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Introduction

The second half of the 20th century is known as the Digital Age, which is characterized by

the rapid shift from traditional industry to an economy primarily based upon information

technology. This historical period (which is the period we are still living in) has seen a great

flourishment of new challenges, ideas and solutions; in the field of Mathematics, Physics,

Biology, Chemistry, Economy, Information Technology etc. Many of these new fields are

indeed strongly connected and such is the case of the topic of this Master’s thesis which

lies in the intersection of applied mathematics and signal processing.

In this work I analyze the principal aspects of the sparse representations of signals,

give an intuitive explanation, present different efficient algorithms to solve the problem

described and finally, in the last chapter, present one of many applications to signal pro-

cessing.

At the heart of this discussion lies a simple linear system of equations, more precisely

a full-rank matrix A ∈ R
n×m with n < m generates an underdetermined system of linear

equations Ax = b having infinitely many solutions. The objective is to find its sparsest

solution, i.e. the one with fewest non zero entries and answer some standard questions

about the uniqueness of such solution, the methods to find it and if it can even be found in

reasonable time.

In the first chapter I define and describe with mathematical formality the problem we

are aiming to solve. The second chapter presents theoretical results for uniqueness of the

solution in all mathematical beautiness. The third and fourth chapters present many dif-

ferent algorithms and their variants which are able to solve the defined problem, some

theoretical guarantees are also given with a final performance demonstration. The fifth

chapter introduces a more suitable problem for real-world applications with some unex-

pected consequences and the sixth (and last) chapter demonstrates a possible application

of the results and methods developed for image inpainting. The last chapter chooses a

point of view from which it is clear how the field of sparse signals can borrow ideas and

fall under the domain of Machine Learning.
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Chapter 1

Definition of the Main Problem

A central achievement of classical linear algebra is a thorough examination of the problem

of solving systems of linear equations. The results give the subject a completely settled

appearance. Surprisingly, within this well-understood arena there are elementary problems

that are related to sparse solutions of linear systems, which only recently have been ex-

plored in depth. The purpose of this initial chapter is to explain and define those basic

problems, what is their purpose and how are they related to sparse solutions.

Sparse solutions of Linear Systems

Consider a matrix A ∈ R
n×m, with n < m, and define the underdetermined linear system

Ax = b. This system has more unknowns than equations, and thus it has either no solution,

if b is not in the span of the columns of the matrix A, or infinitely many solutions. In order

to avoid the anomaly of having no solution, we shall hereafter assume that A is a full-rank

matrix, implying that its columns span the entire space R
n.

We now state that our main goal is to find the solution x which is the sparsest possible1

i.e. which has the least possible number of non-zeros. The most mathematically natural

way of doing so is to define the following general optimization problem:

Definition 1.1. The problem (PJ) is defined as

(PJ) : min
x

J(x) subject to Ax = b. (1.1)

It is now in the hands of the function J(x) to govern and promote sparsity. Perhaps the

first choice for J(x) that comes to mind is the squared Euclidean norm ‖x‖2
2. As shown in

[9, p.4] the problem, called (P2), that results from such a choice has indeed a closed form

unique solution x̂.

Knowing that the squared `2-norm is also strictly convex, which is easily verified

through the Hessian, (P2) seems the right choice to use but it was shown that it performs

quite poorly in real applications [9, p.5] and, as we will show briefly, it is not the best

choice if we seek sparsity.

1We call a solution sparse if it has ≤ n non zero entries.

3



4 CHAPTER 1. DEFINITION OF THE MAIN PROBLEM

1.1 The (P1) Problem

Following the same rationale and notation as above, we introduce the problem (P1).

Definition 1.2. The problem (P1) comes from the general prescription (PJ) for J(x) =

‖x‖1.

(P1) : min
x

‖x‖1 subject to Ax = b. (1.2)

It can be easily shown that the norm ‖x‖1 is convex (but not strictly) therefore the

problem (P1) may have more than one solution. The following theorem shows that the

`1-norm has a tendency to prefer sparse solutions.

Theorem 1.3. Consider the problem (P1) defined as above and suppose there are infinitely

many solutions satisfying it. It follows that:

(i) The set of solutions is bounded and convex.

(ii) There exists at least one solution with at most n non-zeros2.

Proof. (i) (convexity) Let us take two different solutions x1 and x2 to (P1) and put α as the

minimal `1-norm penalty; consider its convex combination: x = λx1 +(1−λ)x2, we need

to show that x is also an optimal solution to (P1).

Ax = A(λx1 +(1−λ)x2) = λAx1 +(1−λ)Ax2 = λb+(1−λ)b = b.

‖x‖1 = ‖λx1 +(1−λ)x2‖1 ≤ λ‖x1‖1 +(1−λ)‖x2‖1 = λα+(1−λ)α= α.

In the second line we obtained ‖x‖1 ≤ α which is, in fact, an equality due to the optimality

of the given solutions.

