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The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions 
and heavy-ion collisions can be explored through multiplicity-differential measurements of identified 
hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective 
flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible 
modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended 
hadron-gas phase, and to investigate different explanations provided by phenomenological models for 
enhancement of strangeness production with increasing multiplicity. In this paper, these topics are 
addressed through measurements of the K∗(892)0 and φ(1020) mesons at midrapidity in pp collisions 
at 

√
s = 13 TeV as a function of the charged-particle multiplicity. The results include the pT spectra, 

pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those 
of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as 
predictions from phenomenological models, are also discussed.

© 2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recent studies of proton-proton (pp) and proton-lead (p–Pb) 
collisions at the LHC with high charged-particle multiplicities have 
shown patterns of behavior that are reminiscent of phenomena 
observed in heavy nucleus-nucleus (A–A) collisions such as Pb–Pb 
and Xe–Xe. The systems created in these collisions are compared 
by classifying events according to the final-state charged-particle 
multiplicity, which is used as a measure of the “activity” of the 
event. In small collision systems such as pp and p–Pb, multiplic-
ities range from a few to a few tens of charged particles per 
unit of rapidity, whereas in large systems (A–A collisions), mul-
tiplicities of a few thousand charged particles per unit of rapid-
ity can be produced. As discussed below, measurements of az-
imuthal anisotropies in particle emission [1–7] (quantified using 
the Fourier coefficients of azimuthal distributions of produced par-
ticles), the multiplicity evolution of hadron pT spectra [8–11], and 
pT-differential baryon-to-meson ratios suggest the possibility of 
collective flow even in small systems. Furthermore, the observed 
enhancement of strange hadron production [8,9,12] could indicate 
the production of a quark–gluon plasma (QGP), while the possi-
ble suppression of the yields of short-lived resonances [8,11] may 
suggest the presence of an extended hadronic phase. However, it 
remains an open question whether the underlying causes of these 
behaviors are truly the same in small and large collision systems.

� E-mail address: alice -publications @cern .ch.

In order to investigate this, the ALICE Collaboration has mea-
sured the pT spectra and total yields of identified hadrons as a 
function of the charged-particle multiplicity in p–Pb collisions at √

sNN = 5.02 TeV [10,11,13–15] and pp collisions at 
√

s = 7 TeV 
[8,12,16] for many species, including π± , K± , K0

S , K∗(892)0, p, 
φ(1020), �, �− , �− , deuterons, and their antiparticles. This pa-
per reports on an extension of these studies: a measurement of 
the multiplicity evolution of the production of K∗(892)0, K

∗
(892)0, 

and φ(1020) mesons in pp collisions at 
√

s = 13 TeV, the high-
est energy reached by the LHC in runs 1 and 2. The present study 
takes advantage of a pp data set recorded during Run 2 of the LHC 
in 2015 with an integrated luminosity of 0.88 nb−1 and comple-
ments other recent ALICE papers on light-flavor hadron production 
in the same collision system, both in inelastic collisions [17] and 
as a function of charged-particle multiplicity [9,18,19]. For the re-
mainder of this paper, the average of K∗(892)0 and K

∗
(892)0 will 

be denoted as K∗0, while the φ(1020) will be denoted as φ.
The ratios of the yields of strange hadrons to pion yields are 

observed to be enhanced in A–A collisions relative to minimum 
bias pp collisions [20–22], with the yields in central A–A collisions 
being well described by statistical thermal models [23–26]. In cen-
tral A–A collisions, strangeness is produced from the hadroniza-
tion of a strangeness-saturated QGP and the relative abundances 
of hadrons reflect the degree of equilibration of the system. At 
the LHC, hadron-to-pion yield ratios are observed to increase with 
the charged-particle multiplicity in pp and p–Pb collisions [8–13]; 
the magnitude of the change from low to high multiplicity in-
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creases with the strangeness content of the hadron. The ratios 
in high-multiplicity pp and p–Pb collisions reach the values ob-
served in peripheral Pb–Pb collisions and generally follow similar 
trends as the multiplicity increases from pp to p–A to A–A col-
lisions. Furthermore, the yields of strange particles are consistent 
between 

√
s = 7 and 13 TeV for similar charged-particle multi-

plicities. These results suggest that the yields of these hadrons 
depend primarily on the charged-particle multiplicity and are in-
dependent of the collision system and energy. This is perhaps a 
surprising result: pp, p–Pb, and A–A collisions involve different 
physical processes (e.g. different contributions from jets and mul-
tiple partonic interactions) and produce pT spectra with different 
shapes. Nevertheless, the total abundances of hadrons, even rare 
particles like �− and light nuclei, are consistent across the dif-
ferent collision systems for a given charged-particle multiplicity, 
suggesting that there may be some underlying similarities between 
the different collision systems. Comparisons of these different col-
lision systems at similar multiplicities may, for example, help to 
address the question of whether a QGP might be present even in 
high-multiplicity pp and p–Pb collisions, or alternatively, whether 
non-QGP effects might explain behavior seen in A–A collisions.

Several theoretical explanations of the multiplicity evolution 
of strange-hadron production have been put forward, including 
canonical suppression, rope hadronization, and core-corona effects. 
In statistical thermal models of large collision systems, strangeness 
production is described through the use of a grand canonical en-
semble, where strangeness conservation is realized on average 
across the volume of the system. In the canonical suppression pic-
ture, strangeness production in small systems is instead described 
using a canonical ensemble, requiring the exact local conserva-
tion of strangeness within the small volume [8,27,28]. As the size 
of the system decreases, it makes a transition from the grand-
canonical to the canonical description, leading to a decrease in 
strange-hadron yields with decreasing multiplicity. In the rope-
hadronization picture, the larger and denser collision systems form 
color ropes [29–31], groups of overlapping strings that hadronize 
with a larger effective string tension. This effect, implemented in 
models such as DIPSY [32–34], also leads to an increase in the pro-
duction of strange hadrons with increasing charged-particle mul-
tiplicity. Core-corona separation is implemented in a variety of 
models, including EPOS [35–38] and those described in [39,40]. 
In these models, the collision is divided into “core” and “coron-
a” regions, with the division determined by the string or parton 
density. Regions with a density greater than the threshold den-
sity become the core, which may evolve as a quark–gluon plasma. 
This is surrounded by a more dilute corona, for which fragmen-
tation occurs as in the vacuum. Strangeness production is higher 
in the core region, which makes up a greater fraction of the vol-
ume of the larger collision systems. This also results in strangeness 
enhancement with increasing multiplicity.

The φ meson is a useful probe for the study of strangeness 
enhancement. The φ contains two strange valence (anti)quarks, 
but has no net strangeness. Its production should therefore not be 
canonically suppressed, while the production of hadrons with open 
strangeness (e.g. kaons or �) may be canonically suppressed [8]. 
It has, in fact, been rather difficult to describe enhancement of 
φ-meson production in a framework that involves canonical sup-
pression [8]. In contrast, in the rope-hadronization or core-corona 
interpretations, the yields of φ mesons evolve with multiplicity 
similarly to particles with open strangeness, leading to an expected 
increase in the pT-integrated φ / π ratio with increasing charged-
particle multiplicity. Measurements of φ-meson production as a 
function of the multiplicity may help to distinguish between the 
various explanations of strangeness enhancement in small systems.

One of the main motivations for studying resonances like K∗0

and φ in heavy-ion collisions is to learn more about the prop-

erties (temperature and lifetime) of the hadronic phase of the 
collision. When short-lived resonances (such as ρ(770)0, K∗0, and 
�(1520)) decay, their daughters may re-scatter in the hadronic 
phase, leading to a reduction in the measurable resonance yields; 
conversely, resonances may also be regenerated due to quasi-
elastic scattering of hadrons through a resonance state [41–46]. 
Centrality-dependent suppression of ρ(770)0, K∗0, and �(1520)

production was observed in Pb–Pb collisions [47–50], and a hint 
of K∗0 suppression was reported for p–Pb collisions [11]. Obser-
vations of a similar suppression in high-multiplicity pp collisions 
(e.g., the K∗0/K ratio in pp collisions at 

√
s = 7 TeV [8]) might be 

an indication for a hadronic phase with non-zero lifetime in high-
multiplicity pp collisions.

Measurements of identified hadrons can also be used to study 
collective motion in A–A collisions and to search for similar ef-
fects in small collision systems. In non-central A–A collisions, the 
initial spatial anisotropy in the overlap region of the colliding nu-
clei results in azimuthally anisotropic pressure gradients in the 
produced medium, leading to azimuthal anisotropies in particle 
emission. This anisotropic flow is a manifestation of hydrodynamic 
behavior in the QGP produced in the A–A collision system. Mea-
surements of azimuthal correlations and anisotropies in particle 
emission [1–7] also suggest the possibility of collective motion in 
small collision systems. It was observed that the slopes of hadron 
pT spectra increase with increasing multiplicity in pp and p–Pb 
collisions [8–11], while an enhancement in pT-differential baryon-
to-meson ratios (e.g. p/π and �/K0

S ) is observed at intermediate pT
(2 � pT � 7 GeV/c). This is at least qualitatively similar to the be-
havior observed in Pb–Pb collisions [51–54], where the effects can 
be attributed to a collective expansion of the system. In this in-
terpretation, hadrons receive a momentum boost in the direction 
transverse to the beam axis, which increases in magnitude with 
increasing multiplicity and is larger for more massive particles. It 
should be noted, however, that other effects, including recombina-
tion [55–57], may be able to account for the observed behavior. 
The increase in the slopes of the pT spectra is also mirrored in the 
trend of the measured mean transverse momenta 〈pT〉. In contrast 
to the yields, which evolve along a continuous trend with multi-
plicity across different collision systems, the 〈pT〉 values of light-
flavor hadrons follow different trends in pp, p–Pb, and Pb–Pb col-
lisions [10–12,51], with a faster increase for the smaller systems. 
The 〈pT〉 values in the highest multiplicity pp collisions reach, or 
in some cases exceed, the 〈pT〉 values observed in central Pb–Pb 
collisions. The increase in 〈pT〉 in pp collisions is due to changes 
in the shapes of the pT spectra at low pT; for pT � 4 GeV/c, the 
shapes of hadron pT spectra are essentially independent of mul-
tiplicity [9,58]. The color reconnection (CR) mechanism [59–63]
describes the interconnections and interactions between strings 
that originate from different multi-parton interactions. It is im-
plemented in various forms, sometimes including the formation of 
color ropes, in several event generators based on string fragmen-
tation. Color reconnection can also modify the yields of hadron 
species (e.g. increasing the rate of baryon formation) and can lead 
to collective flow-like effects, even in small collision systems and 
in event generators like PYTHIA that do not include QGP formation.

