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A microscopic method for calculating nuclear level density (NLD) is developed, based on the framework of
energy density functionals. Intrinsic level densities are computed from single-quasiparticle spectra obtained in
a finite-temperature self-consistent mean-field (SCMF) calculation that takes into account nuclear deformation,
and is specified by the choice of the energy density functional (EDF) and pairing interaction. The total level
density is calculated by convoluting the intrinsic density with the corresponding collective level density, deter-
mined by the eigenstates of a five-dimensional quadrupole or quadrupole plus octupole collective Hamiltonian.
The parameters of the Hamiltonian (inertia parameters, collective potential) are consistently determined by
deformation-constrained SCMF calculations using the same EDF and pairing interaction. The model is applied
in the calculation of NLDs of 94,96,98Mo, 106,108Pd, 106,112Cd, 160,162,164Dy, 166Er, and 170,172Yb, in comparison with
available data. It is shown that the collective enhancement of the intrinsic level density, consistently computed
from the eigenstates of the corresponding collective Hamiltonian, leads to total NLDs that are in very good
agreement with data over the entire energy range of measured values.

DOI: 10.1103/PhysRevC.102.054606

I. INTRODUCTION

Level density is a basic nuclear property that also plays a
crucial role in many applications, from calculation of reaction
cross sections relevant for nucleosynthesis to energy produc-
tion. An accurate computation of nuclear level density (NLD)
is a challenging theoretical task because of the complexity
of the internucleon interaction and the fact that the number
of levels increases exponentially with excitation energy. The
most widely used methods for calculating NLDs have been
based on the Bethe formula, formulated with the partition
function in the zeroth-order approximation of the Fermi-gas
model [1]. In realistic applications to finite nuclei various
phenomenological modifications to the original analytical for-
mula have been suggested [2,3]. The extensions of the Bethe
formula and its limitations are discussed in Ref. [4].

A number of microscopic approaches to modeling NLD
have been reported, such as the shell-model Monte Carlo
method [5–7], the moments method derived from random
matrix theory and statistic spectroscopy [8,9], the stochastic
estimation method [10], the Lanczos method using realis-
tic nuclear Hamiltonians [11], the self-consistent mean-field
approach based on the extended Thomas-Fermi approxima-
tion with Skyrme forces [12], and the exact pairing plus
independent particle model at finite temperature [13–16]. Mi-
croscopic methods based on the self-consistent Hartree-Fock
(HF) plus BCS model [17–19] and Hartree-Fock-Bogoliubov
(HFB) model [20–22] have also been developed to describe
NLD. In this framework the partition function is determined
using the same two-body interaction as in the HF plus BCS

or HFB mean-field models [18] and, therefore, shell, pair-
ing, and deformation effects are included self-consistently.
The intrinsic level density is obtained by an inverse Laplace
transform of the partition function with the saddle-point ap-
proximation [23]. A collective enhancement of the NLD can
be taken into account by a phenomenological or semiempiri-
cal multiplicative factor for rotational and vibrational degrees
of freedom [19,24–27], or more microscopically by a combi-
natorial method using single-particle level schemes obtained
in HF plus BCS or HFB calculations [21,22]. The success
of the microscopic self-consistent HFB-based approach to
NLDs has also motivated calculations of fission cross sections
[28,29] and studies of nuclear shape evolution in the fission
process [30].

In a recent calculation of level densities in Dy and Mo
isotopes [25], with single-particle spectra obtained from a
Woods-Saxon potential, the collective enhancement of the
level densities has been determined using available experi-
mental levels at low excitation energies, and also compared
with a phenomenological macroscopic model. However, in
many cases, and especially in nuclei far from stability,
the phenomenological and semiempirical approaches cannot
be applied on a quantitative level. In this work we de-
velop a microscopic method for calculating NLDs, in which
the single-quasiparticle spectrum is obtained using a finite-
temperature self-consistent mean-field (SCMF) method, while
the collective enhancement is determined from the eigenstates
of a corresponding collective Hamiltonian that takes into
account quadrupole and octupole degrees of freedom. Both
the intrinsic level density and the collective enhancement are
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determined by the same global energy density functional and
pairing interaction.

