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Two-particle correlation functions were measured for pp, p�, p�, and �� pairs in Pb–Pb collisions at √
sNN = 2.76 TeV and √sNN = 5.02 TeV recorded by the ALICE detector. From a simultaneous fit to all 

obtained correlation functions, real and imaginary components of the scattering lengths, as well as the 
effective ranges, were extracted for combined p� and p� pairs and, for the first time, for �� pairs. 
Effective averaged scattering parameters for heavier baryon–antibaryon pairs, not measured directly, are 
also provided. The results reveal similarly strong interaction between measured baryon–antibaryon pairs, 
suggesting that they all annihilate in the same manner at the same pair relative momentum k∗ . Moreover, 
the reported significant non-zero imaginary part and negative real part of the scattering length provide 
motivation for future baryon–antibaryon bound state searches.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The interaction of baryons is a fundamental aspect of many 
sub-fields of nuclear physics. It is investigated extensively with 
numerous methods, among which are included the detailed anal-
ysis of the properties of atomic nuclei, the dedicated experiments 
where beams of one baryon type are scattered on other baryons 
bound in atomic nuclei [1–6], and the femtoscopy technique [7]. 
The latter involves the analysis of momentum correlations of two 
particles produced in nuclear or elementary collisions [8–12]. It is 
especially interesting to probe the interaction in the region of the 
low relative momentum of the pair, as it is the most relevant for 
a precise extraction of the strong interaction scattering parame-
ters. In particular, the possible creation of bound states for a given 
baryon–baryon pair was investigated extensively [13–18].

Nuclear collisions at relativistic energies are abundant sources 
of various particle species. In particular, the number of baryons 
and antibaryons created in each central Pb–Pb collision at the 
Large Hadron Collider (LHC) [19] is of the order of one hundred 
each at mid-rapidity (|y| < 0.5) [20–22], which makes it feasible 
to study details of their interactions. These particles include �, �, 
�, and � and an approximately equal amount of their correspond-
ing antiparticles.

The interactions of baryons are well known for pp pairs 
and pn pairs. Measurements were also performed for p� pairs 
[23–25]. Recently, a comparative study of the baryon–baryon 
and antibaryon–antibaryon interaction using Au–Au collisions at 

� E-mail address: alice -publications @cern .ch.

√
sNN = 200 GeV has been performed by the STAR experiment at 

the Relativistic Heavy Ion Collider and found that the pp interac-
tion does not differ from the pp system [26]. Also, correlation mea-
surements of baryon–baryon pairs in pp collisions at 

√
s = 7 TeV 

and p–Pb collisions at 
√

sNN = 5.02 TeV performed by the ALICE 
detector [27] at the LHC provide more constraints on the interac-
tion of p� and �� [28,29] as well as p�− [30] at low relative 
pair momentum.

Concerning proton–antiproton pairs, the strong interaction was 
studied in detail [31–35]. Of particular interest is protonium (or 
antiprotonic hydrogen) – a proton–antiproton Coulomb bound state, 
where the strong interaction also plays a significant role. The pro-
tonium atoms are created by stopping antiprotons in hydrogen and 
the strong interaction is studied via shifts in the X-ray spectrum 
from the expected QED transitions from excited states. In partic-
ular, there is evidence of a contribution from the strong force to 
the 1S and 2P states. However, the nature of protonium in these 
states, whether it can be considered a nuclear bound state or a 
result of the Coulomb interaction, remains an open question. For 
more details we refer the reader to the review paper [35].

For baryon–antibaryon pairs with non-zero strangeness there 
is much less experimental data available. However, low mass en-
hancements in the invariant mass distributions of pp, p�, and 
�� pairs have been observed in charmonium and B meson de-
cays [36–39]. Those enhancements, except for the pp pair, are 
slightly above the mass threshold of the baryon–antibaryon sys-
tems and have widths which are below 200 MeV/c2. Theoreti-
cal interpretations of these results predict the existence of vari-
ous baryon–antibaryon bound states and propose their classifica-
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tion [36]. Results presented in this letter might shed new light on 
this domain.