The results reported here will allow the study of K∗0 and φ
production as functions of both energy and multiplicity in pp col-
lisions. The presented results reach higher values of multiplicity 
than previously measured in pp collisions and therefore provide 
important additional information on the production of light-flavor 
hadrons at LHC energies. This paper is organized as follows. The 
ALICE detector and the criteria adopted for data selection are de-
scribed in Section 2. A summary of the data analysis procedure is 
given in Section 3. The results are presented and discussed in Sec-
tion 4, followed by a summary and conclusions in Section 5.
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Table 1
Charged-particle multiplicity densities 
at midrapidity 〈dNch/ dη〉|η|<0.5 for the 
INEL > 0 class and the various V0M 
multiplicity classes [9].

Class 〈dNch/dη〉|η|<0.5

INEL > 0 6.89±0.11
I 25.75±0.40
II 19.83±0.30
III 16.12±0.24
IV 13.76±0.21
V 12.06±0.18
VI 10.11±0.15
VII 8.07±0.12
VIII 6.48±0.10
IX 4.64±0.07
X 2.52±0.04

2. Event and track selection

The ALICE detector is described in detail in [64,65]. The sub-
detectors that are relevant to the analysis described in this paper 
are the Time Projection Chamber (TPC), the Time-of-Flight detector 
(TOF), the Inner Tracking System (ITS), the V0 detectors, and the 
T0 detectors. The TPC and ITS are used for tracking and finding the 
primary vertex, while the TPC and TOF are used for particle identi-
fication. The V0 detectors (scintillator arrays) and the T0 detectors 
(arrays of Cherenkov counters) sit on either side of the nominal 
center of the detector at small angles with respect to the beam-
line. The V0 detectors are used for triggering and to define the 
multiplicity estimator at forward rapidities (pseudorapidity ranges 
−3.7 < η < −1.7 and 2.8 < η < 5.1). The T0 detectors provide tim-
ing information, including a start signal for the TOF.

The K∗0 and φ mesons are reconstructed from a sample of 
5 × 107 pp collisions at 

√
s = 13 TeV recorded in 2015. The mini-

mum bias trigger required hits in both V0 detectors in coincidence 
with proton bunches arriving from both directions. Beam-induced 
background and pile-up events are removed offline; see [9,65] for 
details. Selected events must also have a primary collision vertex 
reconstructed with the two innermost layers of the ITS and lo-
cated within ±10 cm along the beam axis of the nominal center of 
the ALICE detector. Results in this paper are presented for different 
event classes corresponding to subdivisions of the “INEL > 0” event 
class, which is defined as the set of inelastic collisions with at least 
one charged particle in the range |η| < 1 [66]. The INEL > 0 sam-
ple is divided into multiplicity classes based on the total charge 
deposited in both V0 detectors (called the “V0M amplitude”). Thus, 
the event classes are determined by the number of charged parti-
cles at forward rapidities, while the K∗0 and φ yields are measured 
at midrapidity (|y| < 0.5); this is to avoid correlations between 
the K∗0 and φ yields and the multiplicity estimator. Particle yields, 
yield ratios, and mean transverse momenta are plotted for different 
multiplicity classes (which correspond to different centralities for 
A–A collisions) as functions of the corrected mean charged-particle 
multiplicity density at midrapidity 〈dNch/ dη〉|η|<0.5, where η is the 
pseudorapidity in the lab frame. As in [9], the various multiplicity 
classes are denoted using Roman numerals, with class I (X) hav-
ing the highest (lowest) multiplicity. See Table 1 for the values of 
〈dNch/ dη〉|η|<0.5 measured for each V0M multiplicity class.

Since the K∗0 and φ mesons are short-lived (i.e., their lifetimes 
are of the order of ∼ 10−23 s and their decay vertices cannot be 
distinguished from the primary collision vertex), they cannot be 
measured directly by the detector. Instead, they are reconstructed 
via their hadronic decays to charged pions and kaons: K∗0 → π±K∓
(branching ratio 66.503 ± 0.014%) and φ → K+K− (branching ra-
tio 49.2 ± 0.5%) [67]. Charged tracks are selected using a set of 
standard track-quality criteria, described in detail in [11]. Pions 

and kaons are identified using the specific ionization energy loss 
dE/ dx measured in the TPC and the flight time measured in the 
TOF. Where the dE/ dx resolution of the TPC is denoted as σTPC, pi-
ons and kaons are required to have dE/ dx values within 2σTPC of 
the expected value for p > 0.4 GeV/c, within 4σTPC for 0.3 < p <
0.4 GeV/c, and within 6σTPC for p < 0.3 GeV/c (typically, σTPC ∼
5% of the measured dE/ dx value). When a pion or kaon track is 
matched to a hit in the TOF, the time-of-flight value is required to 
be within 3σTOF of the expected value (σTOF ∼ 80 ps) [68]. These 
event- and track-selection criteria are varied from their default val-
ues and the resulting changes in the yields are incorporated into 
the systematic uncertainties, which are summarized in Table 2.

3. Data analysis

The K∗0 and φ signals are extracted using the same invari-
ant mass reconstruction method described in [11,17,48]. Invariant 
mass distributions of unlike-charge πK or KK pairs in the same 
event are reconstructed after particle identification. The combi-
natorial background is estimated using multiple methods. In the 
“like-charge” method, tracks of identical charge from the same 
event are combined to form pairs. This background is 2

√
n−−n++ , 

where n−− and n++ are the number of negative-negative and 
positive-positive pairs in each invariant mass bin, respectively. 
In the “mixed-event” method, tracks from one event are com-
bined with oppositely charged tracks from up to 5 other events 
with similar primary vertex positions and multiplicity percentiles. 
Specifically, it is required that the longitudinal positions of the 
primary vertices differ by less than 1 cm and the multiplicity per-
centiles computed using the V0M amplitude differ by less than 
5%. The mixed-event πK (KK) background is normalized so that 
it has the same integral as the unlike-charge same-event dis-
tribution in the invariant mass range 1.1 < mπK < 1.15 GeV/c2

(1.05 < mKK < 1.08 GeV/c2). In evaluating the systematic uncer-
tainties, the boundaries of the normalization region for the mixed-
event background are varied by ∼ 100 MeV/c2 for the K∗0 analysis 
and ∼ 10 MeV/c2 for φ.

After subtraction of the combinatorial background, the invari-
ant mass distribution consists of a resonance peak sitting on 
top of a residual background of correlated pairs. This correlated 
background contains contributions from jets, resonance decays in 
which a daughter is misidentified, and decays with more than 
two daughters. In the analysis of the φ meson in pp collisions, 
the signal-to-background ratio is large and the background is ob-
served to vary slowly in the region of the peak. For these reasons, 
a third approach is also used to describe the background in the φ
analysis; the combinatorial background is not subtracted, but is in-
stead parameterized together with the residual background using 
a function as described below. This has the advantage of providing 
smaller statistical uncertainties than the other methods.

For pT < 4 GeV/c, all three methods provide good descriptions 
of the KK background and give φ yields within a few percent of 
each other. The final φ yields for pT < 4 GeV/c are the averages 
of those extracted using the three methods of describing the com-
binatorial background, while the spread among the results for the 
different methods is incorporated into the systematic uncertainties. 
As pT increases, the yields of hadrons decrease, along with the 
magnitudes of all of the combinatorial backgrounds studied. The 
mixed-event background, which lacks any contribution from cor-
related pairs, is observed to become smaller than the same-event 
(like- or unlike-charge) combinatorial backgrounds as pT increases, 
eventually tending to 0 for pT values higher than the ranges con-
sidered here. While the mixed-event background could still be 
used for the φ analysis for 4 ≤ pT ≤ 8 GeV/c, the two other tech-
niques have smaller statistical fluctuations in this pT range. Con-
sequently, the mixed-event technique is not used for the analysis 
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Table 2
Sources of systematic uncertainties for the pT spectra of K∗0 and φ reported 
for low, intermediate, and high pT. When only one value is given for one par-
ticle, the uncertainty does not depend on pT. “Signal extraction” includes varia-
tions of the combinatorial background, mixed-event normalization region, fitting 
region, peak shape, and residual background function. The “signal-loss” uncertainty 
is multiplicity-dependent, hence values are quoted for the highest and lowest mul-
tiplicity classes (I and X, respectively). The text “negl.” indicates a negligible uncer-
tainty and “had. int. cross sec.” is short for “hadronic interaction cross section.”

Particle 
pT (GeV/c)

K∗0 φ

0.2 2.2 6.5 0.7 2 6

event/track selection 4.3% 1.6% 2.9% 2.7% 2.9% 3.2%
signal extraction 10.3% 6.7% 7.7% 2.7% 3.1% 3.1%
ITS-TPC matching 2.0% 2.0%
branching ratio negl. 1.0%
material budget 2.0% 0.5% negl. 5.3% 1.0% negl.
had. int. cross sec. 2.6% 1.2% negl. 2.1% 2.6% negl.

signal loss, class I negl. negl.
signal loss, class X 3.9% 2.4% 0.9% 2.3% 4.8% 2.2%

of φ for pT > 4 GeV/c. The mixed-event technique is the primary 
method used for the extraction of the K∗0 yields; variations of the 
yield due to the use of a like-charge background are covered by the 
systematic uncertainties. However, for pT < 0.8 GeV/c in multiplic-
ity class I, the like-charge method is preferred, since it provides a 
better description of the background. At high pT, the mixed-event 
background for the K∗0 analysis exhibits the same behavior as for 
the φ, but the problems appear at higher pT values than for φ. The 
mixed-event technique therefore remains the best available option 
for this K∗0 analysis, even at the high end of the pT range that was 
studied.