For the finite-temperature (FT) and deformation-
constrained SCMF calculations we employ the relativistic
Hartree-Bogoliubov (RHB) model [31–34]. This model has
been applied to structure studies over the whole mass table,
and its beyond-mean-field extension, especially the collective
Hamiltonian approach [35], has been used in a number
of calculations of low-energy excitation spectra. Nuclear
thermodynamics [36–38] and induced fission dynamics
[39,40] have also been explored with the FT-RHB model.

The theoretical framework and methods are introduced
in Sec. II. The details of the calculation and the results
for 94,96,98Mo, 106,108Pd, 106,112Cd, 160,162,164Dy, 166Er, and
170,172Yb are discussed in Sec. III. Sec. IV contains a short
summary of the principal results.

II. THEORETICAL FRAMEWORK

Assuming that a nucleus is in a state of thermal equilibrium
at temperature T , it can be described by the finite temperature
(FT) Hartree-Fock-Bogoliubov (HFB) theory [41,42]. In the
grand-canonical ensemble, the expectation value of any oper-
ator Ô is given by the ensemble average

〈Ô〉 = Tr [D̂Ô], (1)

where D̂ is the density operator:

D̂ = 1

Z
e−β(Ĥ−λN̂ ). (2)

Z is the partition function, the inverse temperature β = 1/kBT
with the Boltzmann constant kB, Ĥ is the Hamiltonian of the
system, λ denotes the chemical potential, and N̂ is the par-
ticle number operator. The entropy of the compound nuclear
system is S = −kB〈D̂ ln D̂〉. In this work we employ the multi-
dimensionally constrained (MDC) RHB model [33,43–45] at
finite temperature to calculate the single-nucleon quasiparti-
cle states. The minimization of the grand-canonical potential
� = 〈Ĥ〉 + T S − μ〈N̂〉, where μ = βλ, yields the FT-RHB
equation∫

d3r′
(

h − λ �

−�∗ −h + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
. (3)

Ek is the quasiparticle energy and ĥ denotes the single-particle
Hamiltonian

ĥ = α · p + β[M + S(r)] + V0(r) + �R(r), (4)

where, for the relativistic energy-density functional DD-PC1
[46], the scalar potential, vector potential, and rearrangement
terms read

S = αS (ρ)ρS + δS�ρS,

V0 = αV (ρ)ρV + αTV (ρ)�ρTV · �τ + e
1 − τ3

2
A0,

�R = 1

2

∂αS

∂ρ
ρ2

S + 1

2

∂αV

∂ρ
ρ2

V + 1

2

∂αTV

∂ρ
ρ2

TV ,

(5)

respectively. M is the nucleon mass, αS (ρ), αV (ρ), and
αTV (ρ) are density-dependent couplings for different space-

isospace channels, δS is the coupling constant of the derivative
term, and e is the electric charge. The single-nucleon densities
ρS (scalar-isoscalar density), ρV (timelike component of the
isoscalar current), and ρTV (timelike component of the isovec-
tor current), are defined by the following relations:

ρS (r) =
∑
k>0

V †
k (r)γ0(1 − fk )Vk (r) + U T

k (r)γ0 fkU
∗
k (r),

ρTV (r) =
∑
k>0

V †
k (r)τ3(1 − fk )Vk (r) + U T

k (r)τ3 fkU
∗
k (r),

ρV (r) =
∑
k>0

V †
k (r)(1 − fk )Vk (r) + U T

k (r) fkU
∗
k (r),

(6)

where fk is the thermal occupation probability of the quasi-
particle state k:

fk = 1

1 + eβEk
. (7)

The pairing potential reads

�(r1σ1, r2σ2) =
∫

d3r′
1d3r′

2

∑
σ ′

1σ
′
2

V pp(r1σ1, r2σ2, r′
1σ

′
1, r′

2σ
′
2)

× κ (r′
1σ

′
1, r′

2σ
′
2), (8)

where V pp is the effective pairing interaction and κ is the
pairing tensor,

κ =
∑
k>0

V ∗
k (1 − fk )Uk + Uk fkV

†
k . (9)

In the particle-particle channel we use a separable pairing
force of finite range [47]:

V (r1, r2, r′
1, r′

2) = G0 δ(R − R′)P(r)P(r′)
1

2
(1 − Pσ ), (10)

where R = (r1 + r2)/2 and r = r1 − r2 denote the center-of-
mass and the relative coordinates, respectively. P(r) reads

P(r) = 1

(4πa2)3/2 e−r2/4a2
. (11)

The two parameters of the interaction were originally adjusted
to reproduce the density dependence of the pairing gap in
nuclear matter at the Fermi surface calculated with the D1S
parametrization of the Gogny force [48].