The baryon–antibaryon scattering parameters, when measured, 
could be implemented in the well-established model of heavy-
ion collisions, UrQMD [40], which has the important feature of 
including rescattering in the hadronic phase. In particular, recent 
comparisons of theoretical calculations with the ALICE data show 
that a proper description of this phase is critical for the correct re-
production of a large number of observables, like particle yields, 
transverse-momentum spectra, femtoscopy of identified particles, 
as well as elliptic flow [41–44]. The baryon–antibaryon annihila-
tion is a critical component of the rescattering process. Yet, at the 
moment, for all but nucleon-antinucleon pairs, one has to rely on 
assumptions about the interaction cross section. Currently it is as-
sumed that all baryon–antibaryon pairs annihilate in the same way 
as pp pairs at the same total energy of the pair, 

√
s, in the pair rest 

frame [40].
Femtoscopy allows one to access the baryon–antibaryon inter-

action at low pair relative momentum in a way which is com-
plementary to dedicated scattering experiments. Only the strong 
interaction is present for p� (p�) and �� pairs, while for pp
pairs, where also the Coulomb interaction is present, it is the 
dominant contribution [7,45]. Therefore, the parameters of this in-
teraction, together with the source function, determine the shape 
of the correlation function. In addition, the so-called “residual cor-
relation” effect (presence of an admixture of weak decay products 
in the sample of a given baryon–antibaryon pair) results in non-
trivial interconnections between measured correlation functions. 
The femtoscopic technique has been employed already to measure 
p� and p� scattering parameters by the STAR experiment [46]. 
However, the most important limitation of that study is the fact 
that no corrections for residual correlations were applied.

In this letter the scattering parameters are extracted for p�, 
p�, and for the first time for �� pairs from femtoscopic cor-
relations measured in Pb–Pb collisions at 

√
sNN = 2.76 TeV and √

sNN = 5.02 TeV registered by the ALICE experiment at LHC. The 
residual correlations are accounted for in the formalism proposed 
in Ref. [47] which does not attempt to “correct” for this effect 
(as proposed in an alternative procedure in Ref. [48]), but instead 
uses it to extract information about the strong interaction poten-
tial parameters for the parent particles. Therefore, it allows for a 
single and simultaneous fit to all measured correlation functions. 
This provides maximum statistical accuracy for the obtained pa-
rameters, minimises the number of fit parameters and provides a 
non-trivial internal consistency verification.

Recently, the p� and p� correlations measured by STAR [46]
have been reanalysed taking into account the residual correlations 
effect [47]. That study suggests that all baryon–antibaryon pairs 
might annihilate in a similar way as a function of the relative mo-
mentum of the pair k∗ , instead of the pair centre-of-mass energy √

s. This work aims to provide more experimental constraints on 
these scenarios.

2. Experiment and data analysis

The data sample used in this work was collected in LHC 
Run 1 (2011) and Run 2 (2015), where two beams of Pb nuclei 
were brought to collide at the centre-of-mass energy of 

√
sNN =

2.76 TeV and 
√

sNN = 5.02 TeV, respectively. Products of the colli-
sions were measured by the ALICE detector [27]. The performance 
of ALICE is described in Ref. [49].

In this analysis the minimum-bias (MB) trigger was used. It is 
based on the V0 detector consisting of two arrays of 32 scintilla-
tor counters, which are installed on each side of the interaction 

Table 1
Centrality ranges and corresponding average charged-particle multiplicity den-
sities at mid-rapidity 〈dNch/dη〉 for Pb–Pb collisions at √sNN = 2.76 TeV [50]
and √sNN = 5.02 TeV [52].

Centrality 〈dNch/dη〉 √
sNN = 2.76 TeV 〈dNch/dη〉 √

sNN = 5.02 TeV

0–5% 1601 ± 60 1943 ± 53
5–10% 1294 ± 49 1586 ± 46

10–20% 966 ± 37 1180 ± 31
20–30% 649 ± 23 786 ± 20
30–40% 426 ± 15 512 ± 15
40–50% 261 ± 9 318 ± 12

point and cover pseudorapidity1 ranges 2.8 < η < 5.1 (V0A) and 
−3.7 < η < −1.7 (V0C). The MB trigger required a signal in both 
V0 detectors within a time window that is consistent with the 
collision occurring at the centre of the ALICE detector. The event 
centrality was determined by analysing the amplitude of the sig-
nal from the V0 detector with the procedure described in details 
in Ref. [50].

The position of the collision vertex was reconstructed using 
the signal from the Inner Tracking System (ITS) [27]. The ITS is 
composed of six cylindrical layers of silicon detectors and covers 
|η| < 0.9. Its information can be used for tracking and primary 
vertex determination. However, in this analysis it was used only 
for the latter. The primary vertex for an event was required to be 
within ±8 cm from the centre of the detector.