The invariant mass distributions are fitted with a peak func-
tion added to a smooth residual background function. For K∗0, the 
peak is described using a Breit-Wigner function. The mass reso-
lution of the detector for the φ → K−K+ channel is of the same 
order of magnitude as the φ width. Therefore, the φ peak is de-
scribed using a Voigt function: a convolution of a Breit-Wigner 
function and a Gaussian which accounts for the mass resolution of 
the detector. The K∗0 and φ width parameters are by default fixed 
to their vacuum values; to calculate the systematic uncertainties, 
these parameters are allowed to vary freely and the φ resolution 
parameter is fixed to the values (approximately 1–2 MeV/c2) ex-
tracted from the Monte Carlo simulations described below. The 
residual background is parameterized using a second-order poly-
nomial. To evaluate the systematic uncertainties in the K∗0 yields, 
a third-order polynomial is used instead. For the φ systematic un-
certainties, a first-order polynomial and a function of the form 
A + BmKK + C

√
mKK − 2M(K±) are used. Here, A, B , and C are 

free parameters, mKK is the kaon-kaon pair invariant mass, and 
M(K±) is the mass of the K± . The fits are performed in the invari-
ant mass intervals 0.75 < mπK < 1.07 GeV/c2 for the K∗0 analysis 
and 0.995 < mKK < 1.09 GeV/c2 for the φ. The ranges of the fits 
are varied by ∼ 20 MeV/c2 for K∗0 and ∼ 10 MeV/c2 for φ; the 
resulting changes in the yields are included in the systematic un-
certainties. Finally, particle yields are extracted by integrating the 
invariant mass distribution in the peak region (0.798 ≤ mπK ≤
0.994 GeV/c2 for K∗0 and 1.01 ≤ mKK ≤ 1.03 GeV/c2 for φ), sub-
tracting the integral of the residual background function under the 
peak, and adding the yields in the tails of the peak fit function out-
side the integration region. The systematic uncertainty arising from 
“signal-extraction”, as quoted in Table 2, covers the aforemen-
tioned variations in the combinatorial background, mixed-event 
normalization region, residual background function, peak function, 
and fit range. An additional uncertainty originates from the proce-
dure used to match track segments in the ITS with tracks in the 
TPC. The branching ratio correction for the φ yield introduces a 1% 
uncertainty, while the corresponding uncertainty for K∗0 is negligi-

ble. Uncertainties in the yields due to uncertainties in the material 
budget of the detector and the cross sections for hadronic interac-
tions in that material are taken from a previous study [11].

The raw particle yields are corrected for the branching ra-
tios, as well as the acceptance and efficiency of the reconstruc-
tion procedure. The correction for acceptance and efficiency (de-
noted as A × ε) is calculated using several different event gen-
erators (PYTHIA6 Perugia 2011 tune [69], PYTHIA8 Monash 2013 
tune [70], and EPOS-LHC [38]), with particles propagated through 
a simulation of the detector using GEANT3 [71]. No dependence 
on the generator is observed and the average A × ε for the three 
generators is used in order to reduce statistical fluctuations. This 
correction is of the same order as reported in [11]. A dependence 
on multiplicity is observed; for pT < 3 GeV/c, A × ε increases 
by ∼ 10% from multiplicity class I to class X. In the calculation 
of A × ε, a weighting procedure is used to account for the fact 
that (1) A × ε may vary significantly over the width of a pT bin 
in the measured spectrum and (2) the simulated pT distributions 
used in the calculation do not necessarily have the same shapes as 
the measured pT distributions. In the Monte Carlo simulations, the 
generated and reconstructed pT spectra (the denominator and nu-
merator in the A × ε calculation, respectively) are constructed in 
narrow pT bins and then weighted using a fit of the measured pT
spectra. The simulated pT spectra after this weighting are used to 
recalculate A × ε in the wider pT bins used for the measured pT
spectra. This procedure (also used in [8,9,47,48,50] and others) is 
repeated until the changes in the correction factor become negli-
gible between iterations; no more than three iterations are needed 
for the process to converge.

A “signal-loss” correction is also applied, which accounts for 
K∗0 and φ mesons in non-triggered events. This is evaluated using 
the same simulations as the acceptance and efficiency. To calcu-
late this correction factor, the simulated resonance pT spectrum 
before triggering and event selection is divided by the correspond-
ing pT spectrum after those selections for each multiplicity class. 
The signal-loss correction typically deviates from unity by < 1%, 
but can deviate by ∼ 10% at low pT for the lowest multiplicity 
class. Different event generators provide different descriptions of 
the non-triggered component of the various multiplicity classes. 
Following [9], the PYTHIA6 simulation is used to obtain the cen-
tral values for this correction, while an uncertainty is evaluated 
by comparing the central values to those given by PYTHIA8 and 
EPOS-LHC. Finally, the pT spectra are normalized by the number 
of accepted events and corrected as in [9] to account for INEL > 0
events that do not pass the event-selection criteria. This correc-
tion, which is calculated using the PYTHIA6 simulation, is most 
important (24%) for the lowest multiplicity class and is < 1% for 
high-multiplicity collisions (classes I-VIII).

4. Results

The pT spectra for K∗0 and φ in the various multiplicity classes, 
as well as the ratios of these spectra to the inclusive INEL > 0 spec-
trum, are shown in Fig. 1. For pT � 4 GeV/c the increase in the 
slopes of the pT spectra from low to high multiplicity is clearly 
visible. For higher pT, the spectra in different multiplicity classes 
all have the same shape, indicating that the processes that change 
the shape of the pT spectra in different multiplicity classes are 
dominant primarily at low pT. A similar behavior was reported for 
unidentified charged hadrons, K0

S , �, �, and � for the same colli-
sion system [9,58].

The pT-integrated yields dN/ dy and mean transverse momenta 
〈pT〉 are extracted from the pT spectra in the different multiplicity 
classes. For each multiplicity class, the φ yield is extrapolated to 
the unmeasured region (pT < 0.5 GeV/c) by fitting a Lévy-Tsallis 
function [72–74] to the measured pT spectra. For multiplicity class 
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Fig. 1. pT spectra of K∗0 and φ in pp collisions at √s = 13 TeV for different multiplicity classes, scaled by factors as indicated. The lower panels show the ratios of the 
multiplicity-dependent pT spectra to the multiplicity-integrated INEL > 0 spectra (with both linear and logarithmic vertical scales).

Fig. 2. Mean transverse momenta 〈pT〉 of K∗0 and φ as functions of 〈dNch/ dη〉|η|<0.5. Results are shown for pp collisions at √s = 13 and 7 TeV [8], as well as for p–Pb 
collisions at √sNN = 5.02 TeV [11]. The measurements in pp collisions at √s = 13 TeV are also compared to values from common event generators [33,38,69,70]. Bars 
represent statistical uncertainties, open boxes represent total systematic uncertainties, and shaded boxes show the systematic uncertainties that are uncorrelated between 
multiplicity classes (negligible for p–Pb).

I (X) the extrapolated φ yield is 12% (34%) of the total yield. The 
K∗0 is measured down to pT = 0 and no low-pT extrapolation is 
needed to calculate dN/ dy for that particle. The extrapolated yield 
at high pT is negligible for both particles. The 〈pT〉 is evaluated us-
ing the mean value of the fit function within each pT bin, weighted 
by the measured yield in each bin. For φ, the fit function is used 
to calculate the yield and mean pT in the low-pT extrapolation 
region, but this is not needed for K∗0. The sources of systematic 
uncertainty for the pT spectra also contribute to the systematic un-
certainties of dN/ dy and 〈pT〉, except for the ITS-TPC matching and 
branching ratio uncertainties, which are pT-independent and do 
not contribute to the uncertainties of the 〈pT〉 values. Additional 
uncertainties in dN/ dy and 〈pT〉 of φ are evaluated by varying the 
fit range and the form of the extrapolation function: Bose-Einstein, 
Boltzmann, and Boltzmann-Gibbs blast-wave [75] distributions, as 
well as an exponential in mT (where mT ≡

√
M2 + p2

T /c2 and M is 
the mass of the particle). The uncertainty in the total φ yield due 
to the extrapolation in class I (X) is 1% (4.4%). There is no extrap-

olation uncertainty for the dN/ dy of K∗0. Varying the fit function 
produces a negligible change in 〈pT〉 for K∗0 and such variations 
are not included in the systematic uncertainties. The systematic 
uncertainties on the yield and 〈pT〉 are obtained by varying the 
parameters used in the default analysis. To investigate whether the 
changes in the yield dN/ dy and 〈pT〉 are correlated between differ-
ent multiplicity bins, the effect of changing each parameter is si-
multaneously evaluated for both the minimum bias event class and 
each individual multiplicity class. The multiplicity-correlated and 
uncorrelated components of the systematic uncertainties are sepa-
rated, with the latter being plotted as shaded boxes in Figs. 2-5.

The mean transverse momenta 〈pT〉 for K∗0 and φ are shown 
in Fig. 2 as functions of 〈dNch/ dη〉|η|<0.5 and compared with other 
ALICE measurements and results from model calculations. The 〈pT〉
values in pp collisions at 

√
s = 7 TeV [8] and 13 TeV follow ap-

proximately the same trend. The 〈pT〉 values of K∗0 and φ rise 
slightly faster as a function of 〈dNch/ dη〉|η|<0.5 in pp collisions 
than in p–Pb collisions for 〈dNch/ dη〉|η|<0.5 � 5; the 〈pT〉 values 
in pp and p–Pb collisions both rise faster than those in Pb–Pb 
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Fig. 3. Mean transverse momenta for K∗0 and φ are compared with those for K0
S , 

(anti)protons, � + �, �− + �
+

, and �− + �
+

in pp collisions at √s = 13 TeV as a 
function of 〈dNch/ dη〉|η|<0.5 [9,18]. The values for � + � in the lowest multiplicity 
class and for �− + �

+
are shifted horizontally for visibility. Bars represent statis-

tical uncertainties, open boxes represent total systematic uncertainties, and shaded 
boxes show the systematic uncertainties that are uncorrelated between multiplicity 
classes.

collisions as discussed in [8,11]. The measured 〈pT〉 values are 
compared with five different model calculations: PYTHIA6 (Peru-
gia 2011 tune) [69], PYTHIA8 (Monash 2013 tune, both with and 
without color reconnection) [70], EPOS-LHC [38], and DIPSY [33]. 
PYTHIA8 without color reconnection provides an almost constant 
〈pT〉 as 〈dNch/ dη〉|η|<0.5 increases; this is a very different behav-
ior with respect to the trends measured by ALICE and given by 
the other model calculations. Turning color reconnection on in 
PYTHIA8 gives better qualitative agreement with the measure-
ments, although the calculation still somewhat underestimates the 
〈pT〉 values for hadrons containing strange quarks (K0

S , K∗0, φ, �, 
�, and �) [9]. Color reconnection in PYTHIA8 introduces a flow-
like effect, resulting in an increase in 〈pT〉 values with increasing 
multiplicity without assuming the formation of a medium that 
could flow [62]. PYTHIA 6 provides a good description of the 〈pT〉
values for φ, but underestimates 〈pT〉 for K∗0. The 〈pT〉 values pre-
dicted by EPOS-LHC are consistent with the measured values for 
φ, but slightly below the values for K∗0. Among the model results 
obtained for the present work, EPOS-LHC gives the best agreement 
with the measured data. DIPSY gives a larger increase in 〈pT〉 from 
low to high 〈dNch/ dη〉|η|<0.5 than is actually observed; this dis-
crepancy is greater for the φ and is also observed for other strange 
hadrons [9].