The entropy is computed using the relation

S = −kB

∑
k

[ fk ln fk + (1 − fk ) ln(1 − fk )]. (12)

Employing the saddle point approximation [23], one obtains
the following expression for the intrinsic level density ρi:

ρi = eS

(2π )3/2D1/2
, (13)

where D is the determinant of a 3 × 3 matrix that contains
the second derivatives of the entropy with respect to β and
μτ = βλτ (τ ≡ p, n) at the saddle point. The intrinsic excita-
tion energy is calculated as Ui(T ) = E (T ) − E (0), with E (T )
the binding energy of the nucleus at temperature T .

With the assumption of a decoupling between intrinsic
and collective degrees of freedom, the excitation energy of
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a nucleus can be written as U = Ui + Uc, where Uc is the
collective excitation energy [25]. The total level density is
obtained as

ρtot (U ) =
∫

ρi(Ui )ρc(U − Ui )dUi, (14)

with the collective level density

ρc(U ) =
∑

c

δ(U − Uc)τc(Uc). (15)

For a collective state with the angular momentum Ic, the
degeneracy is τc(Uc) = 2Ic + 1.

In the microscopic model used in the present work the
collective levels are eigenstates either of the five-dimensional
quadrupole [49] or the axial quadrupole-octupole Hamilto-
nians [50]. In the former case in which one considers only
quadrupole degrees of freedom, the collective Hamiltonian
reads

Ĥcoll(β, γ ) =− h̄2

2
√

wr

{
1

β4

[
∂

∂β

√
r

w
β4Bγ γ

∂

∂β

− ∂

∂β

√
r

w
β3Bβγ

∂

∂γ

]

+ 1

β sin 3γ

[
− ∂

∂γ

√
r

w
sin 3γ Bβγ

∂

∂β

+ 1

β

∂

∂γ

√
r

w
sin 3γ Bββ

∂

∂γ

]}

+ 1

2

3∑
k=1

Ĵ2
k

Ik
+ V (β, γ ), (16)

where Bββ , Bβγ , Bγ γ are the mass parameters, Ik is the mo-
ment of inertia, V (β, γ ) denotes the collective potential, and
w and r are functions of the mass parameters and moments of
inertia.

In the case that includes octupole correlations, the current
implementation of the collective Hamiltonian is restricted
to axial symmetry; that is, only the axial quadrupole and
octupole deformations are considered as collective coor-
dinates. This approximation is justified in heavy, axially
deformed nuclei that will be examined in this work. The axial
quadrupole-octupole collective Hamiltonian takes the form

Ĥcoll(β2, β3) =− h̄2

2
√

wI

[
∂

∂β2

√
I
w

B33
∂

∂β2

− ∂

∂β2

√
I
w

B23
∂

∂β3
− ∂

∂β3

√
I
w

B23
∂

∂β2

+ ∂

∂β3

√
I
w

B22
∂

∂β3

]
+ Ĵ2

2I + V (β2, β3).

(17)
The mass parameters B22, B23, B33, and the moment of inertia
I are functions of the quadrupole β2 and octupole β3 defor-
mations; w = B22B33 − B2

23.
The mass parameters, moments of inertia, and collec-

tive potentials as functions of the collective coordinates
q ≡ (β, γ ) or (β2, β3) are completely determined by the

deformation-constrained self-consistent RHB calculations at
zero temperature for a specific choice of the nuclear energy
density functional and pairing interaction. In the present ver-
sion of the model, the mass parameters defined as the inverse
of the mass tensor Bi j (q) = M−1

i j (q) are calculated in the
perturbative cranking approximation [51]

MCp = h̄2M−1
(1)M(3)M

−1
(1) , (18)

where

[M(k)]i j =
∑
μν

〈0|Q̂i|μν〉〈μν|Q̂ j |0〉
(Eμ + Eν )k

. (19)

|μν〉 are two-quasiparticle wave functions, and Eμ and Eν

the corresponding quasiparticle energies. Q̂i denotes the mul-
tipole operators that correspond to the collective degrees
of freedom. The collective potential V is obtained by sub-
tracting the vibrational zero-point energy (ZPE) from the
total RHB deformation energy. Following the prescription
of Refs. [52–55], the ZPE is computed using the Gaussian
overlap approximation,

EZPE = 1

4
Tr

[
M−1

(2) M(1)
]
. (20)

The microscopic self-consistent solutions of the constrained
RHB equations, that is, the single-quasiparticle energies and
wave functions on the entire energy surface as functions of
the deformations, provide the microscopic input for the calcu-
lation of both the collective inertia and zero-point energy. The
Inglis-Belyaev formula is used for the rotational moment of
inertia. From the diagonalization of the collective Hamiltonian
one obtains the collective energy spectrum.

