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Two-quasiparticle excitations of medium mass nuclei with well-defined axial deformation are studied within
the covariant density functional framework. The evolution of high-K isomers is analyzed in a self-consistent
axially symmetric relativistic Hartree-Bogoliubov calculation using the blocking approximation. The occurrence
of the 6+ and 8− low-energy high-K isomers in the region from Er to Pb (68 � Z � 82, 98 � N � 112) is
evaluated and compared to available data. The importance of the quasiparticle spectrum in the energy evolution
of the high-K states is discussed in detail.
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I. INTRODUCTION

Nuclear isomers are metastable states of nuclei with half-
lifes 100–1000 times longer than normally excited states. As
nuclear excited states, they can decay through γ emission, β

decay, electron conversion, α decay, or fission. In general, for
cases where the nuclear matrix elements of the transition op-
erator are connected with large changes in particular quantum
numbers, the corresponding direct decay to the ground state
(g.s.) is significantly hindered.

K isomers are a special case of such excitations. They
occur in well-deformed heavy nuclei where the angular mo-
mentum quantum number K along the symmetry axis plays an
important role. More specifically, they are formed as configu-
rations of multiparticle or multiquasiparticle excitations with
high-K values. The direct decay to the K = 0 ground state
involves a large change in K and violates the K-selection rule
�K � λ. The actual deexcitation follows an alternative path
through the rotational bands by an E1 or M1 transition, and,
depending on the energy levels of the rotational states, this
leads to a metastable excited state.

The study of isomers, in general, has been an active field
of research for many decades. It is a wide subject related
to nuclear structure phenomena as well as nuclear reactions.
Recent reviews include: the list of all isomers with half-lifes
greater than 10 ns by Jain et al [1], the connection of shape
coexistence and shape isomers by Heyde and Wood [2], the
compilation of high-K isomers with mass number A > 100
by Kondev et al [3]; the discussion by Walker and Xu [4]
on K isomers in rotational nuclei, the comprehensive review
by Dracoulis et al on high-spin isomers for A > 150 [5], the
summary of recent experimental efforts studying K isomers
in superheavy nuclei by Ackermann [6] and Ackermann and
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Theisen [7], and the most recent historical outline of nuclear
isomer research by Walker and Podolyák [8].

The first theoretical efforts to study isomeric states as
multiquasiparticle states in nuclei were based on the Nils-
son model [9] with improvements including pairing through
the BCS method [10,11], blocking [12,13], and residual in-
teractions between quasiparticles [14,15]. At that time, this
model with fixed deformations proved to be very successful in
the description of multiquasiparticle states in well-deformed
nuclei [12,16–18]. However, later on, it has been recog-
nized, that the polarization induced by the multiquasiparticle
configurations changes the deformation of the mean poten-
tial [19]: The microscopic-macroscopic method based on the
Strutinsky approach [20] has been extended to configuration-
constrained energy surface calculations of multiquasiparticle
nuclear states. In addition to the Nilsson potential, a deformed
Woods-Saxon field was used in many of those applications
[21–34]. There are also self-consistent calculations based on
nonrelativistic Skyrme [35–42] and Gogny [43–45] function-
als. Finally, the covariant density functional approach has also
been applied for the study of two-quasiparticle (2qp) excita-
tions in transactinide nuclei [46].

For investigations of rotational bands built on isomeric
states, several methods have been used: For strongly de-
formed axially symmetric configurations, angular momentum
projected Hartree-Fock calculations are possible [47–49]. K
mixing and alignment processes can be taken into account
in the cranked shell model. Its original version [50] uses a
constant pairing gap, but there are also self-consistent rela-
tivistic cranked Hartree-Bogoliubov calculations in Ref. [51].
However, because of the blocking phenomena for the various
quasiparticle configurations, pairing correlations have been
treated in a more sophisticated way, e.g., by number projection
or by an exact diagonalization of the pairing interaction within
the pairing window [52–56]. The projected shell model of
Hara and Sun [57] allows K mixing as well as exact angular
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momentum projection. It has been used for the investigation
of K isomers in Refs. [58–61]. More details on the historical
evolution of these approaches and their extended applications
to K isomers can be found in Ref. [4].

The present paper focuses on a fully self-consistent sys-
tematic study of K isomers, which arise as multiquasiparticle
excitations of the nuclear ground state. High-K isomers in
well-deformed axially symmetric even-even nuclei with A >

100 are investigated within the self-consistent relativistic-
Hartree-Bogoliubov (RHB) framework using the blocking
approximation [62]. In contrast to many of the investigations
cited above, where specific parameters of the models have
been adjusted to some data, all the results of this investiga-
tion are derived from two well-known and very successful
universal covariant density functionals, adjusted in the liter-
ature more than a decade ago to ground-state properties of
even-even nuclei. We focus on nuclei with well-established K
isomers in the region of Hf and Er isotopes and on K isomers
in the (A ≈ 180) region [63,64] where there has been recently
great experimental effort to study their existence [3].

The paper is organized in the following order. The theoret-
ical framework and the formation of isomers is described in
Sec. II. In order to outline the importance of the single-particle
evolution in the formation of high-K isomers, in Sec. III,
the Nilsson diagrams for 176Hf are discussed. In Sec. IV, we
study the influence of pairing correlations. The results of the
theoretical calculations are presented in Sec. V. Specifically,
the evaluation of the 6+ and 8− high-K isomers in Hf isotopes
and N = 104 and N = 106 isotones are compared to data.
Section VI summarizes our main conclusions.

II. THEORETICAL FRAMEWORK

One of the most successful theoretical frameworks for
studies of nuclear structure phenomena is based on concepts
of nonrenormalizable effective relativistic field theories and
density functional theory (DFT).

This approach provides a microscopically consistent but
still simple and economical treatment of the nuclear many-
body problem. By adjusting just a few model parameters to
global properties of spherical and stable nuclei, it is possible
to describe in detail a variety of nuclear structure phenomena
over the entire periodic table. At present, all successful nu-
clear energy density functionals are based on phenomenology
and symmetries play an essential role.

One of the underlying symmetries of QCD is Lorentz in-
variance and, therefore, covariant density functionals (CDF)
[65–67] are of particular interest in nuclear physics. They
exploit basic properties of QCD at low energies, in partic-
ular, symmetries and the separation of scales [68]. Within
the CDF realization, the spin degree of freedom is taken into
account consistently. The complicated interplay between the
large Lorentz scalar and the vector self-energies which, on
the QCD level, can be understood by the in medium changes
in the scalar and vector quark condensates [69] is included
in a self-consistent way. The nuclear currents induced by the
spatial parts of the vector self-energies are taken into account.
These currents play an essential role in the description of
rotating nuclei [70] and in the description of the magnetic

moments of single-particle configurations [71]. At present,
all attempts to derive these functionals directly from the bare
nucleon-nucleon forces do not reach the required accuracy
[72]. In recent years, universal covariant density functionals
have been derived by fine-tuning a few phenomenological
parameters to properties of nuclear matter and finite nuclei.
They provide an excellent description of ground-state and
excited-state properties of nuclei all over the periodic table
with a high predictive power [73–76].