The analysis was performed in six centrality [51] ranges for 
both collision energies. They are listed in Table 1 together with 
their corresponding average charged-particle multiplicity densities 
at mid-rapidity 〈dNch/dη〉 [50,52].

Charged-particle trajectory (track) reconstruction for both colli-
sion energies was performed using the Time Projection Chamber 
(TPC) detector [53]. The TPC is divided by the central electrode 
into two halves. Each half is capped with a readout plane which 
is composed of 18 sectors (covering the full azimuthal angle ϕ) 
with 159 padrows placed radially in each sector. A track signal in 
the TPC consists of space points (clusters), and each of them is 
reconstructed in one of the padrows. A track was required to be 
composed of at least 80 clusters to minimise the possibility that a 
signal left by a single particle is reconstructed as two tracks. The 
parameters of the track are determined by performing a Kalman 
fit to a set of clusters. The quality of the fit is determined by cal-
culating the χ2 which was required to be lower than 4 for every 
cluster (each cluster has two d.o.f.), in order to select only well 
fitted tracks.

The identification of primary protons (antiprotons) was per-
formed using the combined information from both the TPC and 
the Time-OF-Flight (TOF) detectors (a signal from both detectors 
was required), while the identification of � (�) decay products 
(charged secondary pions and (anti)protons) required information 
only from the TPC. TOF is a cylindrical detector composed of Multi-
gap Resistive Proportional Chambers (MRPC) located at r ∼= 380 cm 
from the beam axis. Tracks are propagated from the TPC to the TOF 
and matched to hits in this detector. In the case of both TPC and 
TOF, the signals (energy loss dE/dx for the TPC and the time of 
flight for the TOF) were compared to the expected ones for a given 
particle. The measured–expected signal deviation was divided by 
the appropriate detector resolution σ . The track was accepted as 
a proton (pion) if it fell within 3σ of combined TPC and TOF ex-
pected signals for a proton (pion) in a given detector.

Tracks were accepted for analysis if their pseudorapidity range 
was within the range |η| < 0.8 to avoid regions of the detector 

1 Pseudorapidity is defined as η = − ln (tan (θ/2)), where θ is the polar angle.
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Fig. 1. Raw invariant mass distribution of pπ− (pπ+) pairs used to obtain the � (�) 
candidates for Pb–Pb collisions at √sNN = 5.02 TeV in the 0–5% centrality range. 
The dashed lines represent the selection width used in the analysis. Note that the 
mean value of the distribution is slightly shifted from the rest mass of � (�) by 
∼ 1 MeV/c2 due to imperfections in the energy loss corrections that are applied in 
the track reconstruction.

with limited acceptance. The particle identification quality depends 
on the transverse momentum pT, thus a pT ∈ [0.7, 4.0] GeV/c
range was used for primary (anti)protons to assure good purity of 
the sample. To make sure that the sample is not significantly con-
taminated by secondary particles coming from weak decays and 
particle–detector interactions, a selection criterion on the Distance 
of Closest Approach (DCA) to the primary vertex was also applied, 
separately in the transverse plane (DCAxy < 2.4 cm) and along the 
beam axis (DCAz < 3.2 cm). These criteria were optimised in order 
to select a high purity sample of (anti)protons. The pT-integrated 
purity, based on Monte Carlo simulations, of the p (p) sample was 
95.4% (95.2%).

The selection of � (�) is based on their distinctive decay topol-
ogy in the decay channel � (�) → pπ− (pπ+), with a branch-
ing ratio of 63.9% [31]. The reconstruction process, described in 
Ref. [54], is based on finding candidates made of two secondary 
tracks having opposite charge and large impact parameter with 
respect to the interaction point. The purity of � and � samples 
is larger than 95% within the selected invariant mass range of 
|Mpπ − M�PDG | ≤ 0.0038 GeV/c2. The pT-integrated invariant mass 
distribution of � (�) candidates is shown in Fig. 1.

The femtoscopic correlation is measured as a function of the re-
duced momentum difference of the pair 
k∗ = 1

2

( 
p1
∗ − 
p2

∗), where 

p1

∗ and 
p2
∗ denote momenta of the two particles in the pair rest 

frame. It is defined as

C(
k∗) = N
A(
k∗)
B(
k∗)

. (1)

The distribution A, called the “signal”, is constructed from pairs 
of particles from the same event. The background distribution B is 
constructed from uncorrelated particles measured with the same 
single-particle acceptance. In this analysis it was built using the 
event mixing method with the two particles coming from two dif-
ferent events for which the vertex positions in the beam direction 
agree within 2 cm and the multiplicities differ by no more than 
1/4 of the width of the given centrality class for which the cor-
relation function is calculated. Each particle was correlated with 
particles from 10 other events. The parameter N is a normalisa-
tion factor.