(i) (boundedness) The fact that the solution set is bounded is (also) a direct conse-

quence of the fact that all optimal solutions give a penalty of the same height: ‖x‖1 =α<∞

for any optimal solution x. Furthermore given any two optimal solutions x1 and x2 we ob-

tain

‖x1 −x2‖1 ≤ ‖x1‖1 +‖x2‖1 = 2α, (1.3)

implying that all solutions are nearby.

(ii) Let us assume that an optimal solution x to (P1) has been found, with k > n non-

zeros. Clearly, the k columns (assume w.l.o.g. that these are the first k columns in A)

combined linearly by x are linearly dependent and thus there exist a non-trivial vector h

that combines them to zero (the support of h is contained within the support of x): Ah = 0.

Consider the vector xε = x+εh, for very small values of ε such that no entry in the

new vector changes its sign. Any value satisfying |ε| ≤ mini |xi|/|hi| is suitable. First, it

is clear that this vector satisfies the constraint: Axε = Ax+ εAh = b and as such it is a

feasible solution to (P1). Furthermore since x is assumed to be optimal we have

∀ε : |ε| ≤ min
i

|xi|
|hi|

, ‖xε‖1 = ‖x+εh‖1 ≥ ‖x‖1. (1.4)

2n is the number of rows/constraints.
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We argue that the above inequality is in fact an equality. First of all we know that for ε

chosen as above it holds sign(xε) = sign(x), therefore

‖x+εh‖1 =
k

∑
j=1

sign(x j +εh j)
(

x j +εh j

)

=
k

∑
j=1

sign(x j)
(

x j +εh j

)

=
k

∑
j=1

sign(x j)x j +ε
k

∑
j=1

sign(x j)h j

= ‖x‖1 +εhT sign(x) .

(1.5)

We now show hT sign(x) = 0:

hT sign(x)> 0 ⇒‖x+εh‖1 < ‖x‖1 for ε< 0,

hT sign(x)< 0 ⇒‖x+εh‖1 < ‖x‖1 for ε> 0.
(1.6)

Both inequalities lead to a contradiction with the optimality expressed in (1.4), it follows

that ‖xε‖1 = ‖x‖1.

Our next step is to choose ε in such a way that one entry in x is nulled, we choose

the index i that gives the minimum ratio |xi|/|hi| and we pick ε=−xi/hi. In the resulting

vector xε = x+εh, the i-th entry is nulled, while all the others keep their sign.

This way we got a new optimal solution with k−1 non-zeros at most (because it may

be that more than one entry has been simultaneously nulled). This process can be repeated

until k = n, below that the linear dependence of the columns in A is not given3 and therefore

a vector h does not necessarily exist.

The property we have proven is well known and considered as the fundamental property

of linear programming, a tendency towars basic (sparse) solutions. However, as will be

clear in the next chapters, getting n non-zeros would be considered as way too dense for

our needs, and deeper sparsity would be sought.

1.2 Promoting Sparse Solutions

As shown in Theorem 1.3 the `1-norm promotes sparse solutions. Using this rationale it is

natural to consider the `p-”norms” with p < 1 for sparsity, however one needs to keep in

mind that those functions are no longer convex and therefore no longer norms (the triangle

inequality is not satisfied). Nevertheless, in this chapter, we shall use the term norm for

these functions as well.

3In our analysis we assume A to be a full-rank matrix, even without this assumption column dependence

is rarely the case in practical applications.
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Definition 1.4. The problem (Pp) is defined as

(Pp) : min
x

‖x‖p
p subject to Ax = b. (1.7)

The linear system of equations Ax = b forming the constraint defines a feasible set of

solutions that are on an affine subspace (a subspace shifted by a constant vector). This

shift can be any possible solution of this system x0, while the subspace is the null-space of

A; mathematically: A(x0 +αx) = Ax0 +αAx = b for x ∈ ker(A). Geometrically this set

appears as a hyperplane of dimension R
m−n 4 embedded in the R

m space.

It is within this space that we seek the solution to the problem (Pp). Since we are

looking for a vector with minimum `p-norm (to the p-th power) it is intuitively clear that

solving (Pp) is done by ”inflating” an `p
5 ball centered around the origin and stopping its

inflation when it first touches the feasible set of solutions.

The question is what are the properties of such an intersection point? Figure 1.1

presents a simple demonstration of this process in 3D, where m = 3 and n = 1, for a tilted

hyperplane (serving as the constraint set Ax = b) and several p values: 2, 1.6, 1 and 0.7.

One can see that norms with p ≤ 1 tend to give the intersection point on the ball corners,

which are on the axes. This implies that 2 of the 3 coordinates are zeros, which is the

tendency to sparsity we desire.

Even the `1 ball enjoys this property, in fact, Figure 1.1 shows that one has to be highly

unlucky with the angle of the set of feasible solutions to avoid a sparse outcome. Opposed

to this, `2 and even `1.6 norms give intersection points which are not sparse (three non-zero

coordinates).