The deformation-dependent energy landscape is mapped
in a self-consistent RHB calculation with constraints on the
mass multipole moments Qλμ = rλYλμ. The nuclear shape is
parametrized by the deformation parameters

βλμ = 4π

3ARλ
〈Qλμ〉. (21)

The self-consistent RHB equations are solved by expanding
the single-nucleon spinors in a harmonic oscillator (HO) basis.
The present calculations have been performed in a HO basis
truncated to Nf = 20 oscillator shells for the axially symmet-
ric case (heavy Dy, Er, and Yb nuclei), while Nf = 16 has
been used for the triaxial case (medium-heavy Mo, Pd, and
Cd isotopes). For details of the MDC-RHB model we refer
the reader to Refs. [44,56].

III. ILLUSTRATIVE CALCULATIONS IN THE MASS
A = 100 and A = 160 REGIONS

The microscopic approach and the particular model devel-
oped in this work will be illustrated with calculations of the
total level densities for 94,96,98Mo, 106,108Pd, 106,112Cd and for
160,162,164Dy, 166Er, 170,172Yb. The relativistic energy density
functional DD-PC1 [46] is used in the particle-hole channel,
while particle-particle correlations are described by the sepa-
rable pairing force (10) in the Bogoliubov approximation.

In the first step, for each nucleus a FT-RHB calcula-
tion is performed at the equilibrium (global) minimum to
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FIG. 1. The energy of the equilibrium (global) minimum (a), the
pairing energy (b), entropy (c), and intrinsic level density ρi (d), as
functions of temperature for 94,96,98Mo, 106,108Pd, and 106,112Cd. The
results are obtained in finite-temperature triaxial RHB calculations
with the DD-PC1 energy density functional and finite-range pairing
interaction, as described in the previous section.

determine the intrinsic level density. In Fig. 1 we display the
calculated energies of the equilibrium minima, the pairing
energies, entropies, and intrinsic level densities as functions of
temperature for 94,96,98Mo, 106,108Pd, 106,112Cd. Most of these
nuclei exhibit deformation energy surfaces that are soft in γ

deformation (cf. Fig. 2), while the octupole deformation β3

does not play a significant role at low energies. The RHB cal-
culation has, therefore, been restricted to triaxial quadrupole
deformations.

As shown in Fig. 1(b), pairing correlations decrease rapidly
as temperature increases and the pairing energy vanishes at
the critical temperature Tc = 0.6–0.8 MeV. In the Fermi-gas
model the intrinsic excitation energy can be approximated
by the Bethe formula Ui = aT 2, where a is the level density
parameter. From Fig. 1(a) one notices that the energy indeed
increases quadratically with temperature, and a change of
slope can be associated with the pairing phase transition at
the critical temperature. Figure 1(c) shows that below the
critical temperature Tc the entropy also increases quadrat-
ically with temperature. After the pairing phase transition
the entropy increases linearly with T , in agreement with the
Bethe formula S = 2aT . The intrinsic level density increases
exponentially with the entropy cf. Eq. (13), and a change of
slope, or even a discontinuity, is found around Tc, as shown
Fig. 1(d). In the second step a large scale zero-temperature
MDC-RHB calculation is performed to generate the collective
potential energy surface (PES), single-quasiparticle energies
and wave functions in the (β, γ ) plane. Figure 2 displays the
resulting deformation energy surfaces of 94,96,98Mo, 106,108Pd,
106,112Cd. At zero temperature the ground state shape for
94Mo is almost spherical and the PES is soft in both β

and γ directions. The equilibrium deformation of 96Mo is
at (β, γ ) ≈ (0.2, 21◦), and (β, γ ) ≈ (0.2, 13◦) for 108Pd. The
isotopes 98Mo, 106Pd, 106,112Cd exhibit β-deformed minima at
β = 0.15–0.25. As noted above, the PESs for all these nuclei