Most applications of the RMF theory were restricted to
meson-nucleon models of nuclear dynamics in which the
couplings between nucleon densities are mediated by finite-
range meson propagators. Modern versions of such models
use density-dependent coupling constants as, for instance, the
parameter set DD-ME2 [73]. This density functional has been
used with great success for investigations of ground states
and excited states in nuclei all over the periodic table. The
point coupling models with zero-range interactions present an
interesting alternative to the meson-nucleon models. Recently,
the set DD-PC1 [74] has been adjusted to nuclear matter
data and to masses of a series of deformed nuclei. In prin-
ciple, these two types of models should be equivalent since
the expansion of the meson propagator yields a zero-range
coupling plus derivative corrections. Therefore, the point cou-
pling model should also provide a very good description of
low-energy nuclear structure phenomena. Also, the numerical
implementation of the point coupling models is much simpler
than that of the meson-nucleon models, and the calculations
involved are far less time consuming. Within the proposed
investigations, we use both parameter sets and compare their
results.

Nuclei with open shells show a superfluid behavior and,
therefore, pairing correlations are also important. In den-
sity functional theory, they are taken into account by means
of a generalized Slater determinant |�〉 of the Hartree-
Bogoliubov type. In that framework, the nuclear ground-state
|�〉 is represented as the vacuum with respect to indepen-
dent quasiparticles, which is the basic concept introduced in
the mean-field approximation to deal with both long-range
particle-hole correlations and short-range particle-particle
correlations at the same time. Quasiparticles are defined by a
unitary linear transformation from the particle c+

l , cl creation
and annihilation operators,

α+
k =

∑
l

Ulkc+
l + Vlkcl , (1)

or in matrix form(
α

α+

)
=

(
U + V +
V T U T

)(
c

c+

)
= W+

(
c

c+

)
, (2)

where α+
k , αk are the corresponding creation and annihilation

operators for quasiparticles and W is the unitary matrix of the
transformation. The Hartree-Bogoliubov coefficients Ulk, Vlk

completely determine the total wave function of the nuclear
many-body system. They also determine the Hermitian single-
particle density matrix,

ρ̂ = V ∗V T , (3)
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and the antisymmetric pairing tensor or abnormal density,

κ̂ = V ∗U T . (4)

The energy density functional contains ph terms derived from
a Lorentz-covariant Lagrangian, corresponding to a specific
functionals, such as the DD-ME2 and DD-PC1, and pp terms
produced by effective nonrelativistic forces. Therefore, the
energy functional depends not only on the density-matrix ρ̂

and the meson fields φm, but also on the pairing tensor,

E [ρ̂, κ̂, φm] = ERMF[ρ̂, φm] + Epair[κ̂], (5)

where ERMF[ρ̂, φ] is the RMF functional. The pairing energy
Epair[κ̂] is given by

Epair[κ̂] = 1
4 Tr[κ̂∗V ppκ̂]. (6)

V pp is a general two-body interaction that, in the present pa-
per, corresponds to the pairing part of the well-known Gogny
interaction [77]. In order to simplify the numerical calcu-
lations, we use, here, the separable Tian-Ma-Ring (TMR)
pairing force of Refs. [78,79]. It is adjusted to the pairing
properties of the Gogny force in nuclear matter and in all
practical applications equivalent to it.

The minimization of the energy functional through a varia-
tion with respect to the density matrix and pairing tensor leads
to the corresponding RHB equations [80],(

ĥD − λ �̂

−�̂∗ −ĥD + λ

)(
Uk (r)
Vk (r)

)
= Ek

(
Uk (r)
Vk (r)

)
. (7)

The self-consistent mean field is the Dirac Hamiltonian ĥD,
and it includes all the long-range particle-hole (ph) correla-
tions and is defined by

ĥD = δE

δρ̂
. (8)

For meson exchange models, this takes the form

hD(r, r′) = α · p + V (r) + β[M + S(r)], (9)

where the scalar and vector potentials,

S(r) = gσ σ (r), (10)

V (r) = gωω0 + gρτ3ρ
0(r) + e

1 − τ3

2
A0(r) (11)

depend on the scalar meson σ and the timelike components
ω0, ρ0, and A0 of the isoscalar vector meson ω, the isovector
vector meson ρ, and the electromagnetic-field A. The space-
like components are neglected because of the time-reversal
symmetry.

The pairing field �̂, describes the particle-particle (pp)
correlations,

�̂ = δE

δκ̂
. (12)

The subsidiary condition on the particle number deter-
mines the chemical potential λ so that the particle number
operator has an expectation value in the ground state equal
with the number of nucleons. The quasiparticle wave func-
tions are completely determined by the coefficients Uk and Vk

with the respective quasiparticle energies Ek . The RHB matrix

has dimension M = 2N , twice that of the corresponding Dirac
equation. Thus, for every eigenvector (Uk,Vk ) with positive
quasiparticle energy Ek > 0, corresponds to an eigenvector
(V ∗

k ,U ∗
k ) with quasiparticle energy −Ek . Since the baryon

quasiparticle operators satisfy fermion commutation relations,
the levels with Ek and −Ek cannot be occupied simultane-
ously. For the solution that corresponds to the ground state of
a nucleus with even particle number, one usually chooses the
eigenvectors with positive eigenvalues Ek . A detailed discus-
sion on the numerical application of the described theoretical
framework can be found in Ref. [81].

A. Isomer formation

K isomers are a special case of single-particle low-lying
nuclear excitations. They appear in many well-deformed
heavy nuclei, where K , the projection of the total angular
momentum J onto the symmetry axis, is approximately a good
quantum number. Their formations originate by the fact that,
in certain regions of the periodic table, orbitals with high
values of single-particle angular momentum j come close to
the Fermi surface. Thus, with a minimal amount of energy
which is roughly equal as the energy required to break the re-
quired number of nucleon pairs, it is possible to create excited
states of two or more quasiparticles, involving configurations
of such orbitals. For a combination of n quasiparticles, the
resulting nucleus is one of the 2n−1 multiplet excited states
with total K and parity, determined by the combination of the
individual quasiparticle orbitals as follows:

K = | ± K1 ± K2 ± · · · ± Kn|, π =
n∏

πi. (13)

Typically, among those states, the one with the highest value
of K, K = ∑

i |Ki| has the lowest energy and is the best can-
didate for an actual K isomer.