The values of 〈pT〉 for K∗0 and φ are compared with those for 
K0

S , (anti)protons, and strange baryons in the same collision sys-
tem in Fig. 3. In central A–A collisions, a mass ordering of the 
〈pT〉 values is observed; particles with similar masses (e.g., K∗0, 
p, and φ) have similar 〈pT〉 [11,51]. This behavior has been in-
terpreted as evidence that radial flow could be a dominant factor 
in determining the shapes of hadron pT spectra in central A–A 
collisions. However, this mass ordering breaks down for periph-
eral Pb–Pb collisions, as well as p–Pb and pp collisions (see Fig. 7 
in [14] and measurements reported in [8,9,18]). In pp collisions at √

s = 13 TeV, the 〈pT〉 values for K∗0 are greater than those for 
the more massive proton and � for the same multiplicity classes. 
The 〈pT〉 values for φ exceed those for � and even approach those 
for �, despite the approximately 30% larger mass of the �. This 
could be a manifestation of differences between the pT spectra of 
mesons and baryons or different behavior for resonances in com-
parison to the longer lived particles. In [8], the Boltzmann-Gibbs 
blast-wave model was used to predict the pT spectra of light-
flavor hadrons based on a combined fit of π± , K± , and (anti)proton 
pT spectra. This study suggested that strange hadrons (K0

S , �, �, 
and �) and other light-flavor hadrons might participate in a com-

mon radial flow, even in pp collisions, but that K∗0 and φ do 
not follow this common radial expansion (for details of this study, 
see [8]). The same behavior could result in the violation of mass 
ordering for 〈pT〉 seen at 

√
s = 13 TeV. A deviation of the 〈pT〉 val-

ues of short-lived resonances above the trend for other hadrons 
could in principle be explained by re-scattering of the resonance-
decay daughters during the hadronic phase of the collision, which 
is expected to be most important at low pT [41]. However, the 
strongest re-scattering phenomena occur in central A–A collisions, 
where no deviation from mass ordering is observed. In addition, 
such effects would be stronger for the shorter lived K∗0 than for 
the φ, which decays predominantly outside the hadronic phase 
(even in central A–A collisions) and should be minimally affected 
by re-scattering. On the other hand, the observed violation of mass 
ordering could be due to differences between baryon and meson 
pT spectra. Baryon-to-meson ratios such as p/π and �/K0

S are ob-
served [8,10] to be enhanced at intermediate pT (∼ 3 GeV/c), even 
in pp and p–Pb collisions, while similar enhancement is not ob-
served in meson-to-meson ratios like K/π. Differences between 
baryons and mesons have also been observed in the mT spectra 
of hadrons measured at RHIC energies [76,77]. For mT � 1 GeV/c, 
meson mT spectra follow one common trend, while baryons follow 
a different, more steeply falling trend as a function of mT. Such 
differences between the shapes of baryon and meson spectra may 
result in mesons having larger 〈pT〉 values than baryons with com-
parable masses. The breakdown of mass ordering, with 〈pT(p)〉 <
〈pT(K∗0)〉 ≈ 〈pT(�)〉 < 〈pT(φ)〉 ≈ 〈pT(�)〉, is a common feature of 
the models shown in Fig. 2. This behavior may be a consequence 
of hadron production via fragmentation at high pT or mT; meson 
formation requires only the production of a quark-antiquark pair, 
while baryon formation requires a diquark-antidiquark pair [76].

The pT-integrated yields of K∗0 and φ are shown in Fig. 4 as 
functions of 〈dNch/ dη〉|η|<0.5. For both particles, dN/ dy exhibits an 
approximately linear increase with increasing 〈dNch/ dη〉|η|<0.5. Re-
sults for pp collisions at 

√
s = 7 and 13 TeV and for p–Pb collisions 

at 
√

sNN = 5.02 TeV follow approximately the same trends. This in-
dicates that, for a given multiplicity, K∗0 and φ production rates 
do not depend on the collision system or energy. Similar results 
are seen for strange hadrons [9]. The dN/ dy values are also com-
pared with those obtained from the same models studied for the 
discussion of 〈pT〉. For the K∗0, EPOS-LHC and PYTHIA8 without 
color reconnection give the best descriptions, the other PYTHIA 
calculations exhibit fair agreement with the measured data, and 
DIPSY tends to overestimate the K∗0 yields. The φ yields tend to be 
slightly overestimated by EPOS-LHC and slightly underestimated by 
DIPSY, while the PYTHIA calculations underestimate the φ yields 
by about 40%. The selected PYTHIA tunes also underestimate the 
yields of �, �, and � by similar factors [9]. For these baryons, 
the EPOS-LHC description becomes less accurate with increasing 
strangeness content; DIPSY describes the � and � yields well, but 
underestimates the yields of � [9].

The ratios of the pT-integrated particle yields K∗0/K, φ / π, φ /K, 
and � / φ are shown in Fig. 5 as functions of 〈dNch/ dη〉|η|<0.5 [9,18]. 
Within their uncertainties the ratios in pp collisions at 

√
s = 7 

and 13 TeV and in p–Pb collisions at 
√

sNN = 5.02 TeV are con-
sistent for similar values of 〈dNch/ dη〉|η|<0.5. There is a hint of a 
decrease in K∗0/K with increasing 〈dNch/ dη〉|η|<0.5 in all three col-
lision systems; for pp collisions at 

√
s = 13 TeV the K∗0/K ratio in 

the highest multiplicity class is below the low-multiplicity value at 
the 2.3σ level (considering only the multiplicity-uncorrelated un-
certainties). The decrease in K∗0/K in central Pb–Pb collisions [11,
48,49] has been attributed to re-scattering of the K∗0 decay prod-
ucts in the hadronic phase of the collision [46]. It remains an open 
question whether a decrease in pp collisions could be caused by 
the same mechanism. EPOS-LHC provides the best description of 
the K∗0/K ratio in pp collisions at 

√
s = 13 TeV. PYTHIA and DIPSY 
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Fig. 4. pT-integrated yields dN/ dy of K∗0 (average of the particle and antiparticle) and φ as functions of 〈dNch/ dη〉|η|<0.5. Results are shown for pp collisions at √s = 13 and 
7 TeV [8], as well as for p–Pb collisions at √sNN = 5.02 TeV [11]. The measurements in pp collisions at √s = 13 TeV are also compared with values from common event 
generators [33,38,69,70]. Bars represent statistical uncertainties, open boxes represent total systematic uncertainties, and shaded boxes show the systematic uncertainties that 
are uncorrelated between multiplicity classes.

Fig. 5. Ratios of pT-integrated particle yields K∗0/K, φ / π, φ /K, and � / φ in pp 
collisions at √s = 13 TeV as functions of 〈dNch/ dη〉|η|<0.5 [9,18]. These measure-
ments are compared with data from pp collisions at √s = 7 TeV [8], p–Pb collisions 
at √

sNN = 5.02 TeV [11,13], and Pb–Pb collisions at √
sNN = 2.76 TeV [48,49]. 

The widths of the boxes for pp collisions at √
s = 13 TeV and p–Pb collisions 

do not represent the uncertainties of 〈dNch/ dη〉|η|<0.5. The measurements for pp 
collisions at √s = 13 TeV are also compared to results from common event gener-
ators [33,38,69,70] and a Canonical Statistical Model calculation [8].

tend to overestimate the ratio for large multiplicities and do not 
reproduce the apparent decrease with increasing 〈dNch/ dη〉|η|<0.5.

The φ / π ratio gradually increases from the lowest-multiplicity 
pp collisions to mid-central Pb–Pb collisions. This ratio compares 
the yields of two mesons with zero net strangeness, one of which 
has hidden strangeness. The canonical statistical model (CSM) [8]
with a chemical freeze-out temperature of 156 MeV predicts that 
this ratio should have little dependence on the multiplicity, since 
the φ would not be subject to canonical suppression. The results 
of the CSM calculation are inconsistent with the observed trend 
of the φ / π ratio. For pp collisions at 

√
s = 13 TeV, the increasing 

trend of the φ / π ratio is reproduced fairly well by the EPOS-LHC 
and DIPSY models, while the PYTHIA calculations underestimate 
the magnitude of the ratio. The φ /K ratio also follows a simi-
lar trend in the three collision systems. It is fairly constant as a 

function of 〈dNch/ dη〉|η|<0.5, although there is an apparent small 
increase with 〈dNch/ dη〉|η|<0.5 from the lowest multiplicities up 
to 〈dNch/ dη〉|η|<0.5 ≈ 400. EPOS-LHC somewhat overestimates the 
φ /K ratio, but is closer to the measured values than PYTHIA, which 
significantly underestimates φ /K. While PYTHIA6 and DIPSY under-
estimate the φ /K ratio, both results exhibit small increases with 
increasing multiplicity, which is qualitatively similar to the mea-
sured trend. The CSM calculation does not describe the behavior 
of the measured φ /K ratio for the 〈dNch/ dη〉|η|<0.5 range spanned 
by the ALICE pp measurements.