FIG. 2. Self-consistent triaxial quadrupole deformation-
constrained energy surfaces of 94,96,98Mo, 106,108Pd, and 106,112Cd
in the β-γ plane (0 � γ � 60◦). For each nucleus the energies
are normalized with respect to the binding energy of the global
minimum. The contours join points on the surface with the same
energy, and the spacing between neighboring contours is 0.5 MeV.

are rather soft in the γ direction. With the single-quasiparticle
energies and wave functions determined in self-consistent
RHB calculations, the corresponding mass parameters, mo-
ments of inertia, and ZPE over the entire PES can be
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FIG. 3. The calculated positive-parity low-spin states of 94Mo
(b) and their possible experimental counterparts (a). Not all known
levels of these spins are shown in panel (a). For a detailed discussion
see Ref. [57].

computed. These quantities specify the collective Hamiltonian
Eq. (18). To illustrate the level of agreement with low-energy
experimental levels, in Fig. 3 we compare the calculated low-
spin collective levels of 94Mo with the available data from
Ref. [57]. The experimental levels are shown in the upper
panel, and the eigenstates of the quadrupole collective Hamil-
tonian in the lower panel. The calculated levels are in good
qualitative agreement with experiment, except for the fact that
the calculated excitation spectrum is somewhat stretched out
compared to data. In particular, the moment of inertia of the
theoretical yrast band is smaller than the empirical one. This
is because the collective inertia is calculated from the Inglis-
Belyaev formula which does not include Thouless-Valatin
rearrangement contributions and, therefore, predicts effective
moments of inertia that are smaller than empirical values.
The predicted energies of 2+

1 and 0+
2 are 0.92 and 1.94 MeV,

respectively, are compared to the experimental values: 0.87
and 1.74 MeV. The predicted energy of 4+

1 is 2.07 MeV, which
is again considerably above the experimental value of 1.57
MeV. Here we note that, while the theoretical states are purely
collective, there are indications of noncollective components
in the 4+

1 state [58]. For some levels at higher energies, for
instance, the experimental values for 0+

3 and 6+
1 are 2.78 and

2.87 MeV, respectively, while the calculation gives the values
of 3.78 and 3.54 MeV. In addition to the perturbative cranking
approximation used to calculate the mass parameters, we also
note that, in particular for the excited 0+ states, another effect
that is not included in the model is the coupling of nuclear
shape oscillations with pairing vibrations, that is, vibration
of the pairing density. However, the aim of the present study
is not a detailed reproduction of the low-energy spectra and,
therefore, the qualitative level of agreement between model
calculations and experiment, illustrated in Fig. 3, should be

FIG. 4. The calculated intrinsic level densities (dash-dotted blue)
and total level densities (solid red), as functions of excitation energy
for 94,96,98Mo, 106,108Pd, and 106,112Cd. The data (black squares) are
from Refs. [59–61].

sufficient for an estimate of the collective enhancement of the
level density.

Employing the collective levels obtained by diagonaliza-
tion of the quadrupole Hamiltonian Eq. (18), the total level
densities can now be computed from Eqs. (14) and (15). In
Fig. 4 we compare, for 94,96,98Mo, 106,108Pd, and 106,112Cd,
the intrinsic level densities calculated with the FT-RHB model
Eq. (13) (dash-dotted blue) and the corresponding total level
densities (solid red), with the available data below � 8 MeV
[59–61]. Obviously the intrinsic level densities cannot repro-
duce the data in any of these nuclei, and clearly indicate the
necessity for including additional degrees of freedom. The
consistent inclusion of collective enhancement brings the total
theoretical level densities in agreement with data over the
whole interval of experimentally determined values.

By comparing the total and intrinsic level densities, in the
upper panel of Fig. 5 we plot the collective enhancement
factors

ρtot (U ) = Kcoll(U )ρi(U ), (22)

as functions of excitation energy for 94,96,98Mo, 106,108Pd, and
106,112Cd. In general, Kcoll(U ) exhibits an increase with energy
in the interval below � 8 MeV. The pronounced peaks at
≈5 MeV for 94Mo, and at ≈3 Mev for 98Mo are actually
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FIG. 5. The collective enhancement factors Kcoll (a), and ratios
ρtot/ρexp of calculated and experimental level densities (b), as func-
tions of excitation energy for 94,96,98Mo, 106,108Pd, and 106,112Cd.

caused by the dips of the intrinsic level densities (cf. Fig. 4),
and can be related to a collapse of pairing correlations at these
energies. This is an artefact of the SCMF calculation that does
include projection on good particle number and is, therefore,
unphysical. In the lower panel we plot the ratios ρtot/ρexp.
Except for the oscillations at very low energies below 1 MeV
where there are only a few levels, for most of these nuclei the
ratio is actually close to 1 over the entire low-energy interval.

