexc ≈ 0.4 MeV, have been
shown [36] to be built on the (νsdg)−1 ⊗ (πsdg)1 neutron-
proton pair configuration.

The low-energy spectra for the even-even 124–132Ba and
124–132Xe isotopes are shown in Fig. 1. The IBM description
of the low-lying excited states of the even-even systems looks
very nice. An exception is perhaps the excitation energy of
the 0+

2 level in many of the Ba nuclei, which is overestimated
by the calculation. This is because the Gogny-HFB PESs
have a minimum at a rather large deformation leading to
a rather pronounced rotational energy spectrum in the IBM
calculation. Also in Fig. 1, the calculated and experimental
positive-parity excitation spectra for the odd-odd 124–132Cs
nuclei are depicted up to 0.4 MeV excitation energy. Note that
the energy spectra for the odd-odd Cs, shown in the figure, are
taken from Ref. [36] without any modification. Except for the
132Cs nucleus, the IBFFM reproduces the correct ground-state
spin. The calculation is not able to describe all the details of
the lowest-lying level structures in each nucleus. But this is
not surprising, considering the presence of both the unpaired
neutron and proton degrees of freedom.

There are also those higher-spin positive-parity states with
an excitation energy of Eexc � 0.4 MeV and with a spin
typically I � 6+. These high-spin states are mostly accounted
for by the (νh11/2)−1 ⊗ (πh11/2)1 configuration, and are con-
sidered to be members of a chiral band. Note, however, that
most of the β decays considered in this work are relevant
only for the low-spin states, i.e., I � 4+, of the odd-odd Cs.
Furthermore, the admixture of the (νh11/2)−1 ⊗ (πh11/2)1 pair
configuration into the lowest-lying states is so small, that its
effect on the β-decay rates from and to the ground states of
the odd-odd Cs can be considered as negligible.

Other spectroscopic properties of the low-lying states of
the even-even Xe and Ba and odd-odd Cs isotopes, such as
the electric quadrupole and magnetic dipole moments and
transition strengths, were described reasonably well [36].

IV. β DECAY

A. β decays of even-even Ba

We show in Fig. 2 the predicted log f t values for the
β+ decay [electron-capture (EC)] of the even-A nuclei,
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FIG. 1. Low-energy and low-spin excitation spectra for the even-even 124–132Xe and 124–132Ba, and the odd-odd 124–132Cs nuclei considered
in this work. The experimental data are taken from the compilation of the ENSDF database [45].

that is, 124–132Ba(0+
1 ) → 124–132Cs(1+

1 ), and 124–132Cs(1+
1 ) →

124–132Xe(0+
1 ) [panel (a)], and 124–132Ba(0+

1 ) →
124–132Cs(0+

1 ), and 124–130Cs(0+
1 ) → 124–130Xe(0+

1 ) [panel
(b)]. The experimental data are taken from the ENSDF
database [45] and are also depicted in the figure. The
calculated log f t values for the ground-state–to–ground-state
decays 0+

1 (Ba)→ 1+
1 (Cs) are in a very good agreement with

the experiment. The log f t values for the 1+
1 (Cs)→ 0+

1 (Xe)
decays are, however, considerably overestimated. The
0+

1 � 1+
1 decays involve only the GT transitions, and the

〈MGT〉2 values for these decays appear to be too small in our
calculation. We will discuss below the reason for this small
matrix elements. As for the 0+

1 → 0+
1 decays [see Fig. 2(b)],

where only the Fermi transition enters, the present calculation
gives a very good description of the experimental log f t
values for the decays of 124,126Ba into 124,126Cs nuclei. A
characteristic systematic trend of the predicted log f t value is
that for both the �I = ±1 [Fig. 2(a)] and �I = 0 [Fig. 2(b)]
decays it changes abruptly between N = 72 and N = 76 (for
the Ba → Cs decays) and between N = 73 and N = 77 (for
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FIG. 2. The predicted log f t values (open symbols connected
by solid lines) for the β+ decays/EC (electron capture) between
even-A nuclei, i.e., (a) Ba(0+

1 ) → Cs(1+
1 ), and Cs(1+

1 ) → Xe(0+
1 ),

and (b) Ba(0+
1 ) → Cs(0+

1 ), and Cs(0+
1 ) → Xe(0+

1 ), plotted against
the neutron number. The experimental log f t values, taken from the
ENSDF database [45], are represented by filled circles (Cs → Xe
decays) and squares (Ba → Cs decays).

the Cs → Xe decays). Such an abrupt change in the log f t
values could reflect the evolution of nuclear structure between
axially symmetric and γ -soft deformed states. Accordingly,
the structures of those wave functions for the boson-core Xe
nuclei, as well as the neighboring odd-A Xe and Cs nuclei,
are supposed to be very different between before and after the
shape transition.