In addition to comparing the yields of φ to pions and kaons, 
it may be instructive to compare � and φ. These two particles 
contain the same number of strange valence (anti)quarks: φ is a 
ss̄ bound state and � contains two strange valence quarks. How-
ever, � would be subject to canonical suppression, unlike the 
strangeness-neutral φ. Fig. 5 also shows the � / φ ratio in pp, 
p–Pb, and Pb–Pb collisions. The ratio increases with increasing 
〈dNch/ dη〉|η|<0.5 for low-multiplicity collisions and is then fairly 
constant for a wide range of multiplicities: from pp and p–Pb colli-
sions at 〈dNch/ dη〉|η|<0.5 ≈ 7 to central Pb–Pb collisions. There is a 
possible small increase in the � / φ ratio from 〈dNch/ dη〉|η|<0.5 ≈ 7
to the highest-multiplicity p–Pb collisions, as well as a difference 
on the 1.5σ level between the p–Pb and Pb–Pb measurements 
at 〈dNch/ dη〉|η|<0.5 ≈ 50. Nevertheless, there is no clear increase 
in the ratio for 〈dNch/ dη〉|η|<0.5 ≥ 7. The decrease in � / φ with 
decreasing 〈dNch/ dη〉|η|<0.5 for low multiplicities could be inter-
preted as evidence of canonical suppression in small systems; the 
canonical statistical model predicts a decrease in the � / φ ratio 
with decreasing 〈dNch/ dη〉|η|<0.5 that is qualitatively similar to the 
measured data. However, canonical suppression would also result 
in an increase in the φ /K ratio with decreasing 〈dNch/ dη〉|η|<0.5, 
which is not observed. Given that � and K have different num-
bers of strange valence (anti)quarks, it is expected that � would 
be more affected by canonical suppression [8]. It will be interest-
ing to extend the study of the φ /K ratio to lower multiplicities 
to test if there is any increase in this ratio due to canonical sup-
pression of kaon yields. The measured multiplicity evolution of the 
� / φ and φ /K ratios suggests that the φ meson behaves as if it 
had between 1 and 2 units of strangeness: i.e., � is enhanced 
more than φ, which is (possibly) enhanced more than K. In addi-
tion, there are indications of increases in the p/π and �/K0

S ratios 
with increasing 〈dNch/ dη〉|η|<0.5 [8,9] which are qualitatively simi-
lar to the increase in � / φ, but smaller in magnitude. This suggests 
that baryon-meson differences (e.g., baryon suppression or meson 
enhancement) might be a contributing factor, but not the only rea-
son, for the low-multiplicity behavior of the � / φ ratio. EPOS-LHC, 
which includes core-corona effects, gives an increasing trend in 
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Fig. 6. Ratios of particle yields K∗0/K0
S and φ /K0

S as functions of pT [9] for low (X) and high (II) multiplicity classes. The middle panels show the double ratios: the 
measurements in class II divided by those in class X. The significance of the deviations of the double ratios from unity is plotted in the lower panels, with dashed lines 
indicating a deviation at the 3σ level. Bars represent the statistical uncertainties, while boxes represent the part of the systematic uncertainty that is uncorrelated between 
multiplicity classes II and X.

� / φ with increasing 〈dNch/ dη〉|η|<0.5, although the values of the 
ratio and its flattening at high multiplicity are not particularly well 
described. In contrast, PYTHIA gives a constant or decreasing value 
of � / φ with increasing 〈dNch/ dη〉|η|<0.5, which is inconsistent with 
the observed trend. DIPSY, which includes rope hadronization, de-
scribes the � / φ ratio over a wide 〈dNch/ dη〉|η|<0.5 range, only 
failing to describe the decrease in the ratio with decreasing multi-
plicity for the lowest 〈dNch/ dη〉|η|<0.5 values.

The pT dependence of the particle ratios K∗0/K0
S and φ /K0

S
is shown in Fig. 6 for low and high multiplicity classes (X and 
II, respectively). Both ratios increase at low pT and saturate for 
pT � 2.5 GeV/c; however, for pT � 2.5 GeV/c the K∗0/K0

S and φ /K0
S

ratios in the high multiplicity class (II) are less than in the lowest 
multiplicity class (X). This behavior is qualitatively consistent with 
observations in Pb–Pb collisions at 

√
sNN = 2.76 TeV [49], where 

the K∗0/K and φ /K ratios at low pT in central collisions are lower 
compared to pp collisions. The decrease in the low-pT K∗0/K ratio 
in central Pb–Pb collisions with respect to pp collisions is larger 
than the decrease in the φ /K ratio, which could be expected due 
to the presence of re-scattering effects. To quantify the decrease 
in these particle ratios in pp collisions at 

√
s = 13 TeV, the mid-

dle panels of Fig. 6 show the double ratios: the high-multiplicity 
values divided by the low multiplicity values. The double ratios 
are consistent with unity for pT � 2.5 GeV/c, which suggests a 
common evolution of the pT spectra for these three mesons. How-
ever for pT � 2.5 GeV/c, the suppression of the K∗0/K0

S ratio from 
low to high-multiplicity collisions is greater than the suppression 
of the φ /K0

S ratio. This is quantified in the lower panels of Fig. 6, 
where the significance of the deviations of the double ratios from 
unity is shown. For pT < 1.2 GeV/c, the K∗0/K0

S double ratio de-
viates from unity by 4–6.6 times its standard deviation, while 
the φ /K0

S double ratio deviates from unity at about the 3σ level 
for 0.6 < pT < 1.4 GeV/c. This difference may be a hint of re-
scattering in small collision systems.

5. Conclusions

The ALICE Collaboration has reported measurements of the K∗0

and φ mesons at midrapidity in pp collisions at 
√

s = 13 TeV 
in multiplicity classes. The results have many qualitative simi-
larities to those reported for longer lived hadrons in the same 
collision system [9,18,19] and are consistent with previous mea-
surements [8] of K∗0 and φ in pp collisions at 

√
s = 7 TeV. The 

slopes of the pT spectra of K∗0 and φ are observed to increase 
with increasing multiplicity for pT � 4 GeV/c, which is qualita-
tively similar to the collective radial expansion observed in Pb–Pb 
collisions, but can also be explained through color reconnection. 
In contrast, the shapes of the pT spectra are the same for all 
multiplicity classes at high pT. Both the pT-integrated yields and 
the mean transverse momenta increase with increasing charged-
particle multiplicity at midrapidity, with approximately linear in-
creases for the yields. It appears that, for a given multiplicity 
value, the yields of these particles are independent of collision sys-
tem and energy, while the 〈pT〉 values follow different trends for 
different collision systems. The mass ordering of the 〈pT〉 values 
observed in central Pb–Pb collisions is violated in pp collisions, 
with the K∗0 and φ mesons having greater 〈pT〉 than baryons 
with similar masses. The EPOS-LHC model describes the multi-
plicity dependence of the yields and 〈pT〉 fairly well for pp col-
lisions at 

√
s = 13 TeV. There are hints that the yields of K∗0 may 

be reduced, particularly at low pT and high multiplicity, by re-
scattering of its decay daughters in a short-lived hadron-gas phase 
in pp collisions; similar behavior is observed in Pb–Pb collisions. 
The φ / π ratio increases with increasing 〈dNch/ dη〉|η|<0.5 and the 
yields of the φ meson evolve similarly to particles with 1 and 
2 units of open strangeness. The φ /K and � / φ ratios are both 
fairly constant, exhibiting only slow increases over wide multi-
plicity ranges, although the � / φ ratio decreases with decreasing 
〈dNch/ dη〉|η|<0.5 for the lowest multiplicity pp and p–Pb collisions. 
In high-multiplicity pp and p–Pb collisions, these ratios reach val-
ues observed in central Pb–Pb collisions. This multiplicity evolution 
is not consistent with simple descriptions of canonical suppression, 
but is qualitatively described by the DIPSY model, which includes 
rope hadronization effects. These new measurements of the φ pro-
vide further constraints for theoretical models of strangeness pro-
duction in small collision systems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the 



ALICE Collaboration / Physics Letters B 807 (2020) 135501 9

outstanding performance of the LHC complex. The ALICE Collab-
oration gratefully acknowledges the resources and support pro-
vided by all Grid centres and the Worldwide LHC Computing Grid 
(WLCG) collaboration. The ALICE Collaboration acknowledges the 
following funding agencies for their support in building and run-
ning the ALICE detector: A. I. Alikhanyan National Science Labora-
tory (Yerevan Physics Institute) Foundation (ANSL), State Commit-
tee of Science and World Federation of Scientists (WFS), Armenia; 
Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 
2467-N36] and Nationalstiftung für Forschung, Technologie und 
Entwicklung, Austria; Ministry of Communications and High Tech-
nologies, National Nuclear Research Center, Azerbaijan; Conselho 
Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fi-
nanciadora de Estudos e Projetos (Finep), Fundação de Amparo à 
Pesquisa do Estado de São Paulo (FAPESP) and Universidade Fed-
eral do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of 
China (MOEC), Ministry of Science & Technology of China (MSTC) 
and National Natural Science Foundation of China (NSFC), China; 
Ministry of Science and Education and Croatian Science Foun-
dation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo 
Nuclear (CEADEN), Cubaenergía, Cuba; The Ministry of Education, 
Youth and Sports of the Czech Republic, Czech Republic; The Dan-
ish Council for Independent Research Natural Sciences, the Villum 
Fonden and Danish National Research Foundation (DNRF), Den-
mark; Helsinki Institute of Physics (HIP), Finland; Commissariat à 
l’Énergie Atomique (CEA), Institut National de Physique Nucléaire 
et de Physique des Particules (IN2P3) and Centre National de la 
Recherche Scientifique (CNRS) and Région des Pays de la Loire, 
France; Bundesministerium für Bildung und Forschung (BMBF) 
and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Ger-
many; General Secretariat for Research and Technology, Ministry of 
Education, Research and Religions, Greece; National Research De-
velopment and Innovation Office, Hungary; Department of Atomic 
Energy, Government of India (DAE), Department of Science and 
Technology, Government of India (DST), University Grants Com-
mission, Government of India (UGC) and Council of Scientific and 
Industrial Research (CSIR), India; Indonesian Institute of Science, 
Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi 
e Ricerche Enrico Fermi and Instituto Nazionale di Fisica Nucle-
are (INFN), Italy; Institute for Innovative Science and Technology, 
Nagasaki Institute of Applied Science (IIST), Japanese Ministry of 
Education, Culture, Sports, Science and Technology (MEXT) and 
Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; 
Consejo Nacional de Ciencia y Tecnología (CONACYT), through 
Fondo de Cooperación Internacional en Ciencia y Tecnología (FON-
CICYT) and Dirección General de Asuntos del Personal Academico 
(DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk 
Onderzoek (NWO), Netherlands; The Research Council of Norway, 
Norway; Commission on Science and Technology for Sustainable 
Development in the South (COMSATS), Pakistan; Pontificia Uni-
versidad Católica del Perú, Peru; Ministry of Science and Higher 
Education and National Science Centre, Poland; Korea Institute of 
Science and Technology Information and National Research Foun-
dation of Korea (NRF), Republic of Korea; Ministry of Education 
and Scientific Research, Institute of Atomic Physics and Ministry of 
Research and Innovation and Institute of Atomic Physics, Romania; 
Joint Institute for Nuclear Research (JINR), Ministry of Education 
and Science of the Russian Federation, National Research Centre 
Kurchatov Institute, Russian Science Foundation and Russian Foun-
dation for Basic Research, Russia; Ministry of Education, Science, 
Research and Sport of the Slovak Republic, Slovakia; National Re-
search Foundation of South Africa, South Africa; Swedish Research 
Council (VR) and Knut and Alice Wallenberg Foundation (KAW), 
Sweden; European Organization for Nuclear Research, Switzerland; 
Suranaree University of Technology (SUT), National Science and 
Technology Development Agency (NSDTA) and Office of the Higher 

Education Commission under NRU project of Thailand, Thailand; 
Turkish Atomic Energy Agency (TAEK), Turkey; National Academy 
of Sciences of Ukraine, Ukraine; Science and Technology Facilities 
Council (STFC), United Kingdom; National Science Foundation of 
the United States of America (NSF) and United States Department 
of Energy, Office of Nuclear Physics (DOE NP), United States of 
America.