In this work, the analysis is further simplified by performing 
all measurements as a function of the magnitude of the relative 
momentum k∗ = |
k∗| only. The N parameter was calculated during 

the background subtraction procedure described in Sec. 3, in a way 
that the correlation function approaches unity in k∗ ∈ [0.13, 1.5]
GeV/c for pp pairs and in k∗ ∈ [0.23, 1.5] GeV/c for p�, p�, and 
�� pairs.

3. Fitting procedure

The extraction of the scattering parameters from the measured 
correlation functions requires a dedicated fitting procedure, which 
takes into account the strong and Coulomb interaction, depending 
on a given pair. The fitting formula is chosen appropriately for each 
baryon–antibaryon pair. Afterwards, a simultaneous fit to all mea-
sured pairs, taking into account residual correlations, is performed. 
The details of the procedure are described below.

The two-particle correlation function in the pair rest frame is 
defined as [55,56]

C(
k∗) =
∫

S(
r∗)
∣∣∣�(
k∗,
r∗)

∣∣∣2
d3r∗, (2)

where S(
r∗) is the source emission function, �(
k∗, 
r∗) is the pair 
wave function, and 
r∗ is the relative separation vector. The source 
is assumed to have a spherically-symmetric Gaussian distribution 
according to measurements [12,57]. The pair wave function de-
pends on the interactions between baryons and antibaryons. When 
only the strong interaction is present, the correlation function 
can be expressed analytically as a function of the scattering am-

plitude f (k∗) =
[

1
f0

+ 1
2 d0k∗2 − ik∗

]−1
, and the one-dimensional 

source size R . This description is called the Lednický–Lyuboshitz 
analytical model [7] (see Appendix A for details). In this work, the 
spin-averaged scattering parameters are obtained, i.e. � f0 the real 
and � f0 imaginary parts of the spin-averaged scattering length, 
and d0 for the real part of the spin-averaged effective range of the 
interaction. The usual femtoscopic sign convention is used, where 
a positive � f0 corresponds to attractive strong interaction.

Accounting for residual correlations is an important ingredi-
ent of every correlation function analysis involving baryons. A 
fraction of observed (anti)baryons comes from decays of heavier 
(anti)baryons. This is illustrated in Fig. 2, where the main contri-
butions to the pp correlation function are marked in blue, to the 
p� in yellow and to the �� in red. In such a case, the correlation 
function is built for the daughter particles, while the interaction 
has taken place for the parent baryons. To account for this effect, 
the fitting formula used in this work contains a sum of correlation 
functions for each possible combination of (anti)baryons, weighted 
by the fraction λ of given residual pairs. One needs to transform 
the theoretical correlation function of a pair into the momentum 
frame of the particles registered in the detector [47].

The procedure for the correlation function analysis taking into 
account residual correlations has been performed before and is de-
scribed in detail in Ref. [58]. The same procedure was carried out 
in this analysis.

The fractions of residual pairs λ were calculated based on the 
AMPT model [59] (as well as HIJING [60] for evaluation of system-
atic uncertainties) after full detector simulation, estimating how 
many reconstructed pairs come from primary particles and what 
is the percentage of those coming from the given decay. They also 
take into account other impurities resulting from misidentification 
or detector effects; therefore, their sum is not equal to unity. The 
obtained values of fractions are listed in Table 2. The momentum 
transformation matrices [47] were generated using the THERMI-
NATOR 2 model [61] for all residual components of all analysed 
systems. The final correlation function for a xy pair is defined as
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Fig. 2. Illustration of the links between different baryon–antibaryon pairs through 
the residual correlation. Main contributions to the pp correlation function are 
marked in blue, to the p� in yellow and to the �� in red. Solid lines show con-
nections between studied pairs, while dashed lines present other major residual 
contributions that are unique for a given system.

Cxy(k
∗) = 1 +

∑
i

λi
[
Ci(k

∗) − 1
]
, (3)

where the sum is over all residual components of the xy pair and 
λi and Ci(k∗) are the fraction and the correlation function of i-th 
pair, respectively [47].