In Table I, we make a more detailed comparison between
the predicted and experimental log f t values for the β+ decays
of the 0+

1 ground states of even-even 124,126,128Ba into those
higher-lying states in odd-odd 124,126,128Cs nuclei. Experimen-
tally, there are many degenerate levels in those nuclei, and
their spin and/or parities are also not firmly established. This
makes very difficult to establish a one-to-one correspondence
between the calculated and experimental log f t values. Those

TABLE I. The predicted and experimental log f t values in sec-
onds for the β+ decays/EC of the even-even 124,126,128Ba into odd-
odd 124,126,128Cs nuclei. The experimental data have been taken from
Ref. [45].

log f t

Decay Ii → If Theory Experiment

124Ba →124 Cs 0+
1 → 0+

1 6.13 6.01(10)a

0+
1 → 1+

1 4.84 5.2(3)
0+

1 → 1+
2 5.90 5.07(7)

0+
1 → 1+

3 5.29 5.72(9)
0+

1 → 1+
4 6.30 6.01(10)a

0+
1 → 1+

5 4.60 6.04(9)b

0+
1 → 1+

6 4.95 6.23(10)c

0+
1 → 1+

7 5.18 6.83(16)d

0+
1 → 1+

8 5.44 4.54(7)e

126Ba → 126Cs 0+
1 → 0+

1 6.35 6.44(17)
0+

1 → 1+
1 4.74 5.36(9)

0+
1 → 1+

2 4.82 6.36(12)
0+

1 → 1+
3 5.39 5.49(5)

0+
1 → 1+

4 5.62 6.44(17)
0+

1 → 1+
5 4.54 5.18(6)

0+
1 → 1+

6 6.03 5.12(7)
0+

1 → 1+
7 8.94 5.08(8)

0+
1 → 1+

8 10.81 4.54(7)
128Ba → 128Cs 0+

1 → 0+
1 6.87

0+
1 → 1+

1 5.20 5.471(9)
0+

1 → 1+
2 4.86 8.26(11)f

0+
1 → 1+

3 5.32 7.83(5)g

0+
1 → 1+

4 7.82 5.57(4)
0+

1 → 1+
5 4.78 7.83(9)h

0+
1 → 1+

6 6.78 7.33(7)i

0+
1 → 1+

7 8.60 6.68(6)

aI = (0, 1)+ level at 272 keV in 124Cs.
bI = (1, 2)+ level at 401 keV in 124Cs.
cI = (1+, 2+) level at 404 keV in 124Cs.
dI = (1, 2)+ level at 444 keV in 124Cs.
eI = (1, 2)+ level at 557 keV in 124Cs.
fI = 0−, 1 level at 215 keV in 128Cs.
gI = 0−, 1 level at 230 keV in 128Cs.
hI = 0−, 1 level at 317 keV in 128Cs.
iI = 0−, 1 level at 359 keV in 128Cs.

situations involving experimental degenerate levels are men-
tioned in the footnotes of Table I. The same rule applies to
Tables II, III, and IV, in the following Sec. IV B. Among
other things, we emphasize that, as seen from Table I, a
very good agreement between the predicted and experimental
log f t values is obtained for the β+ decays to the 1+

1 ground
states of the 124,126,128Cs nuclei. This situation is already
shown in Fig. 2(a). In addition, the observed log f t values
for the 0+

1 → 0+
1 decays of 124,126Ba, where the GT transition

is forbidden and only the Fermi transition enters, are well
reproduced by our calculation. As for the log f t values for
the decays into higher-energy, nonyrast 0+ and 1+ states,
especially those higher than the fourth lowest-energy ones
for each spin, the discrepancy between the calculation and
experiment increases. We can understand this trend by taking

044318-6



β DECAY OF EVEN-A NUCLEI WITHIN THE … PHYSICAL REVIEW C 101, 044318 (2020)

TABLE II. Same as Table I, but for the β+/EC decays of the
odd-odd 124Cs to even-even 124Xe nuclei.

log f t

Decay Ii → If Theory Experiment

124Cs → 124Xe 1+
1 → 0+

1 7.45 5.10(7)
1+

1 → 0+
2 6.66 5.54(7)