In order to study K-isomeric excitations, we use the block-
ing effect within the Hartree-Bogoliubov framework to create
multiquasiparticle states starting from the ground-state |�0〉
of a system under investigation. This ground state is defined
as the quasiparticle vacuum, i.e.,

αk|�0〉 = 0 for Ek > 0 or |�0〉 =
∏

Ek>0

αk|−〉, (14)

where |−〉 is the bare vacuum of the configuration space de-
fined by the original single particles. If |�0〉 describes an even
system as is usually the case, one can study the neighboring
odd system by constructing a one-quasiparticle state |�1〉,

|�1〉 = α
†
1 |�0〉 = α

†
1

∏
k

αk|−〉, (15)

by blocking the quasiparticle state with the lowest energy,
which corresponds to the operator α

†
1. This is performed, for

example, in Ref. [82]. The same procedure can be extended
for the low-lying excitations of the even system by construct-
ing, for example, two-quasiparticle states,

|�2〉 = α
†
1α

†
2 |�0〉. (16)

The new state represents the vacuum of the set of quasiparticle
operators (α′

1, α
′
2, . . . , α

′
N ) where N is the dimension of the
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quasiparticle space with

α′
1 = α

†
1, α′

2 = α
†
2, α′

3 = α3, . . . , α
′
N = αN . (17)

In this way, a new quasiparticle basis is defined by the set
of operators (α′

1, . . . , α
′
N , α

′†
1 , . . . , α

′†
N ) where we have ex-

changed operators α
†
1 ↔ α1 and α

†
2 ↔ α2 which is equivalent

to the exchange of the columns (Ul1,Vl1) ↔ (V ∗
l1,U ∗

l1) and
(Ul2,Vl2) ↔ (V ∗

l2,U ∗
l2) in the transformation matrix W in

Eq. (2). In other words, in order to study the lowest-lying ex-
citations applying the blocking effect, one needs to exchange
the annihilation operators α1, α2 with the creation operators
α

†
1, α

†
2 corresponding to the quasiparticle states with the low-

est energies, or in the single-particle basis to the states that are
closer to the Fermi surface.

In practice, this means that, by blocking the orbit kb, we
have to replace, in Eqs. (3) and (4), the densities ρ and κ by

ρkb = ρ + (
UkbU

∗T
kb

− V ∗
kb

V T
kb

)
, (18)

κkb = κ + (
UkbV

∗T
kb

− V ∗
kb

U T
kb

)
, (19)

where Ukb and Vkb correspond to the Bogoliubov coefficients
U and V of the blocked quasiparticle level. By this defini-
tion, their nucleon-pair (kb,−kb) is broken, and it does not
contribute to the pairing tensor. The blocked wave-function
|�kb〉 = α

†
kb
|�0〉 as well as |�−kb〉 = α

†
−kb

|�0〉 do not obey
time-reversal symmetry, and this leads to currents around the
symmetry axis. The current in the blocked states |�kb〉 and
|�−kb〉 have opposite directions.

Blocking two-quasiparticle states kb and k′
b in different

pairs leads in analogy to Eqs. (18) and (19) to the densities
ρkb,k′

b
and κkb,k′

b
which break time-reversal symmetry.

In a first step, we conserve time-reversal symmetry for
the blocked states. This is performed within the equal filling
approximation (EFA) in the Hartree-Fock-Bogoliubov (HFB)
framework [83] by averaging over the densities ρkb and ρ−kb

and, respectively, over κkb and κ−kb . In Ref. [39], the EFA has
been applied for Skyrme HFB where one-quasiparticle states
in the rare-earth region have been studied. It has been shown
that the EFA is a reasonable approximation, and it is actually
equivalent with the full blocking procedure when the time-odd
fields are not taken into account. In the RHB framework, EFA
has been also applied in Ref. [82] for the study of odd-A sys-
tems by blocking the one-quasiparticle states with the lowest
energy in the ground state of the neighboring even system.

Within the EFA, currents are ignored, and the effect of
blocking is averaged over the two configurations of the +K
and −K subspaces. In this way, at each iteration step of the
numerical application, only fields that retain time-reversal
symmetry are involved.

The full blocking procedure breaks the time-reversal sym-
metry and leads to the currents around the symmetry axis in
the nuclear medium. Consequently, in a second step, we avoid
the EFA for the calculation of isomeric energies and treat
the currents in the RHB framework. This can be performed
relatively easily by using a cranked RHB code where the
cranking axis points in the direction of the symmetry axis (z
axis). In this way, axial symmetry is preserved.

The cranking approximation rotating around an axis (x
axis) perpendicular to the symmetry axis has been applied
either in studies of rotating nuclei and of superdeformed bands
[84–88] where the time-reversal symmetry is also broken. In
the case of a rotation around the symmetry axis, the cranked
RHB equations include the Coriolis operator �zĴz, where �z

is the rotation frequency and Ĵz is the projection of the total
angular momentum on the rotation axis and are written as(

ĥD − λ − �zĴz �̂

−�̂∗ −ĥ∗
D + λ + �zĴ∗

z

)(
Uk (r)
Vk (r)

)

= Ek

(
Uk (r)
Vk (r)

)
. (20)

Now, the Dirac Hamiltonian,

hD = α[p − V (r)] + V0(r) + β[M + S(r)] (21)

contains, in addition to the scalar S(r) and timelike V (r)
potentials, the spacelike components of the meson fields,

V (r) = gωω(r) + gρτ3ρ(r) + e
1 − τ3

2
A(r). (22)

This last term along with the Coriolis operator are respon-
sible for the breaking of the time-reversal symmetry. In the
present paper, we apply this approximation without rotation
(�z = 0) for the formation of two-quasiparticle configurations
oriented along the z axis where the unpaired nucleons con-
tribute to the formation of currents around the z-axis formation
and feed the spacelike components of the meson fields. In the
applications discussed in the following, we use this method
with breaking of time-reversal symmetry only for the point
coupling functional DD-PC1.

III. SINGLE-PARTICLE ENERGIES
AND NILSSON DIAGRAMS

One of the basic criteria for K isomers to appear is axial
deformation. For nuclei with large axially symmetric de-
formations, the K-quantum number, i.e., the component of
the total angular momentum along the symmetry axis, in
principle, does not represent an observable, but it turns out
to be a relatively well-conserved quantity (for details, see
Refs. [62,89,90]. The ground state of such an even-even nu-
cleus is formed by a configuration with K = 0 where the
doubly degenerate single-particle orbits with opposite angular
momentum along the symmetry axis are equally occupied.
The ground state has angular momentum I = 0, and the lowest
excitations are the members of a rotational band built on this
state, connected by very large E2 transitions to the ground
state. Other excitations are of vibrational character, usually
also connected with relatively large transitions. K isomers
are two- or multiquasiparticle excitations characterized by the
total K quantum number K = K1 + K2 + · · · . They form the
band heads of rotational bands build on such states, and the
angular momentum of such a state is I = K . The transition
probability of this state to the ground state is, therefore, con-
nected with �I = K and for large values of K such a transition
is strongly hindered, causing the long lifetime of such an
isomer.
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The intruder states, i.e., high- j single-particle orbitals be-
longing originally to the next higher oscillator shell above the
valence shell but shifted down into the valence shell by the
strong spin-orbit field in nuclei are relatively pure configura-
tions because the different parity does not allow mixing with
the orbits in the valence shell. Some of them have high-K
values. The occupation of such quasiparticle levels leads to
high-K isomers. Therefore, it is evident that the existence,
the position, and the lifetime of such isomers is strongly
influenced by the single-particle structure in the underlying
deformed mean field and by the position of the single-particle
states in the corresponding spherical mean field. Phenomeno-
logical descriptions, such as the microscopic-macroscopic
method based on the Nilsson or a deformed Woods-Saxon
potential, can provide a better description of such isomers as
compared to the experiment because here the single-particle
energies are adjusted to experimental data.