Correlation functions were obtained for four baryon–antibaryon 
pair systems pp, p�, p�, and ��. Since the correlation functions 
p� and p� were found to be consistent with each other within 
the uncertainties, they were always combined and are further de-
noted as p� ⊕ p�. A simultaneous fit is desirable because of the 
presence of residual correlations which link different pairs. Three 
sets of unknown scattering parameters, components of the analyt-
ical formula (A.2) used in the fit, were introduced for p� ⊕ p�, 
�� as well as heavier, not measured directly, baryon–antibaryon 
pairs, further referred to as BB, consisting of pairs containing �
and � baryons. The pp system was used as a reference. However, 
due to the presence of the Coulomb interaction and coupled chan-
nels, the analytical description is no longer valid in this case (see 
Appendix A for details). Nevertheless, coupled-channel effects be-
come negligible for large sources as the ones obtained in Pb-Pb 
collision systems. The theoretical pp correlation functions were ob-

tained by generating pp pairs with the THERMINATOR 2 model 
and by applying weights accounting for the final state interac-
tions with an approximate treatment of the nn coupled channel, 
using a numerical model by R. Lednický [7,11] with experimental 
constraints on strong interaction parameters from previous mea-
surements [32,62,63].

The source sizes for primary pp, p� ⊕ p�, and �� pairs were 
taken from previous measurements of other baryon–baryon and 
meson–meson pairs [58]. We assume that the one-dimensional 
source size R , for each pair, depends on the transverse mass of 
the pair, mT =

√
m2 + p2

T, and on the charged-particle multiplicity 
Nch [64] following the relations

R(mT; Nch) = a(Nch)mγ
T , (4)

and

R(Nch;mT) = α(mT)
3
√

Nch + β(mT), (5)

where the γ exponent and the a(Nch), α(mT) and β(mT) func-
tions are empirical and include the constraint of the minimum 
possible source size (Nch = 1) being equal to the proton radius, 
Rp ≈ 0.88 fm [31]. The relations (4) and (5) are used for all pairs, 
including those contributing via weak decays.

The experimental correlation function is also affected by phe-
nomena other than the strong and Coulomb interactions, such 
as jets and elliptic flow [65–67]. Those effects are treated as a 
background. For each experimental function, a background fit was 
performed in a k∗ region where femtoscopic effects are not promi-
nent. It was found, using the THERMINATOR 2 model, that the 
results are not dependent on the k∗ fit range when the background 
is fitted by a third order polynomial. Next, the estimated back-
ground was subtracted from the experimental correlation function. 
The procedure flattens the function for higher k∗ and the slope is 
larger for less central collisions, which is consistent with elliptic 
flow, as it should be more prominent for semi-central collisions 
and less for central collisions [65].

As an example, the correlation functions for pp, p� ⊕ p� and 
�� pairs for the 10–20% centrality interval and two collision en-
ergies are represented together with the simultaneous fit in Fig. 3.

The momentum resolution effect was investigated with Monte 
Carlo simulations by creating a two-dimensional matrix of gener-
ated and reconstructed k∗ . Each slice of the distribution was then 
fitted with a Gaussian function. Within the k∗ region of interest 
the width of the Gaussian function is constant; therefore, the fit-
ting function was smeared with a Gaussian with a width constant 
in k∗ .
Table 2
Fractions of residual components of pp, p� ⊕ p�, and �� correlation functions from Monte 
Carlo events simulated with AMPT model after full detector simulation. The values in parentheses 
represent fractions obtained with the HIJING model used for evaluation of systematic uncertain-
ties. Fractions are the same for corresponding antipairs.

pp p� ⊕ p� ��

Pair λ Pair λ Pair λ

pp 0.25 (0.32) p� 0.29 (0.28) �� 0.37 (0.24)

p� 0.12 (0.19) �� 0.08 (0.09) ��
+

0.04 (0.06)

p�
−

0.04 (0.04) ��
−

0.03 (0.02) ��
0

0.03 (0.05)

�� 0.02 (0.03) p�
0/+

0.02 (0.03) ��
0

< 0.01 (0.20)

��
−

0.01 (0.01) p�
0

< 0.01 (0.12) �0�
0

< 0.01 (0.05)

�+�
−

< 0.01 (< 0.01) ��
0

< 0.01 (0.04) �0/−�
0

< 0.01 (0.02)

��
0/+

< 0.01 (0.01) �0/−�
0/+

< 0.01 (< 0.01)

�+�
0

< 0.01 (< 0.01)

�0/−�
+

< 0.01 (< 0.01)
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Fig. 3. Correlation functions of pp, p� ⊕ p�, and �� pairs for Pb–Pb collisions at √sNN = 5.02 TeV (left) and √sNN = 2.76 TeV (right) together with the simultaneous 
femtoscopic fit for the 10–20% centrality class.
Table 3
Values of the spin-averaged scattering parameters � f0, � f0, and d0 for 
p� ⊕ p� and �� pairs, as well as effective parameters accounting for 
heavier baryon–antibaryon (BB) pairs not measured directly, extracted from 
the simultaneous fit.