1+
1 → 0+

3 6.62 6.21(7)
1+

1 → 0+
4 7.56 5.72(7)

1+
1 → 0+

5 7.50 5.69(7)a

1+
1 → 0+

6 10.27 6.6(4)b

1+
1 → 1+

1 5.81 6.6(4)b

1+
1 → 1+

2 6.02 5.69(7)a

1+
1 → 2+

1 6.06 5.10(7)
1+

1 → 2+
2 8.95 5.89(7)

1+
1 → 2+

3 8.63 5.73(7)
1+

1 → 2+
4 7.02 6.15(7)

1+
1 → 2+

5 7.25 6.01(7)
1+

1 → 2+
6 6.64 6.43(7)c

1+
1 → 2+

7 6.76 5.40(7)
1+

1 → 2+
8 6.71 5.69(7)a

7+
1 → 6+

1 6.97 7.4
7+

1 → 6+
2 7.80 7.7

7+
1 → 6+

3 10.60 7.6
7+

1 → 6+
4 8.34 6.2

7+
1 → 6+

5 8.86 7.3d

7+
1 → 7+

1 7.76 7.6
7+

1 → 7+
2 8.09 7.3d

7+
1 → 7+

3 8.69 6.7e

7+
1 → 7+

4 9.71 6.7f

7+
1 → 8+

1 7.65 7.3d

7+
1 → 8+

2 9.51 6.7e

7+
1 → 8+

3 8.63 6.7f

aI = 0+, 1+, 2+ at 2536 keV in 124Xe.
bI = (0+, 1, 2) at 3897 keV in 124Xe.
cI = 1(+), 2(+) level at 2382 keV in 124Xe
dI = (6, 7, 8)+ level at 2979 keV in 124Xe.
eI = (6, 7, 8)+ level at 3739 keV in 124Xe.
fI = (6, 7, 8)+ level at 4093 keV in 124Xe.

into account that the IBFFM is built in a reduced valence
space, and the strength parameters are determined so as to fit
the low-lying energy levels of odd-odd nuclei. Therefore, the
wave functions for these higher non-yrast states in the present
IBFFM calculation are not supposed to be as reliable as the
ones of the lowest-energy states.

B. β decays of odd-odd Cs

Experimental data are more abundant for the β+ decay
of the odd-odd Cs isotopes. In Table II, the predicted log f t
values for the decays of the 1+

1 ground state of the 124Cs
nucleus into 124Xe are compared with the experimental data.
The log f t value for the decay to the I f = 0+

1 ground state
of 124Xe is predicted to be unexpectedly larger than the ex-
perimental one. This means that the calculated GT transition
rate is too small. The dominant pair configurations in the
IBFFM wave function for the 1+

1 ground state are [(νs1/2)−1 ⊗

TABLE III. Same as Table I, but for the β+/EC decays of the
odd-odd 126Cs to even-even 126Xe nuclei.

log f t

Decay Ii → If Theory Experiment

126Cs → 126Xe 1+
1 → 0+

1 6.37 5.066(19)
1+

1 → 0+
2 6.83 5.39(3)

1+
1 → 0+

3 7.35
1+

1 → 0+
4 7.08 6.93a

1+
1 → 0+

5 9.78 6.176(25)b

1+
1 → 0+

6 7.91 5.941(25)c

1+
1 → 0+

7 6.31 6.67(4)d

1+
1 → 0+

8 6.47
1+

1 → 0+
9 9.45 6.09(3)e

1+
1 → 1+

1 6.16 >7.1f

1+
1 → 1+

2 7.64 6.93a

1+
1 → 1+

3 8.28 6.176(25)b

1+
1 → 2+

1 8.41 6.791(24)
1+

1 → 2+
2 4.43 7.574(20)

1+
1 → 2+

3 5.13 8.83(10)
1+

1 → 2+
4 5.56 6.306(12)

1+
1 → 2+

5 5.42 6.988(18)
1+

1 → 2+
6 7.35 >7.1f

aI = 0+, 1, 2 level at 2229 keV in 126Xe.
bI = 0+, 1, 2 level at 2347 keV in 126Xe.
cI = 0+, 1, 2 level at 2503 keV in 126Xe.
dI = 0+, 1, 2 level at 2521 keV in 126Xe.
eI = 0+, 1, 2 level at 2796 keV in 126Xe.
fI = (1, 2+) level at 2215 keV in 126Xe.