Several studies based on the nonrelativistic Gogny HFB
and relativistic RHB models have shown that heavier nuclei
in the mass A ≈ 160–170 region, such as Dy, Er, and Yb
isotopes, exhibit axially symmetric equilibrium shapes, but
their potential energy surfaces are rather soft in the octupole
β3 direction. This is illustrated in Fig. 6, where we display
the two-dimensional RHB deformation energy surfaces of
160,162,164Dy, 166Er, and 170,172Yb in the (β2, β3) plane calcu-
lated at zero temperature. One notices that, although the global
minima are located at β2 = 0.3–0.4 and β3 = 0, the minima
are extended in the direction of axial octupole deformation
β3. For this reason we expect a significant contribution of
octupole vibrations to the low-energy collective states. As the
current implementation of our collective Hamiltonian does
not allow the simultaneous breaking of axial and reflection
symmetries, in this case we will employ the axially symmetric
and reflection asymmetric quadrupole-octupole Hamiltonian
of Eq. (17) to calculate the collective enhancement of the RHB
intrinsic level densities.

Axially symmetric and reflection asymmetric FT-RHB
calculations are performed for the equilibrium minima to
compute the intrinsic level densities. The binding energy,

FIG. 6. Self-consistent RHB axially symmetric deformation en-
ergy surfaces of 160,162,164Dy, 166Er, and 170,172Yb in the (β2, β3)
plane. For each nucleus the energies are normalized with respect
to the binding energy of the global minimum. The contours join
points on the surface with the same energy, and the spacing between
neighboring contours is 1.0 MeV.

pairing energy, entropy, and intrinsic level density as functions
of nuclear temperature are displayed in Fig. 7. Just as in the
case of the mass A ≈ 100 region, the binding energies in-
crease quadratically with temperature, while the entropy first
increases quadratically with T below the critical temperature
of pairing phase transition, and linearly for higher temper-
taures. Figure 7(b) shows that the pairing collapse occurs at
the critical temperature Tc = 0.5–0.6 MeV. The behavior of

FIG. 7. Same as in the caption to Fig. 1 but for the axially sym-
metric and reflection asymmetric RHB calculations of 160,162,164Dy,
166Er, and 170,172Yb.
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FIG. 8. The calculated intrinsic level densities (dash-dotted blue)
and total level densities (solid red), as functions of excitation energy
for 160,162,164Dy, 166Er, and 170,172Yb. The data (black squares) are
from Refs. [62–66].

energies, entropies, and intrinsic level densities as functions
of T is characterized by a discontinuity at Tc.

The self-consistent RHB energy surfaces and the corre-
sponding ZPEs, the mass parameters, and the moments of
inertial in the (β2, β3) plane at zero temperature determine the
axial quadrupole-octupole collective Hamiltonian Eq. (17).
The eigenstates of this Hamiltonian are used to compute the
total level densities (Eqs. (14) and (15)). The calculated intrin-
sic level densities and the total level densities of 160,162,164Dy,
166Er, and 170,172Yb, as functions of the excitation energy,
are compared in Fig. 8 with the experimental values from
Refs. [62–66]. Similar to the result obtained in the mass A ≈
100 region, the intrinsic level densities are systematically be-
low the experimental values for all isotopes and all excitation
energies. In the energy interval of measured values, the con-
sistent microscopic calculation of the collective enhancement,
using the axial quadrupole and octupole collective degrees of
freedom relevant for this mass region, produces total level
densities that are in very good agreement with available data.