It is well known, that density functional theories, in gen-
eral, and the nuclear energy density functionals have problems
with the description of single-particle energies. In principle,
they are no observables in the strict sense and in the original
concept of Hohenberg and Kohn [91] one could not even
reproduce shell effects. The problem was solved in the frame-
work of Kohn and Sham [92] by introducing an auxiliary
single-particle field. In nuclear physics, the spin-orbit splitting
has a crucial influence for the shell structure and in all nonrel-
ativistic density functionals [93–95], the spin-orbit force has
been adjusted to experimental single-particle energies.

Within the CDF framework, the natural emergence of the
spin-orbit coupling, without the need of extra parameters or
information from single-particle experimental data, is one of
the most important advantages. In earlier studies, this has been
shown to provide a good description of the size of spin-orbit
splitting in doubly magic nuclei with around 20% deviations
in the absolute values from experiment [66,96]. In a more
recent study, we were able to show that CDFs give also a good
description of the SO splitting in N = 20 isotones and of the
rapid reduction of the p splitting in 34Si, which is connected
with the central density depletion [97]. However, a direct com-
parison with the experimental single-particle states shows that
there is wrong ordering of some of the states as they are cal-
culated within constrained DFT (CDFT), the respective shell
gaps are enhanced and in all cases the calculated spectrum
is less dense around the Fermi surface. These facts are well
known, and, specifically, the last two are associated with the
low effective mass of the nucleons in relativistic mean-field
approach. Of course, the inclusion of correlations that go
beyond the simple mean field have been shown to improve
the quality of the description of the spectra. For example,
particle vibration coupling (PVC) in covariant theory [98,99]
gives a more accurate description of the single-particle states
especially in the 132Sn and 208Pb nuclei and improves the
quantitative analysis of the reduction of the neutron p splitting
in 34Si [97].

In deformed nuclei, PVC has because of the numeri-
cal complexity so far only been taken into account in very
schematic models. In investigations of the spectroscopic prop-
erties of deformed nuclei based on nuclear density functional
theory, PVC is usually not taken into account. It is assumed

that it can be neglected because part of the correlations are
already taken into account by the deformed mean field. Such
investigations are to some extent successful [100,101] be-
cause they are usually based on the parameter set Skyrme III
[102] with a relatively large effective mass m∗/m = 0.76 in
contrast to the modern successful parameter sets D1S [103]
with m∗/m = 0.67 or SLy4 [104] with m∗/m = 0.69. For the
relativistic models DD-ME2 and DD-PC1 used in this investi-
gation, the effective Lorentz masses are also relatively small:
m∗/m = 0.66. Having this in mind, we have to expect that the
resulting single-particle energies in the deformed cases show
deviations from the values of Nilsson, which are adjusted to
experimental values.

In order to study these phenomena in a more quantitative
way, we examine the effect of deformation in the intrinsic
scheme of the nucleus [90] by comparing with the well-known
Nilsson diagrams [9], which depict the change in single-
particle energies with increasing deformation.

The deformation parameter β2 is a measure of the axial
deformation of the nuclear shape and, using the Bohr model
[89], it is defined by the quadrupole moment,

〈Q̂20〉 =
√

9

5π
AR2

0β2. (23)

In the case of self-consistent mean-field calculations, we
have the possibility to change the deformation β2 of the
nuclear system we are interested in by solving the RHB
equations in an external quadrupole field and constraining
the quadrupole moment 〈Q̂20〉 according to Eq. (23). More
specifically, we use the method of a quadratic constraint [62].
In this way, we can determine, for each deformation parameter
β2, the canonical energies εk (β2) which are defined as the
diagonal elements of the single-particle Hamiltonian ĥ in the
canonical basis (for details, see Sec. 7.3.2 of Ref. [62]). With
this method, we are able to draw diagrams similar to Nilsson
diagrams for the nuclear areas where we want to examine the
formation of K isomers.

As a typical example for the medium to heavy mass region,
we show in Fig. 1 such diagrams for the neutron and proton
levels in the nucleus 176Hf with Z = 72 and N = 104. The
deformation parameter β2 changes from 0 (spherical shape)
to 0.5 (prolate shape). In Fig. 2, the corresponding diagrams
produced by the original Nilsson model [105] are shown for
176Hf. The model parameters used for the specific deformed
region are, for neutrons, κ = 0.0637 and μ = 0.40 and, for
protons, κ = 0.0624 and μ = 0.61. States with positive pari-
ties are given in solid lines, and states with negative parities
are given in dashed ones. In the diagrams produced with the
RHB model, the change in the Fermi surface is also indicated
using a black dashed line, whereas the vertical dotted line
corresponds to the deformation of the ground state of the
nucleus 176Hf.

At zero deformation, the orbits are characterized by the
spherical quantum numbers n� j provided next to the points
that correspond to the respective degenerate orbits. Of special
interest are the single-particle states that start from the intruder
states (1i13/2 for the neutrons and 1h11/2 for the protons).
These intruder orbits belong to the next higher major oscillator
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FIG. 1. Nilsson diagram for neutrons and protons close to the Fermi surface in 176Hf obtained with the relativistic functional DD-ME2.
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FIG. 3. Single-particle energies of neutron and proton states for the spherical nucleus 208Pb and the nucleus 176Hf with enforced spherical
shape. In both diagrams, the first column corresponds to the experimental energies of 208Pb, the second and third states calculated with the
RHB model.

shell above the valence shell, they are shifted down by the
strong spin-orbit coupling, and their parities are opposite to
that of the valence shell. Using the quadratic constraint on the
quadrupole moment, we can force 176Hf to obtain a spherical
shape. This is not a mean-field equilibrium solution, but it is
used as a starting point where we can see the initial positions
of the single-particle states. We can compare these states
with the experimentally observed single-particle states of the
doubly magic nucleus 208Pb given by the excitation spectrum
of neighboring odd nuclei. A schematic of this comparison is
shown in Fig. 3. For both neutron and proton diagrams, the
first column shows the experimental states of 208Pb, and the
third column shows the states of 176Hf at zero deformation
where we have shifted the spectrum so that the middle of
the shell gap is at the same energy with the middle of the
experimental gap. Additionally, we have included calculations
of the single-particle states of 208Pb with the DD-ME2 func-
tional in the second column. In Fig. 3, we observe the different
ordering of the neutron states between the data and the theo-
retical calculations in addition to a more dense experimental
spectrum.

As the deformation increases, each spherical orbit is di-
vided in j + 1/2 separate states. For large deformations,
the single-particle states are characterized by the asymptotic
Nilsson quantum numbers or Nilsson labels Kπ [Nnz�]. The
identification of the states near the Fermi surface for the
ground state of 176Hf by their Nilsson labels in Fig. 1 shows
that states with high j’s come closer energetically. The same
can be seen in the diagrams of the actual Nilsson model

where the Nilsson labels of the same states around the same
deformations 0.2 and 0.3 are given. As expected, there are
some qualitative differences between the two models. First,
as in Fig. 3, there is different ordering of the neutron spherical
orbits between the Nilsson and the RHB model. Second, the
Nilsson model leads to a more dense spectrum with more
states present in the 9-MeV interval of the diagrams, which
is connected with the larger shell gaps within the RHB model.
Furthermore, the shift of the states with respect to deformation
is more steep in the RHB diagrams, also contributing to a less
dense spectrum at a given deformation. Nevertheless, in both
cases, the same Kπ [Nnz�] states with high j are present in
an energy window of up to 4 MeV at the same neutron and
proton numbers and around β2 = 0.3 deformation.