References

[1] ALICE Collaboration, B. Abelev, et al., Multi-particle azimuthal correlations in 
p–Pb and Pb–Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 90 
(2014) 054901, arXiv:1406 .2474.

[2] ALICE Collaboration, S. Acharya, et al., Investigations of anisotropic flow using 
multi-particle azimuthal correlations in pp, p–Pb, Xe–Xe, and Pb–Pb collisions 
at the LHC, Phys. Rev. Lett. 123 (2019) 142301, arXiv:1903 .01790.

[3] CMS Collaboration, V. Khachatryan, et al., Evidence for collectivity in pp colli-
sions at the LHC, Phys. Lett. B 765 (2017) 193–220, arXiv:1606 .06198.

[4] ALICE Collaboration, B. Abelev, et al., Long-range angular correlations on the 
near and away side in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 719 
(2013) 29–41, arXiv:1212 .2001.

[5] CMS Collaboration, V. Khachatryan, et al., Evidence for collective multi-particle 
correlations in pPb collisions, Phys. Rev. Lett. 115 (2015) 012301, arXiv:1502 .
05382.

[6] ATLAS Collaboration, G. Aad, et al., Observation of long-range elliptic 
anisotropies in √s = 13 and 2.76 TeV pp collisions with the ATLAS detector, 
Phys. Rev. Lett. 116 (2016) 172301, arXiv:1509 .04776.

[7] ATLAS Collaboration, M. Aaboud, et al., Measurement of multi-particle az-
imuthal correlations in pp, p–Pb and low-multiplicity Pb–Pb collisions with 
the ATLAS detector, Eur. Phys. J. C 77 (2017) 428, arXiv:1705 .04176.

[8] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of light-flavor 
hadron production in pp collisions at √

s = 7 TeV, Phys. Rev. C 99 (2019) 
024906, arXiv:1807.11321.

[9] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of 
(multi-)strange hadron production in proton-proton collisions at √s = 13 TeV, 
Eur. Phys. J. C 80 (2020) 167, arXiv:1908 .01861.

[10] ALICE Collaboration, B. Abelev, et al., Multiplicity dependence of pion, kaon, 
proton and Lambda production in p–Pb collisions at √sNN = 5.02 TeV, Phys. 
Lett. B 728 (2014) 25–38, arXiv:1307.6796.

[11] ALICE Collaboration, J. Adam, et al., Production of K∗(892)0 and φ(1020) in 
p–Pb collisions at √sNN = 5.02 TeV, Eur. Phys. J. C 76 (2016) 245, arXiv:1601.
07868.

[12] ALICE Collaboration, J. Adam, et al., Enhanced production of multi-strange 
hadrons in high-multiplicity proton-proton collisions, Nat. Phys. 13 (2017) 
535–539, arXiv:1606 .07424.

[13] ALICE Collaboration, J. Adam, et al., Multi-strange baryon production in p–Pb 
collisions at √sNN = 5.02 TeV, Phys. Lett. B 758 (2016) 389–401, arXiv:1512 .
07227.

[14] ALICE Collaboration, D. Adamová, et al., Production of 	(1385)± and �(1530)0

in p–Pb collisions at √sNN = 5.02 TeV, Eur. Phys. J. C 77 (2017) 389, arXiv:
1701.07797.

[15] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of light 
(anti-)nuclei production in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 
800 (2020) 135043, arXiv:1906 .03136.

[16] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of 
(anti-)deuteron production in pp collisions at √

s = 7 TeV, Phys. Lett. B 
794 (2019) 50–63, arXiv:1902 .09290.

[17] ALICE Collaboration, S. Acharya, et al., Production of light-flavor hadrons in pp 
collisions at √s = 7 and √s = 13 TeV, arXiv:2005 .11120 [nucl -ex].

[18] ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of π, K, and p 
production in pp collisions at √s = 13 TeV, arXiv:2003 .02394.

[19] ALICE Collaboration, S. Acharya, et al., (Anti-)deuteron production in pp colli-
sions at √s = 13 TeV, arXiv:2003 .03184.

[20] NA57 Collaboration, F. Antinori, et al., Enhancement of hyperon production at 
central rapidity in 158 A GeV/c Pb–Pb collisions, J. Phys. G 32 (2006) 427–442, 
arXiv:nucl -ex /0601021.

[21] STAR Collaboration, B.I. Abelev, et al., Enhanced strange baryon production in 
Au+Au collisions compared to p + p at √sNN = 200 GeV, Phys. Rev. C 77 (2008) 
044908, arXiv:0705 .2511.

[22] ALICE Collaboration, B. Abelev, et al., Multistrange baryon production at mid-
rapidity in Pb–Pb collisions at √

sNN = 2.76 TeV, Phys. Lett. B 728 (2014) 
216–227, arXiv:1307.5543, Phys. Lett. B 734 (2014) 409–410 (Erratum).

[23] J. Cleymans, I. Kraus, H. Oeschler, K. Redlich, S. Wheaton, Statistical model pre-
dictions for particle ratios at √sNN = 5.5 TeV, Phys. Rev. C 74 (2006) 034903, 
arXiv:hep -ph /0604237.

[24] A. Andronic, P. Braun-Munzinger, J. Stachel, Hadron production in central 
nucleus nucleus collisions at chemical freeze-out, Nucl. Phys. A 772 (2006) 
167–199, arXiv:nucl -th /0511071.

http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBB529A8F37C259DBBCEAE6698ABA54B7s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBB529A8F37C259DBBCEAE6698ABA54B7s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBB529A8F37C259DBBCEAE6698ABA54B7s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibC4901F08F7935C4EF15668680B43A954s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibC4901F08F7935C4EF15668680B43A954s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibC4901F08F7935C4EF15668680B43A954s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib385CB37B466F51D853C0E1AE2BC525BBs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib385CB37B466F51D853C0E1AE2BC525BBs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib0A9B8F93D04A718EA3634892AC96E6C4s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib0A9B8F93D04A718EA3634892AC96E6C4s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib0A9B8F93D04A718EA3634892AC96E6C4s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibD1EA4B152284B99D4773C470A929DE4Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibD1EA4B152284B99D4773C470A929DE4Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibD1EA4B152284B99D4773C470A929DE4Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib91E7EDB416C96987E13FA3C588037426s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib91E7EDB416C96987E13FA3C588037426s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib91E7EDB416C96987E13FA3C588037426s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib476AA4A6DBB6E44DD883BA5F3A635A00s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib476AA4A6DBB6E44DD883BA5F3A635A00s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib476AA4A6DBB6E44DD883BA5F3A635A00s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6B1BEC88A23348737FAECDCF584D6426s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6B1BEC88A23348737FAECDCF584D6426s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6B1BEC88A23348737FAECDCF584D6426s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib1CBA9F11471F1D2CD2A4C90375E5093Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib1CBA9F11471F1D2CD2A4C90375E5093Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib1CBA9F11471F1D2CD2A4C90375E5093Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibFC057A27B4901FF37363F260F0C8DB54s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibFC057A27B4901FF37363F260F0C8DB54s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibFC057A27B4901FF37363F260F0C8DB54s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib143CF78EDF24918B0B2C7E68E2973209s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib143CF78EDF24918B0B2C7E68E2973209s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib143CF78EDF24918B0B2C7E68E2973209s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibB28E6B00EDBA456AA5E80F0407BE5EB0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibB28E6B00EDBA456AA5E80F0407BE5EB0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibB28E6B00EDBA456AA5E80F0407BE5EB0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6570F26DB37E017F23B8AF369DA47316s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6570F26DB37E017F23B8AF369DA47316s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6570F26DB37E017F23B8AF369DA47316s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib725DD4BC8AFCF852D3F3E8ED3E9C887Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib725DD4BC8AFCF852D3F3E8ED3E9C887Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib725DD4BC8AFCF852D3F3E8ED3E9C887Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibC903FE978CFC281080FA73C97BA976BAs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibC903FE978CFC281080FA73C97BA976BAs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibC903FE978CFC281080FA73C97BA976BAs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib25BA1A6740BE6760FCF4FB0FE2661524s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib25BA1A6740BE6760FCF4FB0FE2661524s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib25BA1A6740BE6760FCF4FB0FE2661524s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3360441E17C35CE1C2BDA879667EB6D5s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3360441E17C35CE1C2BDA879667EB6D5s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib937CD7DD295642C0F32B65A34ABBE098s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib937CD7DD295642C0F32B65A34ABBE098s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF398BB7EC443B8BFE24E234AEB27A70Bs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF398BB7EC443B8BFE24E234AEB27A70Bs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9FB495B91D21153C56C8CEFD32ECCD97s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9FB495B91D21153C56C8CEFD32ECCD97s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9FB495B91D21153C56C8CEFD32ECCD97s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib2936CFF947BE314C3705223F495A89DEs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib2936CFF947BE314C3705223F495A89DEs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib2936CFF947BE314C3705223F495A89DEs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib391AB2B12095E37F9DA4E58A223D75CCs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib391AB2B12095E37F9DA4E58A223D75CCs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib391AB2B12095E37F9DA4E58A223D75CCs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib40DCCC925BE37C29784518612E9EE073s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib40DCCC925BE37C29784518612E9EE073s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib40DCCC925BE37C29784518612E9EE073s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib43385952716BE39F2AA57EDCA55D3348s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib43385952716BE39F2AA57EDCA55D3348s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib43385952716BE39F2AA57EDCA55D3348s1


10 ALICE Collaboration / Physics Letters B 807 (2020) 135501

[25] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, The thermal model on 
the verge of the ultimate test: particle production in Pb–Pb collisions at the 
LHC, J. Phys. G 38 (2011) 124081, arXiv:1106 .6321.