Parameter p� ⊕ p� �� BB

� f0 (fm) −1.15±0.23 (syst.)
±0.05 (stat.) −0.90±0.16 (syst.)

±0.04 (stat.) −1.08±0.11 (syst.)
±0.20 (stat.)

� f0 (fm) 0.53± 0.15 (syst.)
± 0.04 (stat.) 0.40±0.18 (syst.)

±0.06 (stat.) 0.57±0.25 (syst.)
±0.19 (stat)

d0 (fm) 3.06±0.98 (syst.)
±0.14 (stat.) 2.76±0.73 (syst.)

±0.29 (stat.) 2.69±0.46 (syst.)
±0.74 (stat.)

4. Results

The strong-interaction scattering parameters � f0, � f0, and d0
for pp, p� ⊕ p�, ��, and BB pairs resulting from the simulta-
neous fit are summarised in Table 3 and plotted in Fig. 4 to-
gether with statistical (bars) and systematic (ellipses) uncertain-
ties.2 Fig. 4 also shows scattering parameters for various baryon–
baryon and baryon–antibaryon pairs extracted in previous stud-
ies [68–71].

As the simultaneous fit yields similar values, within uncertain-
ties, of parameters for p� ⊕ p� and ��, as well as heavier BB
pairs, one can perform a fit assuming a single set of parameters 
for all those systems. By doing so there is practically no change 
in the results; in particular, the reduced χ2 ≈ 1.83 (p < 0.00001) 
of the first fit becomes χ2 ≈ 1.87 and other scattering parame-
ters change very slightly, within systematic uncertainties. This test 
confirms that the data points can be correctly described when one 
assumes that all baryon–antibaryon pairs have similar values of the 
scattering length and the effective range of the strong interaction.

5. Discussion

Femtoscopic correlation functions for pp, p� ⊕ p� and ��

have been measured in Pb–Pb collisions at energies of 
√

sNN =
2.76 TeV and 

√
sNN = 5.02 TeV registered by the ALICE experiment. 

The analysis was performed in six centrality intervals, yielding 36 
correlation functions in total.

2 Details of the systematic uncertainty estimation are discussed in Appendix B.

For the first time parameters of the strong interaction, the 
scattering length and the effective range, were extracted for 
p� ⊕ p� and �� pairs. Moreover, parameters for heavier baryon–
antibaryon pairs, which were not measured directly, were esti-
mated.

Several conclusions can be drawn from the extracted parame-
ters. The real and imaginary parts of the scattering length, � f0 and 
� f0, and the effective interaction range, d0, have similar values for 
all baryon–antibaryon pairs at low k∗ . Therefore, the data can be 
described using the same parameters for all studied pairs, which 
provides a valuable input for theoretical heavy-ion collisions mod-
els. Note that the assumption used in the UrQMD model, namely 
that � f0 is the same for different baryon–antibaryon pairs as a 
function of the centre-of-mass energy of the pair, means that the 
inelastic cross section would be different at the same relative pair 
momentum k∗ .

A significant non-zero imaginary part of the scattering length 
� f0 indicates the presence of the inelastic channel of the interac-
tion, which in the case of baryon–antibaryon includes the annihi-
lation process.