As a result of these investigations, we see clearly, that, as
expected by the arguments given above, there are essential
differences between the self-consistently determined single-
particle energies in Fig. 1 and the Nilsson energies adjusted
to experimental data in Fig. 2. We, therefore, cannot expect
that the results for the K isomers presented in the following
sections will show a similar agreement with experimental data
as those obtained on the basis of Nilsson energies.

However, we have to emphasize that using universal den-
sity functionals has still some advantages as compared to the
microscopic-macroscopic method: First of all, the fact that the
CDFT-method is universal, one can expect a higher predictive
power in other areas of the nuclear chart, in particular, far from
the valley of stability or for extremely heavy nuclei where one
has no experimental knowledge of the single-particle levels
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TABLE I. Common two-quasiparticle configurations used as
building blocks for K-isomer formation in prolate deformed nuclei
in the region of medium to heavy nuclei as in Ref. [5].

Neutrons Protons

Z ≈ 70–74 N ≈ 100–108
6−:5/2−[512], 7/2+[633]
6+:5/2−[512], 7/2−[514]
6+:5/2+[642], 7/2+[633] 6+:5/2+[402], 7/2+[404]
8−:9/2+[624], 7/2−[514] 8−:9/2−[514], 7/2+[404]

in this region, in particular, in cases where intruder states
from higher unknown shells could be important. Second, there
is hope to improve the single-particle energies in covariant
density functionals: (i) by including particle-vibrational cou-
pling in deformed nuclei, (ii) by taking into account tensor
forces [106] which are known to have a strong influence on
the position of single-particle energies [107,108], and (iii)
by considering in future ab initio density functionals derived
from the scattering data. There is work in this direction [72].
However, applications in deformed nuclei are connected with
considerable numerical difficulties and have to be left for the
future.

In Table I, the most common two-quasiparticle configu-
rations that appear in the specific region are presented as in
Ref. [5], together with the constituent combination of states
that lead to their creation.

IV. THE EFFECT OF PAIRING

Before we go on and calculate the systematic appearance
of specific isomers in the Hf isotopes and in N = 104, 106
isotones, we want to examine the effect of pairing correlations
in the calculation of a test case. The nucleus 176Hf has been
chosen because with N = 104 is in the middle of the N =
82–126 neutron shell.

It has been shown in Ref. [109] that relativity has prac-
tically no influence on pairing phenomena in nuclei because
they are determined by the orbits in close vicinity to the Fermi
surface. Orbits in the Dirac sea are more then 1200 MeV away
and have because of the strongly dropping uv coefficients,
basically no influence in the gap equation. The scale of pairing
effects (determined by pp correlations) of several MeV is well
separated from the scale of the binding energies (determined
by ph correlations) of several hundreds of MeV. Therefore,
there is no reason to use, in Eq. (5), the same effective force
in the functional ERMF for the ph and in the functional Epair

for the pp channel. In fact, it has been shown in Ref. [80] that
pairing correlations derived from the meson-exchange forces
(strongly attractive in the scalar and nearly as strongly re-
pulsive in the vector channel) lead to completely nonphysical
results. Therefore, we follow Ref. [77] and use a hybrid model
with a nonrelativistic effective pairing force motivated by the
Brink-Booker part of the well-known Gogny force [110],

V pp(1, 2) =
∑
i=1,2

e−(r1−r2 )/μi
2

×(Wi + BiP
σ − HiP

τ − MiP
σ Pτ ), (24)
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FIG. 4. Change in the 6+ and 8− isomers energy with respect to
pairing strength using the DDME2 force. The pairing force (26) is
multiplied with the factor Vfac.

with the set D1S [110] for the parameters μi, Wi, Bi, Hi, and
Mi (i = 1, 2). The advantage of this force is that, due to its
finite range, it does not require the introduction of an artificial
pairing cutoff to avoid the divergences at high momenta.

This method has been very successful, but it requires
substantial computational efforts, in particular, in deformed
nuclei. Therefore, an alternative pairing force has been devel-
oped by Tian et al. in Ref. [78], the TMR force separable
in momentum space. It contains two parameters which are
adjusted to reproduce the pairing properties of the Gogny
force in the 1S0 channel of neutron matter. In this channel,
the gap equation reads

�(k) = −
∫ ∞

0

k′2dk′

2π2
〈k|V 1S0 |k′〉 �(k′)

2E (k′)
, (25)

and the pairing force TMR is separable in momentum space,

〈k|V 1S0 |k′〉 = −Gp(k)p(k′). (26)

The two parameters determining this force are the strength
G and the range α that goes in the Gaussian ansatz p(k) =
e−α2k2

. Their values have been adjusted to G = 728 MeV fm3

and α = 0.644 fm in order to reproduce the density depen-
dence of the gap at the Fermi surface, calculated with the D1S
parametrization of the Gogny force [103].

In the following, we show the influence of this pair-
ing force with varying strength on a test example. Since in
what follows, we will be concentrating on the 6+ and 8−
systematic appearance in an isotopic and an isotonic chain
we study, here, these cases. In the 176Hf nucleus, the first
isomer is constructed by the two-quasiparticle configuration
ν5/2−[512] ⊗ ν7/2−[514] and the second isomer by the con-
figuration π9/2−[514] ⊗ π7/2+[404].

In Fig. 4, we show the results of this calculation. We have
used the DD-ME2 functional increasing the pairing strength
in the channel of the blocked configuration, whereas we have
kept the original value in the other channel. So, for the 6+
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isomer, neutron pairing is enhanced, and for the 8− isomer,
proton pairing is enhanced. For larger values of the enhance-
ment parameter, we have, for both cases, an increase in the
isomeric energy. This was to be expected since stronger pair-
ing leads to an increase in the binding energy of the ground
state, which, in turn, means that the formation of the isomer
via breaking of the respective pairs of nucleons requires more
energy.

This short examination illustrates how one can, in prin-
ciple, use the excitation energy of K isomers to adjust the
pairing strength. This method could be an alternative to the
use of odd-even mass differences, or the moments of inertia
in the case of rotating nuclei as has been performed in a fine-
tuning of the rotational spectra within cranked RHB theory
[88] because the original strength of the Gogny is to slightly
too large, for example, in the A ≈ 250 mass region. However,
in the rest of our calculations, we have kept the pairing force
of Ref. [78] with the constants G and α given after Eq. (26)
in order to have a systematic evaluation of the framework
used to construct 2qp K-isomer energies and not just obtain
a fine-tuned reproduction of the experimental results.

V. RESULTS

In our calculation, the 2qp states are determined by block-
ing the lowest neutron or proton quasiparticle orbitals located
in the vicinity of the Fermi energy that corresponds to the fully
paired ground-state solution. After performing the iterative
minimization, the energy of the two-quasiparticle excitation
is obtained as the difference between the energy of the self-
consistent blocked RHB solution and the energy of the fully
paired equilibrium minimum.