Figure 9 displays the collective enhancement factors Kcoll

(a) and ratios ρtot/ρexp of calculated and experimental level
densities (b) as functions of excitation energy for 160,162,164Dy,
166Er, and 170,172Yb. Compared to the case of A ≈ 100 nuclei,
Kcoll exhibits a more pronounced increase with energy. For
160Dy and 172Yb one notices two strong peaks at ≈4 MeV
that correspond to the dips in the intrinsic level densities,
caused by an unphysical collapse of pairing correlations in the
FT-RHB calculation. Such discontinuities would be smoothed
out by particle number projection, but this procedure is not
included in the current version of the model. The overall
agreement between theory and experiment is illustrated by the

FIG. 9. Same as in the caption to Fig. 5 but for the axially sym-
metric and reflection asymmetric calculations of 160,162,164Dy, 166Er,
and 170,172Yb.

ratios ρtot/ρexp in panel (b). For 162,164Dy we can compare the
values of Kcoll at neutron separation energy with the recent
prediction of the rotational enhancement factor R2 averaged
over angular momentum of Ref. [27]. The predicted values of
R2, 45.3 at Sn = 8.20 Mev for 162Dy and 46.1 at Sn = 7.63
Mev for 164Dy (Table I of of Ref. [27]), are very close to the
corresponding collective enhancement factors obtained in the
present microscopic calculation: Kcoll = 39.8 for 162Dy and
Kcoll = 42.5 for 164Dy.

IV. SUMMARY

A fully self-consistent microscopic approach for calcu-
lating nuclear level densities has been developed, based on
global nuclear energy density functionals. The intrinsic level
densities are computed in the thermodynamical approach us-
ing the saddle point approximation, with single-quasiparticle
spectra obtained in a finite-temperature self-consistent mean-
field (SCMF) calculation. In the present work we have used
the finite-temperature relativistic Hartree-Bogoliubov (FT-
RHB) model based on the DD-PC1 energy density functional
and a finite-range pairing interaction. The total level densities
are obtained by convoluting the intrinsic densities with the
corresponding collective level densities. The collective levels
are calculated as eigenstates of a five-dimensional quadrupole
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or quadrupole-octupole Hamiltonian, with parameters (mass
parameters, moments of inertia, collective potential) fully de-
termined by the SCMF calculation of the deformation energy
surfaces and the corresponding single-quasiparticle levels
as functions of the collective coordinates (shape variables).
Therefore, in this approach both the intrinsic and collective
level densities are completely determined by the choice of
a global energy density functional and pairing interaction.
One has to choose, however, the coordinates of the collec-
tive Hamiltonian depending on the specific nucleus under
consideration. This is done for practical reasons, as the collec-
tive Hamiltonian can only take into account a small number
of most relevant coordinates. For instance, quadrupole or
quadrupole plus octupole shape variables will typically be
used as collective coordinates.

The model has been tested in several illustrative cal-
culations in the A ≈ 100 and A ≈ 160–170 mass regions,
where accurate experimental level densities are available in
the energy interval below the neutron separation energy. In
the former region we have computed the level densities of
94,96,98Mo, 106,108Pd, and 106,112Cd. In general these nuclei
exhibit equilibrium minima at moderate quadrupole deforma-
tion, and the deformation energy surfaces are rather soft in the
γ degree of freedom. Thus we have used the five-dimensional
Hamiltonian in the quadrupole variables β and γ to calculate
the levels that determine the collective enhancement of the
intrinsic level densities. In the mass region of heavier nuclei
level densities have been calculated for 160,162,164Dy, 166Er,
and 170,172Yb. To a good approximation the equilibrium min-
ima of these nuclei are axially quadrupole deformed, but also
extended (soft) in the octupole deformation. In this case we
have used an axially symmetric quadrupole-octupole Hamil-
tonian to calculate the collective level densities.

In both mass regions it has been shown that, while the
calculated intrinsic level densities reproduce the energy de-
pendence of the data, their values are systematically too small

and, therefore, additional degrees of freedom related to the
shape of a nucleus have to be taken into account. The col-
lective enhancement computed using the eigenstates of the
five-dimensional quadrupole (mass A ≈ 100) or axially sym-
metric quadrupole-octupole (mass s) Hamiltonian yields total
level densities that are in agreement with data in the entire
interval of measured values. Since both the intrinsic and col-
lective level densities are determined by the same underlying
energy density functional and pairing interaction, the calcula-
tion is fully consistent and can be extended to any mass region
and to nuclei far from stability for which data on collective
levels are not available and, therefore, the semiempirical ap-
proaches to collective enhancement are not applicable. The
method can be refined by improving the agreement of the
collective levels with data and, of course, developed further
by taking into account shape variables of higher multipolarity
and/or the effect of pairing vibrations.
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