The negative value of the real part of the scattering length, � f0, 
obtained for all baryon–antibaryon pairs may have one of a two 
meanings: either the strong interaction is repulsive, or a bound 
state can be formed. The significant magnitude of the imaginary 
part of the scattering length, � f0, shows that baryon–antibaryon 
scattering may occur through inelastic processes (annihilation). In 
the UrQMD model, three scenarios can be considered [47]: i) all 
baryon–antibaryon pairs annihilate similarly at the same relative 
momentum k∗; ii) � f0 is the same for all baryon–antibaryon pairs, 
but expressed as a function of the pair centre-of-mass energy, 
meaning that � f0 is smaller for baryon–antibaryon pairs of higher 
total pair mass; iii) the inelastic cross section is increased for ev-
ery matching quark–antiquark pair in the baryon–antibaryon sys-
tem. In this scenario, in the specific case of this work, � f0 for 
p� ⊕ p� should be lower than for pp and ��, which is not ob-
served. UrQMD by default uses scenario ii) to model the baryon–
antibaryon annihilation, which in our case would lead to a de-
crease of � f0 while going from pp to �� pairs; however, similar 
values of � f0 for all baryon–antibaryon pairs reported in this work 
favour scenario i).
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Fig. 4. (Top) Comparison of extracted spin-averaged scattering parameters � f0 and 
� f0 for p� ⊕ p�, �� pairs and for effective BB pairs, with previous analyses of pp
pairs (singlet) [32,33,35,72]. (Bottom) Comparison of extracted spin-averaged scat-
tering parameters � f0 and d0 for p� ⊕ p�, �� pairs as well as effective BB, with 
selected previous analyses of other pairs: pp (singlet) [73], pp (singlet) [72], pn
(singlet) [74], nn (singlet) [74], p� (singlet) [69], and �� (spin-averaged) [70]. 
(Note that the measurement of the �� scattering parameters by the STAR ex-
periment [70] did not account for residual correlations. The recent analysis of ��

correlations by the ALICE Collaboration [28], properly taking into account those cor-
relations, disfavours the STAR results.)

Inelastic scattering is compatible with a bound state, where the 
baryon and antibaryon create a short-lived resonance which decays 
strongly into three mesons. Evidence for a process in which a par-
ticle in the mass range of 2150–2260 MeV/c2 decays into a kaon 
and two pions has been reported by various experiments in the 
past and listed by the Particle Data Group (PDG) as K2(2250) [31]. 
The reported mass is slightly above the p� threshold, the width of 
the resonance is compatible with a strongly decaying system and 
the decay products match the valence quark content of the p�

pair. A nucleon–antihyperon system has also been listed by PDG as 
K3(2320), with proton and � in the final state, which corresponds 
to a bound state undergoing an elastic scattering. The results pre-
sented in this paper support the existence of baryon–antibaryon 
bound states such as K2(2250) and K3(2320). Further studies can 
provide more evidence on the existence of those states.

Finally, negative values of the extracted real part of the scatter-
ing length � f0 show either that the interaction between baryons 
and antibaryons is repulsive, or that baryon–antibaryon bound 
states can be formed. Combined with the non-zero imaginary part 
� f0 which, as mentioned earlier, is associated with the inelastic 
processes, it favours the bound states scenario over the repulsive 
interaction. In that case a baryon–antibaryon pair would form a 
resonance decaying into a group of particles different from the 
original ones (for instance, p� → X →K+π+π− , where X is the 
hypothetical baryon–antibaryon bound state). Further studies will 
shed more light on existence of such particles. The scenario of 

a repulsive interaction is not completely ruled out, but it would 
manifest in experiments as a systematic spatial separation of mat-
ter and antimatter, never observed before.

In summary, the strong-interaction cross section parameters 
(the scattering length and the effective range) of strange baryon–
antibaryon pairs have been measured at low relative pair mo-
mentum using the femtoscopic technique. They were found to be 
the same within the systematic uncertainties for all studied pairs 
and compatible with the pp parameters measured in other ex-
periments. Therefore, a global picture of the baryon–antibaryon 
annihilation proceeding in a very similar way, regardless of the 
strange-quark content, is suggested. Finally, the results are consis-
tent with the formation of baryon–antibaryon bound states. Future 
searches for such particles will therefore be of crucial importance.
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Appendix A. Lednický–Lyuboshitz model

The wave function of the pair, �(
k∗, 
r∗), in Eq. (2), depends 
on the two-particle interaction. Baryons interact with anti-baryons 
via the strong and, if they carry a non-zero electric charge, the 
Coulomb force. In such a scenario, the interaction of two non-
identical particles is given by the Bethe–Salpeter amplitude, corre-
sponding to the solution of the quantum scattering problem taken 
with the inverse time direction:

�
(+)

−
k∗( 
r∗, 
k∗) = √
AC(η)

1√
2

×
[

e−i
k∗·
r∗
F(−iη,1, iζ+) + fC(
k∗) G̃(ρ,η)

r∗

]
,(A.1)

where AC is the Gamow factor, ζ± = k∗r∗(1 ±cos θ∗), η = 1/(k∗aC), 
F is the confluent hypergeometric function, and G̃ is the combina-
tion of the regular and singular S-wave Coulomb functions. θ∗ is 
the angle between the pair relative momentum and relative posi-
tion in the pair rest frame, while aC is the Bohr radius of the pair. 
The component fC is the strong-scattering amplitude, modified by 
the Coulomb interaction.