A. The 6+ isomer in Hf isotopes and in N = 104 isotones

In this section, we present the systematics of the 6+
high-K isomeric state in the even-even Hf isotopes with
neutron number 98 � N � 108 and in the N = 104 isotones
with atomic number 68 � Z � 84. The 2qp configurations
that form a 6+ isomer (according to Table I and Fig. 1)
are as follows: ν5/2−[512] ⊗ ν7/2−[514] and ν5/2+[642] ⊗
ν7/2+[633] for neutrons and π5/2+[402] ⊗ π7/2+[404] for
protons. This is in line with the configuration assignment
given in Refs. [5,63] and in the nuclear data table [3] for the
six isotopes 170–180Hf and the isotones N = 104 from 172Er to
180Os.

1. Hf isotopes

The formation of isomers in well-deformed nuclei occurs
when nucleons fill high-K orbitals coming close to the Fermi
surface, and the projections of their total angular momentum
can couple to a large total value K , parallel to the symmetry
axis. The excitation energy is roughly equal to the energy cost
of breaking the respective pairs or equivalently equal to the
sum of the quasiparticle energies Ek , i.e.,

E∗ ≈
∑

k

√
(εk − λ)2 + �2

k =
∑

k

Ek, (27)

where εk = hk,k and �k = �k,−k are the single-particle energy
and the pairing gap in the canonical basis. λ is the Fermi
energy. Therefore, the position of the lowest quasiparticle
orbitals in the ground state of each nucleus under consider-
ation provides information about the possible formation of
low-energy two-quasiparticle states. In Fig. 5, we show the
position of the quasiparticle states with energy less than 3
MeV for neutrons [Fig. 5(a)] and protons [Fig. 5(b)] in the
even-even 170–180Hf isotopes calculated with the relativis-
tic density functional DD-ME2. In the neutron spectrum of
Fig. 5(a), we see that the Fermi surface moves to higher
energies with increasing neutron number. Here, the neutron
high- j orbitals that are candidates to form a low-lying 6+
state are the 2qp configurations: ν5/2+[642] ⊗ ν7/2+[633]
and ν5/2−[512] ⊗ ν7/2−[514]. We observe, in Fig. 1, that
the relative energy difference |εk − λ| of the two orbitals
ν5/2+[642] and ν7/2+[633] forming a 6+

ν state increases
gradually with neutron number and, thus, the sum of the
two quasiparticle energies

∑
Ek of that state will increase.

The relative position of the neutron orbitals ν5/2−[512] and
ν7/2−[514] that create an alternative 6+ isomer displays a
different pattern. For the isotopes of 170–176Hf their relative en-
ergy difference decreases gradually whereas around 178–180Hf
an abrupt raise shows up. Figure 6 displays the interplay
between the excitation energies of these two quasineutron
configurations ν5/2+[642] ⊗ ν7/2+[633] (black line) and
ν5/2−[512] ⊗ ν7/2−[514] (red line). As we observe, the
ν5/2+[642] ⊗ ν7/2+[633] configuration is the lowest-lying
2qp state for the isotopes of 170Hf and 172Hf with excitation
energy ≈1.9 and 1.7 MeV, respectively, whereas in 174Hf and
176Hf, the favored configuration is ν5/2−[512] ⊗ ν7/2−[514]
with energies 1.5 and 1 MeV, respectively. In 178Hf and
180Hf, both neutron configurations are calculated at excitation
energies higher than 4 MeV. For these isotopes, the 6+ config-
uration favored by our model appears to be a 2qp state formed
by two protons as discussed below.

In Fig. 5(b), we show the structure of the proton quasipar-
ticle spectrum for the 170–180Hf isotopes. Since the number
of protons is constant, the relative position of the Fermi
surface remains almost unchanged. Here, the lowest-lying
6+ two-quasiproton state corresponds to the configuration
π5/2+[402] ⊗ π7/2+[404] as shown in Fig. 6 (green line).
The excitation energy of 6+

π occurs at around 2.6 to 2.7 MeV
in all the isotopes 170–180Hf under consideration.

In Fig. 7, the evaluation of the lowest-lying 6+ 2qp states
in 170–180Hf isotopes are compared to data. Purple dots corre-
spond to the DD-ME2 functional with EFA, filled turquoise
squares correspond to the DD-PC1 functional with EFA,
and open turquoise squares correspond to the calculation
with the DD-PC1 functional allowing for breaking of time-
reversal symmetry. The data taken from Refs. [3,63] are
shown as black crosses. In 170–172Hf isotopes, the excitation
energies correspond to the two-quasineutron configuration
ν5/2+[642] ⊗ ν7/2+[633], in 174–176Hf to ν5/2−[512] ⊗
ν7/2−[514], and in 178–180Hf to the two-quasiproton config-
uration π5/2+[402] ⊗ π7/2+[404]. This is different from the
configuration assignment in the review of the experimental
energies in Ref. [3] where the π5/2+[402] ⊗ π7/2+[404]
configuration is assigned to the 6+ isomer in 170–180Hf with
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FIG. 5. Quasiparticle energies in even-even Hf isotopes with neutron number 170 � A � 180 obtained with the relativistic functional
DD-ME2 and the separable pairing force TMR of Eq. (26).

the case of 176Hf showing an admixture with ν5/2−[512] ⊗
ν7/2−[514].

In general, the calculated lowest energies follow the trend
of the experimental values. Quantitatively, the two functionals
give similar results with the DD-PC1 functional predicting
slightly higher excitation energies for 170–176Hf and slightly
lower values for 178–180Hf. The inclusion of currents leads,
in each isotope, to a decreasing in the excitation energy
by roughly 0.3 MeV. The calculated excitation energies
that correspond to the two-quasineutron configuration repro-
duce more accurately the experimental data. In the 178–180Hf

FIG. 6. Excitation energies of the 6+ 2qp states com-
ing from the configurations ν5/2+[642] ⊗ ν7/2+[633] (black
dots), ν5/2−[512] ⊗ ν7/2−[514] (red squares), and π5/2+[402] ⊗
π7/2+[404] (blue diamonds) in the 170–180Hf isotopes calculated
with the relativistic functional DD-ME2 and the separable TRM
pairing force.

isotopes where the lowest-lying 6+ state originates from the
two-quasiproton configuration, the difference between our
theoretical calculations and the experimental assignments is
approximately 1 MeV. Table II includes the results of the
lowest-lying 6+ isomeric states in comparison with data.
The first column contains the calculations with the DD-ME2
functional, in the second column are calculations with the
DD-PC1, and in the third column are calculations with the
DD-PC1 functional and with the inclusion of time-reversal
symmetry breaking. In the last column, the experimental data
are shown.
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FIG. 7. Excitation energy of the 6+ 2qp states in 170–180Hf iso-
topes obtained with the relativistic functionals DD-ME2 (purple
dots) and DD-PC1 (turqoise squares) and the separable pairing force
TMR. Results with the inclusion of currents using the DD-PC1 func-
tional are shown in turqoise open squares. Calculations are compared
to the data [3,63].
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TABLE II. The 6+ excitation energy in 170–180Hf calculated with
the relativistic functionals DD-ME2 (first column), DD-PC1 (second
column), and DD-PC1 with time-reversal symmetry breaking (third
column). In all cases, the separable pairing force TMR has been used.
Experimental data [3,63] are given in column four.