[26] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Decoding the phase 
structure of QCD via particle production at high energy, Nature 561 (2018) 
321–330, arXiv:1710 .09425.

[27] S. Hamieh, K. Redlich, A. Tounsi, Canonical description of strangeness en-
hancement from p–A to Pb–Pb collisions, Phys. Lett. B 486 (2000) 61–66, 
arXiv:hep -ph /0006024.

[28] J. Cleymans, A. Foerster, H. Oeschler, K. Redlich, F. Uhlig, On the chemical equi-
libration of strangeness-exchange reactions in heavy-ion collisions, Phys. Lett. 
B 603 (2004) 146–151, arXiv:hep -ph /0406108.

[29] T.S. Biro, H.B. Nielsen, J. Knoll, Colour rope model for extreme relativistic heavy 
ion collisions, Nucl. Phys. B 245 (1984) 449–468.

[30] A. Bialas, W. Czyz, Chromoelectric flux tubes and the transverse-momentum 
distribution in high-energy nucleus-nucleus collisions, Phys. Rev. D 31 (1985) 
198.

[31] N. Armesto, M.A. Braun, E.G. Ferreiro, C. Pajares, Strangeness enhancement and 
string fusion in nucleus-nucleus collisions, Phys. Lett. B 344 (1995) 301–307.

[32] E. Avsar, G. Gustafson, L. Lönnblad, Small-x dipole evolution beyond the 
large-nc limit, J. High Energy Phys. 1 (2007) 11, arXiv:hep -ph /0610157.

[33] C. Flensburg, G. Gustafson, L. Lönnblad, Inclusive and exclusive observables 
from dipoles in high energy collisions, J. High Energy Phys. 8 (2011) 103, 
arXiv:1103 .4321.

[34] C. Bierlich, G. Gustafson, L. Lönnblad, A. Tarasov, Effects of overlapping strings 
in pp collisions, J. High Energy Phys. 3 (2015) 148, arXiv:1412 .6259.

[35] H.J. Drescher, et al., Parton-based Gribov-Regge theory, Phys. Rep. 350 (2001) 
93–289, arXiv:hep -ph /0007198.

[36] K. Werner, et al., Event-by-event simulation of the three-dimensional hydrody-
namic evolution from flux tube initial conditions in ultrarelativistic heavy ion 
collisions, Phys. Rev. C 82 (2010) 044904, arXiv:1004 .0805.

[37] K. Werner, B. Guiot, I. Karpenko, T. Pierog, Analysing radial flow features in p–
Pb and p-p collisions at several TeV by studying identified particle production 
in EPOS3, Phys. Rev. C 89 (2014) 064903, arXiv:1312 .1233.

[38] T. Pierog, et al., EPOS LHC: test of collective hadronization with LHC data, Phys. 
Rev. C 92 (2016) 034906, arXiv:1306 .0121.

[39] Y. Kanakubo, M. Okai, Y. Tachibana, T. Hirano, Enhancement of strange baryons 
in high-multiplicity proton-proton and proton-nucleus collisions, Prog. Theor. 
Exp. Phys. 2018 (2018) 121D01, arXiv:1806 .10329.

[40] Y. Akamatsu, et al., Dynamically integrated transport approach for heavy-ion 
collisions at high baryon density, Phys. Rev. C 98 (2018) 024909, arXiv:1805 .
09024.

[41] M. Bleicher, H. Stöcker, Dynamics and freeze-out of hadron resonances at RHIC, 
J. Phys. G 30 (2004) S111–S118, arXiv:hep -ph /0312278.

[42] G. Torrieri, J. Rafelski, Strange hadron resonances as a signature of freeze-out 
dynamics, Phys. Lett. B 509 (2001) 239–245, arXiv:hep -ph /0103149.

[43] C. Markert, R. Bellwied, I. Vitev, Formation and decay of hadronic resonances 
in the QGP, Phys. Lett. B 669 (2008) 92–97, arXiv:0807.1509.

[44] S. Vogel, J. Aichelin, M. Bleicher, Resonances as a possible observable of hot 
and dense nuclear matter, J. Phys. G 37 (2010) 094046, arXiv:1001.3260.

[45] M. Bleicher, J. Aichelin, Strange resonance production: probing chemical and 
thermal freeze-out in relativistic heavy ion collisions, Phys. Lett. B 530 (2002) 
81–87, arXiv:hep -ph /0201123.

[46] A.G. Knospe, et al., Hadronic resonance production and interaction in par-
tonic and hadronic matter in EPOS3 with and without the hadronic afterburner 
UrQMD, Phys. Rev. C 93 (2016) 014911, arXiv:1509 .07895.

[47] ALICE Collaboration, S. Acharya, et al., ρ(770) production in pp and Pb–Pb col-
lisions at √sNN = 2.76 TeV, Phys. Rev. C 99 (2019) 064901, arXiv:1805 .04365.

[48] ALICE Collaboration, B. Abelev, et al., K∗(892)0 and φ(1020) production in Pb–
Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 91 (2015) 024609, arXiv:1404 .
0495.

[49] ALICE Collaboration, J. Adam, et al., K∗(892)0 and φ(1020) production at high 
transverse momentum in pp and Pb–Pb collisions at √sNN = 2.76 TeV, Phys. 
Rev. C 95 (2017) 064606, arXiv:1702 .00555.

[50] ALICE Collaboration, S. Acharya, et al., Suppression of �(1520) production in 
central Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 99 (2018) 024905, 
arXiv:1805 .04361.

[51] ALICE Collaboration, B. Abelev, et al., Centrality dependence of π, K, and p 
production in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 88 (2013) 
044910, arXiv:1303 .0737.

[52] ALICE Collaboration, B. Abelev, et al., Production of charged pions, kaons 
and protons at large transverse momenta in pp and Pb–Pb collisions at √

sNN = 2.76 TeV, Phys. Lett. B 736 (2014) 196–207, arXiv:1401.1250.
[53] ALICE Collaboration, S. Acharya, et al., Production of charged pions, kaons and 

(anti-)protons in Pb–Pb and inelastic pp collisions at √sNN = 5.02 TeV, arXiv:
1910 .07678.

[54] ALICE Collaboration, B. Abelev, et al., K0
S and � production in Pb–Pb collisions 

at √sNN = 2.76 TeV, Phys. Rev. Lett. 111 (2013) 222301, arXiv:1307.5530.
[55] V. Greco, C.M. Ko, P. Levai, Parton coalescence and anti-proton / pion anomaly 

at RHIC, Phys. Rev. Lett. 90 (2003) 202302, arXiv:nucl -th /0301093.

[56] R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, Hadronization in heavy ion collisions: 
recombination and fragmentation of partons, Phys. Rev. Lett. 90 (2003) 202303, 
arXiv:nucl -th /0301087.

[57] V. Minissale, F. Scardina, V. Greco, Hadrons from coalescence plus fragmen-
tation in AA collisions at energies available at the BNL Relativistic Heavy Ion 
Collider to the CERN Large Hadron Collider, Phys. Rev. C 92 (2015) 054904, 
arXiv:1502 .06213.

[58] ALICE Collaboration, S. Acharya, et al., Charged-particle production as a func-
tion of multiplicity and transverse spherocity in pp collisions at √s = 5.02 and 
13 TeV, Eur. Phys. J. C 79 (2019) 857, arXiv:1905 .07208.

[59] G. Gustafson, U. Pettersson, P.M. Zerwas, Jet final states in WW pair production 
and colour screening in the QCD vacuum, Phys. Lett. B 209 (1988) 90–94.

[60] G. Gustafson, J. Häkkinen, Colour interference and confinement effects in W-
pair production, Z. Phys. C 64 (1994) 659–664.

[61] T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High En-
ergy Phys. 1 (2006) 026, arXiv:hep -ph /0603175.

[62] A. Ortiz Velasquez, et al., Color reconnection and flow-like patterns in pp col-
lisions, Phys. Rev. Lett. 111 (2013) 042001, arXiv:1303 .6326.

[63] C. Bierlich, J.R. Christiansen, Effects of colour reconnection on hadron flavour 
observables, Phys. Rev. D 92 (2015) 094010, arXiv:1507.02091.

[64] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, 
J. Instrum. 3 (2008), No. S08002 i–245.

[65] ALICE Collaboration, B. Abelev, et al., Performance of the ALICE experiment at 
the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402 .4476.

[66] ALICE Collaboration, J. Adam, et al., Pseudorapidity and transverse-momentum 
distributions of charged particles in proton–proton collisions at √s = 13 TeV, 
Phys. Lett. B 753 (2016) 319–329, arXiv:1509 .08734.

[67] Particle Data Group Collaboration, M. Tanabashi, et al., Review of particle 
physics, Phys. Rev. D 98 (2018) 030001.

[68] ALICE Collaboration, J. Adam, et al., Determination of the event collision time 
with the ALICE detector at the LHC, Eur. Phys. J. Plus 132 (2017) 99, arXiv:
1610 .03055.

[69] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 
(2010) 074018, arXiv:1005 .3457.

[70] P.Z. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. 
Phys. J. C 74 (2014) 3024, arXiv:1404 .5630.

[71] R. Brun, F. Carminati, S. Giani, GEANT – Detector Description and Simulation 
Tool, CERN Program Library Long Writeup W5013, CERN, Geneva, 1994.

[72] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 
(1988) 479.

[73] G. Wilk, Z. Włodarczyk, Interpretation of the nonextensitivity parameter q in 
some applications of Tsallis statistics and Lévy distributions, Phys. Rev. Lett. 84 
(2000) 2770, arXiv:hep -ph /9908459.

[74] STAR Collaboration, J. Adams, et al., K (892)∗ resonance production in Au+Au 
and p + p collisions at √

sNN = 200 GeV at RHIC, Phys. Rev. C 71 (2005) 
064902, arXiv:nucl -ex /0412019.