When only the strong interaction is present, the correlation 
function can be expressed analytically as a function of the scat-

tering amplitude f (k∗) =
[

1
f0

+ 1
2 d0k∗2 − ik∗

]−1
, and the one-

dimensional source size R . This description is called the Lednický–
Lyuboshitz analytical model [7]:

C(k∗) = 1 +
∑
σ

ρσ

[
1

2

∣∣∣∣ f (k∗)
R

∣∣∣∣
2 (

1 − dσ
0

2
√

πR

)

+2� f (k∗)√
πR

F1(2k∗R) − � f (k∗)
R

F2(2k∗R)

]
, (A.2)

where the sum is over all pair-spin configurations σ , with weights 
ρσ (a real number) being 1/4 and 3/4 for singlet and triplet states, 

respectively, and F1(z) = ∫ z
0 (ex2−z2

/z)dx and F2(z) = (1 − e−z2
)/z. 

When the Coulomb interaction is also present, e.g., in the pp
case, the source emission function is numerically integrated with 
the pair wave function containing a modified scattering ampli-
tude [45]:

fC(k∗) =
[

1

f0
+ 1

2
d0k∗2 − ik∗ − 2

aC
h(η) − ik∗ AC(η)

]−1

, (A.3)

where h(η) = η2
∞∑

n=1
[n(n2 + η2)]−1 − γ − ln |η| (γ = 0.5772 is the 

Euler constant).
The description becomes more complicated when coupled 

channels (such as nn → pp in the pp system) are present. For de-
tails see Ref. [45,75].

Appendix B. Systematic uncertainties

The analysis was also performed on tracks reconstructed using 
the information from both the ITS and the TPC, as opposed to using 
those having the information from the TPC only. The correlation 
functions obtained from the analysis of those tracks were fitted 
with the procedure described in Sec. 3. Differences on extracted 
scattering parameters are between 4% and 17%, depending on the 
studied pair and the scattering parameter.

In addition, several components of the fit procedure were var-
ied. Shifting the correlation function normalisation range in k∗ by 
±0.1 GeV/c yields almost no change on the extracted scattering 
parameters (maximum 1%). A change of the background parametri-
sation from the third to the fourth-order polynomial results in 
differences of up to 19% for � f0 and below 10% for other param-
eters. The second-order polynomial was also tested but it fails to 
describe the low k∗ region and therefore cannot be used to extract 
reliable information. Moreover, the use of residual pair fractions 

Table B.1
List of contributions to the systematic uncertainty of the scattering 
parameters. Values are averaged over collision energies and centrality 
ranges.

p� ⊕ p�

Uncertainty source � f0 (%) � f0 (%) d0 (%)

Normalisation range < 1 < 1 < 1
Background parametrisation < 1 2 3
Fit range dependence 3 8 14
Fractions of residual pairs 10 8 19
Momentum resolution correction 7 11 4
Track selection 11 14 4
Source size variation 9 18 20

��

Uncertainty source � f0 (%) � f0 (%) d0 (%)

Normalisation range < 1 < 1 < 1
Background parametrisation 6 19 2
Fit range dependence 2 4 5
Fractions of residual pairs 6 15 18
Momentum resolution correction 4 7 2
Track selection 7 17 4
Source size variation 12 35 19

BB

Uncertainty source � f0 (%) � f0 (%) d0 (%)

Normalisation range < 1 1 1
Background parametrisation 6 17 6
Fit range dependence 6 12 11
Fractions of residual pairs 7 19 8
Momentum resolution correction 3 3 1
Track selection 9 < 1 12
Source size variation 13 36 9
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calculated from the HIJING model [60] instead of AMPT resulted in 
changes of up to 19% for d0, up to 16% for � f0, and below 10% for 
� f0. Variation of source sizes obtained from transverse-mass and 
multiplicity scalings by ±5% resulted in changes of up to 13% for 
� f0, up to 36% for � f0, and up to 20% for d0. Moreover, the width 
of the Gaussian distribution accounting for momentum resolution 
was varied by ±30% which results in systematic uncertainty of up 
to 11%.

Contributions to the systematic uncertainty on the extracted 
scattering parameters are summarised in Table B.1. Since those 
components are correlated, the total systematic uncertainties are 
represented as covariance ellipses in the final plots.
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