DD-ME2 DD-PC1 DD-PC1 + currents Expt.

170Hf 1.969 2.061 1.827 1.773
172Hf 1.721 1.855 1.629 1.685
174Hf 1.513 1.579 1.279 1.549
176Hf 1.099 1.151 0.855 1.333
178Hf 2.610 2.579 2.239 1.554
180Hf 2.700 2.647 2.318 1.703

2. N = 104 isotones

In this section, the formation of the 6+ high-K iso-
mer is studied in the five even-even N = 104 isotones with
68 � Z � 76. The dominant high- j orbitals from which
this 2qp state originates are ν5/2−[512] and ν7/2−[514].
In Fig. 8, we show the quasiparticle energies up to
3 MeV of the neutron orbitals in the N = 104 iso-
tones with 172 � A � 180 calculated with the DD-ME2
functional. The relative energy difference between the
two orbitals increases gradually from 1.2 to 1.7 MeV.
Figure 9 displays the evolution of the excitation energy for
the 6+ high-K isomer in the N = 104 isotones with 172 �
A � 180. Purple dots correspond to the DD-ME2 functional,
filled turquoise squares correspond to the DD-PC1 functional,
and open turquoise squares correspond to calculation with
the DD-PC1 functional with the inclusion of time-reversal
symmetry breaking. The data taken from Refs. [3,63] are
shown as black crosses. We observe that, qualitatively, we
reproduce the trend of the data with the exception of 176Hf
where the data exhibit a downward kink probably because
of the strong mixing with an alternative two-quasiproton 6+
state as suggested in Ref. [63]. Calculations with the DD-ME2
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FIG. 8. The same as Fig. 5(a) but for N = 104 isotones with
172 � A � 180.
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FIG. 9. The same as Fig. 6 but for N = 104 isotones with 172 �
A � 180.

functional reproduce better the data except from 176Hf where
the DD-PC1 functional gives a better description. Results
with the inclusion of time-reversal symmetry breaking lead
to a constant decrease in roughly 0.3 MeV in the excitation
energies of all isotones in the chain.

Table III includes the evaluation of the excitation energy
of the 6+ state in the N = 104 isotones with 172 � A � 180.
The first column contains the calculations with the DD-ME2
functional, in the second column are calculations with the
DD-PC1, and in the fourth column are calculations with the
DD-PC1 functional and with the inclusion of time-reversal
symmetry breaking. In the last column, the experimental data
are shown.

B. 8− isomer in Hf isotopes and in N = 106 isotones

1. Hf isotopes

Another case of a systematically occurring high-K isomer
is the 8− two-quasiparticle excitation that has been observed
experimentally (see Ref. [3]) in the 170–184Hf isotopes. This
particular isomer originates from the two-quasiproton config-
uration: π9/2−[514] ⊗ π7/2+[404].

Figure 10 is the same as Fig. 5(b) but extended up to 186Hf
to include the neutron quasiparticle energies of all nuclei in
which an 8− isomer occurs. We observe that the π9/2−[514]
orbital (dark green line) has a relatively high-quasiparticle

TABLE III. The same as Table II for the 6+ excitation energy
formed by the ν5/2−[512] ⊗ ν7/2−[514] 2qp configuration in N =
104 isotones with 172 � A � 180.

DD-ME2 DD-PC1 DD-PC1 currents Expt.

172 Er 0.821 0.401 0.116 1.5
174 Yb 0.913 0.479 0.194 1.518
176 Hf 1.099 1.151 0.855 1.333
178 W 1.123 0.872 0.573 1.665
180 Os 1.308 1.046 0.744 1.878
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FIG. 10. The same as Fig. 5(b) but for the isotopic chain 170–186Hf.

energy at nearly 2.3 MeV in 170Hf. The orbital approaches the
Fermi level and eventually becomes the lowest-quasiparticle
state in 178Hf up to 186Hf. The second orbital of the configura-
tion π7/2+[404] (turquoise line) has a very low-quasiparticle
energy throughout the isotopic chain, exhibiting only a slight
decrease from the initial value of 1.4 MeV in 170Hf.

Applying the blocking approximation to the two quasineu-
tron states we can examine how the energy of the 8− isomer
evolves along the isotopic chain. Table IV includes the eval-
uated excitation energy for each isotope calculated with the
functionals DD-ME2 and DD-PC1 and compared to exper-
imental data [3]. In Fig. 11, the results of Table IV are
schematically presented.

Comparing the results in Fig. 11 with the proton quasi-
particle energies in Fig. 10, the calculated excitation energy
of the 8− 2qp state follows the trend of the two proton
orbitals π9/2−[514] and π7/2+[404] which also explains
the evolution of the experimentally observed excitation ener-
gies. The experimentally observed excitation energies start at
2.183 MeV for 170Hf and decrease linearly losing about 0.2
MeV at each subsequent isotope, until 180Hf where they reach
a minimum and then increase for the two last nuclei 184Hf

TABLE IV. The same as Table II for the excitation energy
of the 8− 2qp state formed by the configurations π9/2−[514] ⊗
π7/2+[404] in the isotopic chain 170–186Hf.

DD-ME2 DD-PC1 DD-PC1 currents Expt.

170 Hf 2.595 2.651 2.333 2.183
172 Hf 2.350 2.461 2.146 2.005
174 Hf 1.873 2.017 1.707 1.798
176 Hf 1.596 1.651 1.346 1.559
178 Hf 1.343 1.450 1.151 1.147
180 Hf 1.113 1.237 0.943 1.142
182 Hf 0.945 1.073 0.787 1.173
184 Hf 0.827 1.053 0.775 1.272
186 Hf 1.049 1.103 0.826
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FIG. 11. The same as Fig. 6 but for the 8− 2qp states in the
isotopic chain 170–186Hf.

and 186Hf. Our calculations predict the 8− excitation energy
at around ≈2.5 MeV in 170Hf and gradually lose energy
approaching the data. The difference is that the minimum ap-
pears in 184Hf and not in 180Hf as in the experiment. The result
in 186Hf was included to show that 184Hf is the theoretical
minimum. The two functionals give similar results, and the
inclusion of currents has the same effect of giving 0.3-MeV
lower energy.

2. N = 106 isotones

In this section, the 8− isomeric state in the N = 106 iso-
tones with atomic number 68 � Z � 82 is studied. In this
isotonic chain, not all nuclei are axially deformed since 184Pt
is a transitional nucleus, 186Hg exhibits oblate-prolate shape
coexistence, and 188Pb is a rather neutron-deficient nucleus.
Nevertheless, an 8− isomer was experimentally observed
in Ref. [63]. The configuration of the two neutron orbitals
that create the particular isomer is s follows: ν7/2−[514] ⊗
ν9/2+[624].

In Fig. 12, the quasiparticle energies of the neutron or-
bitals with energies less than 3 MeV in the N = 106 isotones
from Er to Pb calculated with the DD-ME2 functional are
presented. The ν7/2−[514] orbital corresponds to the orange
line, and the ν9/2+[624] orbital corresponds to the turquoise
one. We observe that the relative energy difference of the two
orbitals is constantly increasing with proton number from Er
to Os (with the exception of 176Yb where the energy is almost
the same as in 174Er) and, then, remains stable from Pt to Pb.