(πs1/2)1](J=1+ ) (14.2 %), [(νs1/2)−1 ⊗ (πd3/2)1](J=1+ ) (10.8
%), [(νs1/2)−1 ⊗ (πd5/2)1](J=3+ ) (12.8 %), and [(νs1/2)−1 ⊗
(πg7/2)1](J=3+ ) (11.2 %). The rest of the wave function is
made up of numerous other components that are so small
in their magnitudes as to be neglected. The odd neutron
occupying the 3s1/2 orbital makes dominant contributions
to the above mentioned pair configurations. This seems to
be consistent with the fact that the 1/2+

1 ground state of
the neighboring odd-A nucleus 123Xe is mostly accounted
for by the 3s1/2 neutron hole coupled to the even-even core
124Xe [28].

Major contributions to the 〈MGT〉 value for the 1+
1 → 0+

1
decay of 124Cs turn out to be from those terms proportional
to [a†

jν
× a†

jπ
](1), [d̃ν × [a†

jν
× a†

jπ
]](1), and [d̃ν × d̃π ] × [a†

jν
×

a†
jπ

]](1). Their matrix elements are calculated as 0.02886,
−0.02576, and −0.02152, respectively. Two of these matrix
elements have almost the equal magnitude but with opposite
sign, and this leads to the too small 〈MGT〉 value. A similar
kind of cancellation, among different components in 〈MGT〉
seems to take place in the GT transitions to the non-yrast
0+ states of the daughter nucleus. In the previous IBFFM
calculation for the β decay of 124Ba in Ref. [22], the same
kind of discrepancy (too large log f t values) was also found.
The authors of Ref. [22] also attributed it to the cancellations
of small components in the GT matrix element. On the
other hand, for the decays with �I = 0, i.e., 1+

1 → 1+
1 , the

predicted log f t values are generally smaller and reproduce
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TABLE IV. Same as Table I, but for the β+/EC decays of the
odd-odd 128,130,132Cs to even-even 128,130,132Xe nuclei.

log f t

Decay Ii → If Theory Experiment

128Cs → 128Xe 1+
1 → 0+

1 6.94 4.843(10)
1+

1 → 0+
2 7.24 5.579(24)

1+
1 → 0+

3 8.78 7.48(4)
1+

1 → 0+
4 6.74 5.70(3)

1+
1 → 1+

1 5.85 6.37(3)a

1+
1 → 1+

2 8.43 6.32(3)b

1+
1 → 1+

3 7.58 6.49(3)c

1+
1 → 2+

1 6.92 5.089(24)
1+

1 → 2+
2 7.39 5.829(25)

1+
1 → 2+

3 6.64 6.10(3)
1+

1 → 2+
4 6.77 6.37(3)a

1+
1 → 2+

5 7.13 6.24(3)
1+

1 → 2+
6 6.87 6.32(3)b

1+
1 → 2+

7 7.05 6.49(3)c

130Cs → 130Xe 1+
1 → 0+

1 10.52 5.073(6)
1+

1 → 0+
2 6.33 7.0(1)

1+
1 → 0+

3 6.71 6.2(1)
1+

1 → 1+
1 6.80 6.9(2)d

1+
1 → 1+

2 8.37
1+

1 → 2+
1 7.31 6.3(1)

1+
1 → 2+

2 5.23 7.5(4)
1+

1 → 2+
3 4.83 6.2(1)

1+
1 → 2+

4 7.56 6.9(2)d

132Cs → 132Xe 1+
1 → 0+

1 5.58
1+

1 → 0+
2 6.99

1+
1 → 2+

1 6.38
1+

1 → 2+
2 4.39

2+
1 → 2+

1 6.36 6.679
2+

1 → 2+
2 4.46 8.7(1)

2+
1 → 2+

3 4.69 6.61(2)
2+

1 → 3+
1 6.37 7.17(2)

aI = 1+, 2+, 3+ level at 2127 keV in 128Xe.
bI = (1, 2+) level at 2362 keV in 128Xe.
cI = (1, 2+) level at 2431 keV in 128Xe.
dI = 1, 2 level at 2503 keV in 130Xe.

the experimental data better than for the �I = ±1 decays.
This is mainly because 〈MF〉 matrix elements also appear in
the denominator in the expression for the f t-value for the
1+

1 → 1+
1 decays [see Eq. (24)].