[75] E. Schnedermann, J. Sollfrank, U. Heinz, Thermal phenomenology of hadrons 
from 200A GeV S+S collisions, Phys. Rev. C 48 (1993) 2462–2475, arXiv:nucl -
th /9307020.

[76] STAR Collaboration, B.I. Abelev, et al., Measurements of strange particle pro-
duction in p+p collisions at √s = 200 GeV, Phys. Rev. C 75 (2007) 064901, 
arXiv:nucl -ex /0607033.

[77] PHENIX Collaboration, A. Adare, et al., Measurement of neutral mesons in p+p 
collisions at √s = 200 GeV and scaling properties of hadron production, Phys. 
Rev. D 83 (2011) 052004, arXiv:1005 .3674.

ALICE Collaboration

S. Acharya 141, D. Adamová 94, A. Adler 74, J. Adolfsson 80, M.M. Aggarwal 99, G. Aglieri Rinella 33, 
M. Agnello 30, N. Agrawal 10,53, Z. Ahammed 141, S. Ahmad 16, S.U. Ahn 76, A. Akindinov 91, 
M. Al-Turany 106, S.N. Alam 141, D.S.D. Albuquerque 122, D. Aleksandrov 87, B. Alessandro 58, 
H.M. Alfanda 6, R. Alfaro Molina 71, B. Ali 16, Y. Ali 14, A. Alici 10,26,53, A. Alkin 2, J. Alme 21, T. Alt 68, 
L. Altenkamper 21, I. Altsybeev 112, M.N. Anaam 6, C. Andrei 47, D. Andreou 33, H.A. Andrews 110, 

http://refhub.elsevier.com/S0370-2693(20)30305-1/bib0DC640E9F8687FE3B623CDC74523F80Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib0DC640E9F8687FE3B623CDC74523F80Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib0DC640E9F8687FE3B623CDC74523F80Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF51D99E5F84A936437499D96E70BD98Bs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF51D99E5F84A936437499D96E70BD98Bs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF51D99E5F84A936437499D96E70BD98Bs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib28A23087EDF80510C525BB2562FF1A58s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib28A23087EDF80510C525BB2562FF1A58s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib28A23087EDF80510C525BB2562FF1A58s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA77B73205BFDC20D2395A19D4A83B0D1s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA77B73205BFDC20D2395A19D4A83B0D1s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA77B73205BFDC20D2395A19D4A83B0D1s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib700CC2BDF2DB7882623AE39C867C075Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib700CC2BDF2DB7882623AE39C867C075Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib057551F0894781AAB0D3DCEB79F1E14Cs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib057551F0894781AAB0D3DCEB79F1E14Cs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib057551F0894781AAB0D3DCEB79F1E14Cs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib387CE6582C0002652F1476FFAA7B08C1s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib387CE6582C0002652F1476FFAA7B08C1s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib85B67AF51B96DD0C5D8C8DEAE8EC1EF0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib85B67AF51B96DD0C5D8C8DEAE8EC1EF0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3534DA6D6641799DDB88C10F4FCA49B6s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3534DA6D6641799DDB88C10F4FCA49B6s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3534DA6D6641799DDB88C10F4FCA49B6s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib168039378B6D76C63B77AAE566E31F5Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib168039378B6D76C63B77AAE566E31F5Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3C4EB267F8703DC0B1CFFAFD3437E633s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3C4EB267F8703DC0B1CFFAFD3437E633s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6D2EA3B04A659C45A629063ECD46FA23s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6D2EA3B04A659C45A629063ECD46FA23s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6D2EA3B04A659C45A629063ECD46FA23s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8CE91070D221ED4EA01837778C9B707Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8CE91070D221ED4EA01837778C9B707Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8CE91070D221ED4EA01837778C9B707Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8C9AF51645F4199BEBF797291E6CD613s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8C9AF51645F4199BEBF797291E6CD613s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib28EEB121DA98C02ABFB436AE03608A40s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib28EEB121DA98C02ABFB436AE03608A40s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib28EEB121DA98C02ABFB436AE03608A40s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib7A59AC7E7951319FCEB2E75C2D3E3A22s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib7A59AC7E7951319FCEB2E75C2D3E3A22s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib7A59AC7E7951319FCEB2E75C2D3E3A22s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib452C837C95CE878F4C214969C6DC9943s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib452C837C95CE878F4C214969C6DC9943s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6FD676C1648C00304D1716DF60C46FEFs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6FD676C1648C00304D1716DF60C46FEFs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibCA068A1C5871B7CCB0B9A31C9C7A6D38s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibCA068A1C5871B7CCB0B9A31C9C7A6D38s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib89BBFDD8DE329E9DB99B08BFB8EE2094s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib89BBFDD8DE329E9DB99B08BFB8EE2094s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib133DB4F09BF8EE65AA332E91E0BEF85Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib133DB4F09BF8EE65AA332E91E0BEF85Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib133DB4F09BF8EE65AA332E91E0BEF85Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8D1BA791B6F54ED27D1D8302C34C0139s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8D1BA791B6F54ED27D1D8302C34C0139s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8D1BA791B6F54ED27D1D8302C34C0139s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib70FD0DC3AC3619B705B8E13C37DEC1ABs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib70FD0DC3AC3619B705B8E13C37DEC1ABs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA4D3DD5EB2EF3BED4AA97025B135DFEDs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA4D3DD5EB2EF3BED4AA97025B135DFEDs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA4D3DD5EB2EF3BED4AA97025B135DFEDs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3C93C516AA36A09076B89456AB5D6B4Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3C93C516AA36A09076B89456AB5D6B4Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3C93C516AA36A09076B89456AB5D6B4Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibE25A410E1D757C24F9C02A1BF3FE21BDs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibE25A410E1D757C24F9C02A1BF3FE21BDs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibE25A410E1D757C24F9C02A1BF3FE21BDs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA484D3CC90B14C7D857F3E9D05AACCD6s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA484D3CC90B14C7D857F3E9D05AACCD6s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA484D3CC90B14C7D857F3E9D05AACCD6s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib95DBF3E26D039235F4E75A50507628F8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib95DBF3E26D039235F4E75A50507628F8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib95DBF3E26D039235F4E75A50507628F8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib13C3344951BAA677E8E31E9634EB3A8Cs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib13C3344951BAA677E8E31E9634EB3A8Cs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib13C3344951BAA677E8E31E9634EB3A8Cs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibEAE0163FBE9A8DC0F688CB45F45FF8DCs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibEAE0163FBE9A8DC0F688CB45F45FF8DCs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBA8389920369DE1B65F5258F59E2B690s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBA8389920369DE1B65F5258F59E2B690s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib27811099E9E7BC404DA1AEBA27239EE0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib27811099E9E7BC404DA1AEBA27239EE0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib27811099E9E7BC404DA1AEBA27239EE0s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3F27BDCB1B2B2B0B0BE7CF86AC01069Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3F27BDCB1B2B2B0B0BE7CF86AC01069Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3F27BDCB1B2B2B0B0BE7CF86AC01069Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3F27BDCB1B2B2B0B0BE7CF86AC01069Es1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBA1F3DDA2A255C8A4C49AA318C7F3086s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBA1F3DDA2A255C8A4C49AA318C7F3086s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBA1F3DDA2A255C8A4C49AA318C7F3086s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6B23CB3214A951614A9D9D78C4675BCEs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6B23CB3214A951614A9D9D78C4675BCEs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3D895A04CA8925CBEC4336676929E119s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib3D895A04CA8925CBEC4336676929E119s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBE2A57A2957C89A9B30B6AA256D6CA56s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibBE2A57A2957C89A9B30B6AA256D6CA56s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib13A38F585F0E9A176DA135300D306B16s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib13A38F585F0E9A176DA135300D306B16s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9FAAFD7D0688C9BC8ED9500D15A2011Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9FAAFD7D0688C9BC8ED9500D15A2011Fs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib175CDD2C379D768CB1378C602DD499BCs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib175CDD2C379D768CB1378C602DD499BCs1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib10804C09305D2F3101D8CDED83023EC9s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib10804C09305D2F3101D8CDED83023EC9s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA686A768973DDAF34F2F168FA7142770s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA686A768973DDAF34F2F168FA7142770s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibA686A768973DDAF34F2F168FA7142770s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF4D610A71351D0E157804F3752C709F8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF4D610A71351D0E157804F3752C709F8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9920D58A49B38748A5E67BBD565E121Ds1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9920D58A49B38748A5E67BBD565E121Ds1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib9920D58A49B38748A5E67BBD565E121Ds1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8EF058CC66AD33476A7E17F760C651D9s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib8EF058CC66AD33476A7E17F760C651D9s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib01A4ABF627366DD294E8A5D810C03595s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib01A4ABF627366DD294E8A5D810C03595s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib337D9BD068D99C2692647DB61EE2CFA3s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib337D9BD068D99C2692647DB61EE2CFA3s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF2034BDAA0F41C290B44C530B4F46219s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibF2034BDAA0F41C290B44C530B4F46219s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibD66F77B08C72713A4E874FBE3D965814s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibD66F77B08C72713A4E874FBE3D965814s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bibD66F77B08C72713A4E874FBE3D965814s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib4397F2B675649736E58C55FBE8891B98s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib4397F2B675649736E58C55FBE8891B98s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib4397F2B675649736E58C55FBE8891B98s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib348119DA3A0EF40790F3762BB3F3C7B8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib348119DA3A0EF40790F3762BB3F3C7B8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib348119DA3A0EF40790F3762BB3F3C7B8s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib815AD7ACE08B1CE9FBCABA240C0809F2s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib815AD7ACE08B1CE9FBCABA240C0809F2s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib815AD7ACE08B1CE9FBCABA240C0809F2s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6A85BF9CEF1EE12A7D6F6D6A47E6F102s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6A85BF9CEF1EE12A7D6F6D6A47E6F102s1
http://refhub.elsevier.com/S0370-2693(20)30305-1/bib6A85BF9CEF1EE12A7D6F6D6A47E6F102s1


ALICE Collaboration / Physics Letters B 807 (2020) 135501 11

A. Andronic 144, M. Angeletti 33, V. Anguelov 103, C. Anson 15, T. Antičić 107, F. Antinori 56, P. Antonioli 53, 
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