In Fig. 13 and Table V, the calculation of our model for the
8− excitation energy in the above-mentioned isotonic chain
are presented in comparison to data. We observe that our
theoretical calculations reproduce qualitatively the behavior
of the data from 174Er to 182Os which are, indeed, the axially
symmetric nuclei of the chain. However, quantitatively, our
calculations overpredict the data by about 0.8–1 MeV. The
calculated excitation energy is ≈1.9 MeV in 174Er and in-
creases to 2.3 to 2.4 MeV in 182Os. For the last three nuclei
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FIG. 12. The same as Fig. 8 but for N = 106 isotones with 174 �
A � 188.

(Pt to Pb), the evaluated excitation energy remains almost
unchanged, in contrast to the experimental values. The cal-
culations between the DD-ME2 and the DD-PC1 functionals
are equivalent, whereas the inclusion of currents affects all the
resulting energies by 0.3 MeV.

In Table VI, we show the effective β2 deformation pa-
rameter calculated within our model for both DD-ME2 and
DD-PC1 functionals. As we can see, there is no significant
change between the ground state and the corresponding 8−
state, both being of prolate shape with the isomeric state
having a slightly larger β2 value in all cases.

VI. OVERVIEW AND CONCLUSIONS

In this paper, we have used the self-consistent mean-field
approach within the relativistic Hartree-Bogoliubov frame-
work based on relativistic energy density functionals to
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FIG. 13. The same as Fig. 11 but for N = 106 isotones with
174 � A � 188.

TABLE V. The same as Table II for the excitation energy of the
8− state formed by the ν7/2−[514] ⊗ ν9/2+[624] 2qp configuration
in N = 106 isotones with 172 � A � 188.

DD-ME2 DD-PC1 DD-PC1 currents Expt.

174 Er 1.891 1.851 1.575 1.112
176 Yb 1.862 1.863 1.589 1.050
178 Hf 2.213 2.123 1.845 1.147
180 W 2.391 2.215 1.935 1.529
182 Os 2.422 2.252 1.971 1.831
184 Pt 2.380 2.302 2.020 1.839
186 Hg 2.405 2.378 2.096 2.217
188 Pb 2.431 2.418 2.137 2.578

calculate the two-quasiparticle excitations in heavy nuclei
with axially deformed shapes. Throughout this paper, we
used the meson-exchange functional DD-ME2 and the point
coupling functional DD-PC1 both with density depended cou-
pling constants. Well-established experimental data of the
systematic appearance of 6+ and 8− low-energy high-K iso-
mers in the region of Er to Pb (68 � Z � 84, 98 � N �
112) and in nuclei with A ≈ 160–190 were used for the
evaluation of our method. The theoretical calculation of the
corresponding excitation energies is based on the blocking
approximation. The application of this approximation in the
theoretical framework is implemented in two different ways.
First, the time-reversal symmetry of the unblocked state is
preserved by the EFA. Second, the time-reversal symmetry
is broken, and the induced currents coming from the unpaired
blocked nucleons are taken into account in the calculation of
the fields.

As a first step, using calculations with a quadrupole con-
straint, we constructed Nilsson diagrams within the canonical
basis of the RHB framework for the case of 176Hf. We were,
thus, able to demonstrate that, in axially deformed nuclei in
the region of interest, several neutron and proton orbitals with
high-K values come close to the Fermi surface.

Satisfying this basic property, our next step was to examine
the effect of pairing correlations using the 6+ and 8− 2qp
states in 176Hf as a test case. It was shown that, as the pair-
ing strength increases, so does the excitation energy. This is

TABLE VI. The effective deformation parameter β2 in the
ground state and in the ν7/2−[514] ⊗ ν9/2+[624] state of the N =
106 nuclei with the DD-ME2 and DD-PC1 parameter sets.

DDME2 DD-PC1

g.s. 8− g.s. 8−

174 Er 0.322 0.329 0.324 0.330
176 Yb 0.318 0.325 0.318 0.326
178 Hf 0.288 0.295 0.292 0.302
180 W 0.285 0.300 0.293 0.307
182 Os 0.300 0.311 0.303 0.314
184 Pt 0.306 0.315 0.306 0.315
186 Hg 0.297 0.305 0.299 0.308
188 Pb 0.291 0.302 0.293 0.305

034311-13



KONSTANTINOS E. KARAKATSANIS et al. PHYSICAL REVIEW C 102, 034311 (2020)

expected since the amount of energy needed to break a pair
of nucleons is larger for stronger pairing. This result shows
that one could use the strength of pairing to fine-tune the
calculation of the excitation energy in order to reproduce the
experimental data in a better way. However, in this paper, the
strength of the TMR separable pairing force was always set to
its default value.

In the main part of this paper, our microscopic self-
consistent approach, provides a good qualitative description
of the systematic appearance of the 6+ and 8− high-K isomers
in the nuclear chains under consideration. This is true for both
DD-ME2 and DD-PC1 functionals since they show equivalent
results. The detailed examination of the underlying quasipar-
ticle structure demonstrates its importance in the resulting
excitation energy of high-K isomers. More specifically, the
fact that the isomer energy is, to a first approximation, equal
to the sum of the individual quasiparticle energies, provides an
explanation of the trend followed by the experimental values
in each nuclear chain. Furthermore, the 2qp configuration as-
signment for the creation of the 6+ isomer in N = 104 and the
8− isomer in Hf isotopes and N = 106 isotones agrees with
the assignment given in Ref. [3]. There is, however, a differ-
ence in the configurations leading to the lowest 6+ isomer in
the Hf isotopes: In the case of 178,180Hf, it originates from the
π5/2+[402] ⊗ π7/2+[404] configuration whereas, in the iso-
topes 170–176Hf, the configurations ν5/2−[512] ⊗ ν7/2−[514]
and ν5/2+[642] ⊗ ν7/2+[633] are the ones with the lowest
energy within our model.

On a quantitative level, our results reproduce well the ex-
perimental values of the excitation energies in most cases.
It is important to note that, for the DD-PC1 functional, the
full blocking scheme with the inclusion of currents via the
breaking of time-reversal symmetry provides a standard effect

in the final excitation energies. Namely, in all cases, it gives
an extra binding of about 0.3 MeV in the 2qp state lowering
by the same amount the corresponding excitation energy.

For a future work, one could consider the inclusion of
correlations beyond the mean field, that might provide a better
qualitative description. An example could be the particle-
vibration coupling that has been shown to provide a better
picture of the single-particle structure around the Fermi sur-
face in spherical nuclei [97,98]. A more ambitious task is to
develop a method of calculating the lifetimes of the proposed
isomers by analyzing the rotational spectra of the nuclear
ground states and finding possible deexcitation paths. Finally,
the fact that, in the case of N = 106 isotones, high-K isomers
exist in the last four nuclei that are transitional or shape
coexisting shows an interesting connection. A further theoret-
ical examination can be achieved in our framework by using
multidimensional constraint calculations and investigating the
energy surface of both ground and two-quasiparticle states.
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