In the case of the 124Cs nucleus in particular, there are
also the experimental data for the decays from the higher-spin
state with Ii = 7+. In the present IBFFM calculation, those
states with spin higher than I ≈ 7+ are formed mainly of the
(νh11/2)−1 ⊗ (πh11/2)1 neutron-proton pair configuration. In
contrast, the low-spin and low-energy states in the vicinity
of the ground state and with I � 4+ are mainly based on the
neutron and proton positive-parity sdg orbitals. The experi-
mental log f t values for the decays of 7+ state are generally
log f t ≈ 7, being larger than for the decays of the ground
state 1+

1 , which are typically log f t ≈ 5–6. The description of
the log f t values for this type of the β decay in the present
calculation appears to be good, at least for the decays to

the few lowest levels in the daughter nucleus. We confirmed
that, as expected, the configurations that involve the neutron
and proton unique-parity h11/2 single-particle orbitals make
significant contributions to the 〈MGT〉 matrix elements for the
decays of the Ii = 7+ state.

The calculated log f t for the rest of the odd-odd Cs nu-
clei are shown in Tables III and IV and compared to the
experimental data. Similarly to the 124Cs → 124Xe decay, the
calculated log f t values for the decays of 126–132Cs, especially
for the �I = ±1 decays, are too large as compared with the
experimental values. This appears to happen mainly because
the cancellation between components of the 〈MGT〉 matrix ele-
ments occurs to the extent that too small GT rates are obtained.
On the other hand, the agreement with experimental data is
relatively good for the �I = 0 decays. Note, that a extremely
large deviation is found in the decay 130Cs(1+

1 ) → 130Xe(0+
1 )

(see Table IV and also Fig. 2). The predicted f t value for
this decay is larger than the experimental one implying a
difference in the half-life of 5 orders of magnitude. Regarding
the decay of the 132Cs nucleus, where experimentally the
2+

1 state is suggested to be the ground state, the present
calculation reproduces very nicely the log f t value for the
2+

1 → 2+
1 decay.

V. SUMMARY AND CONCLUDING REMARKS

To summarize, the β decays of even-A nuclei are investi-
gated within the EDF-based IBM approach. The even-even
boson-core Hamiltonian, and essential building blocks of
the particle-boson coupling Hamiltonians, i.e., single-particle
energies and occupation probabilities of odd particles, are de-
termined based on a fully microscopic mean field calculation
with the Gogny EDF. A few coupling constants for the boson-
fermion Hamiltonians, and for the residual neutron-proton
interaction, remain as the only free parameters of the model.
They are determined as to reasonably reproduce the low-
energy levels of each of the neighboring odd-A and odd-odd
nuclei. The IBM and IBFFM wave functions obtained after
diagonalization of the corresponding Hamiltonians for the
parent and daughter nuclei are used to calculate Gamow-Teller
and Fermi matrix elements, which are required to compute the
β-decay f t values. No additional parameter is introduced for
the computations of the f t values. The gA factor for the GT
transition is not quenched in the present calculation.

The present work, as well as the preceding ones of
Refs. [28,36], show that the employed theoretical method
provides an excellent descriptions of the low-lying levels
and electromagnetic transition rates in the relevant even-
even Ba and Xe and odd-odd Cs, we as well as the neigh-
boring odd-A Ba, Xe, and Cs nuclei. The observed β+
decays/electron captures of the ground state 0+

1 of the even-
even 124,126,128Ba into the 1+

1 ground states and 0+
1 states of

124,126,128Cs are described very nicely. On the other hand,
the log f t values for the 1+ → 0+ decays of the odd-odd
Cs into even-even Xe nuclei are, in general, predicted to
be too large with respect to the experimental values. It is
shown that the deviation occurs mainly because numerous
small components in the GT matrix element 〈MGT〉 cancel
each other, leading to the too small GT transition rates.
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This is attributed to the combination of various factors
in the adopted theoretical procedure, such as, the chosen
boson-fermion coupling constants, residual neutron-proton
interaction, and underlying microscopic inputs from the
Gogny EDF.

The EDF-based IBM framework, employed here and in
Ref. [28], represents a computationally feasible theoretical
method for studying simultaneously the low-energy exci-
tations and fundamental processes in atomic nuclei. Espe-
cially, we consider the results for a single β decay be-
tween even-mass nuclei quite encouraging, as they represent
a crucial step toward the computation of the ββ-decay nu-
clear matrix elements between even-even nuclei. Work along

this direction is in progress and will be reported in near
future.
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