Based on this discussion, it would seem very natural to attempt to solve the problem

(Pp) for some small p, even tending to zero. Unfortunately each choice 0 < p < 1 leads to

a non-convex optimization problem, and this raises some difficulties. Nevertheless, from

an engineering and practical point of view, if sparsity is a desired property, and we know

that `p, serves it well, this problem can and should be tested, despite its difficulties.

The `0 Norm

In the last section we intuitively discussed about the sparsifying norms, the extreme among

those is the case of p → 0.

Definition 1.5. The `0-norm is defined as6

‖x‖0 = lim
p→0

‖x‖p
p = lim

p→0

m

∑
k=1

|xk|p = #{i : xi 6= 0}. (1.8)

This is a very simple and intuitive measure of sparsity of a vector x, counting the

number of nonzero entries in it. Similarly to `p-norms the `0-norm is not7 a norm in the

4m unknowns and n equations lead to a solution space of dimension m−n.
5 f (x) = xp for x ≥ 0, p > 0 is a non-decreasing function.
6A more accurate notation would be ‖x‖0

0 but we stay consistent with the literature.
7Somewhat surprisingly the triangle inequality holds: ‖u+ v‖0 ≤ ‖u‖0 + ‖v‖0, but the homogeneity

property does not: ‖tu‖0 = ‖u‖0 6= |t|‖u‖0 for t 6= 0,1.
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Figure 1.1: The intersection between the `p-ball and the set Ax = b defines the solution of (Pp). The in-

tersection is demonstrated in 3D for p = 2 (top left), p = 1.6 (top right), p = 1 (bottom left), and p = 0.7
(bottom right). When p ≤ 1 the intersection takes place at a corner of the ball, leading to a sparse solution.

strict sense and we cannot even consider it a continuation of `p-norms because we would

need to take its 0-th root, which is impossible. Alternatively, we can simply refer to the

function ‖x‖0 as a candidate function for a norm.

It should be noted that the `0-norm, while providing a very simple notion of sparsity

is not necessarily the right notion for empirical work. A vector of real data would rarely

be representable by a vector of coefficients containing many zeros and a more relaxed and

forgiving notion of sparsity can and should be built (see [9, p.10-11]). Nevertheless, we

proceed the discussion with the assumption that `0 is the measure of interest8.

8The `0 norm gives also a sparse solution, by definition, its balls are indeed unions of 1d-lines, 2d-planes,

etc. coinciding with the axes, therefore the discussion of Figure 1.1 holds.
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1.3 The (P0) Problem

It is now time to define the problem (P0) which is also obtained from the general prescrip-

tion (PJ).

Definition 1.6. The problem (P0) is simply (PJ) for J(x) = ‖x‖0

(P0) : min
x

‖x‖0 subject to Ax = b. (1.9)

Sparsity optimization (1.9) looks superficially like (P1) or (P2) problems, but there

are startling differences. The solution to (P2) is always unique9, and is readily available

through now-standard tools from computational linear algebra, similarly (P1) can be con-

verted to a linear programming problem10 and is therefore solvable in reasonable time by

available tools. All this is not true for the (P0) problem because the underlying norm `0 is

discrete and discontinuous in nature, the standard convex analysis ideas do not apply and

many of the most basic questions about (P0) seem very difficult to answer:

• Can uniqueness of a solution be claimed? Under what conditions?

• Can a candidate solution be tested to verify its (global) optimality?

Another issue with (P0) is the apparent difficulty of solving it. It is a classical problem of

combinatorial search; one needs to sweep through all possible sparse subsets, generating

corresponding systems ASxS = b where AS denotes the matrix having |S| columns chosen

from those columns of A with indices in S; and checking if ASxS = b can be solved. The

complexity of those exhaustive combinatorial search is exponential in m11, and indeed, it

has been proven that (P0) is, in general, NP-Hard. This raises a new set of questions:

• Can (P0) be efficiently solved by some other means? What kind of approximations

will work? How accurate can those be?

Answers to all the above questions will be given briefly.

9The `2 norm is strictly convex.
10See [9, p. 8] or Proposition 3.2.
11Example: assume that A is of size n = 500 and m = 2000 and suppose that we know that the sparsest

solution of (P0) has |S|= 20 non-zeros. Thus, we’d need to exhaustively sweep through all
(

m
S

)

≈ 3.9×1047

such options; which is exponential in m by the Stirling’s approximation formula and definitely unsolvable.



Chapter 2

Uniqueness and Uncertainty

This chapter addresses some of the questions about (P0) we discussed at the end of the last

section and some of their extensions. Rather than answering the above questions directly,

we first consider special matrices A for which the analysis is somewhat easier and then

extend our answers to the general case.

2.1 The Two-Ortho Case

In this section we will discuss the (P0) problem defined in (1.9) in a particular case: where

A is the concatenation of two orthogonal matrices, Ψ and Φ . In other words we are ana-

lyzing the underdetermined system Ax = b for A = [Ψ ,Φ ].

We proceed with the definition of the mutual-coherence which will have a central role

in the following analysis.

Definition 2.1. The mutual-coherence of a given matrix A is the largest absolute normal-

ized inner product between different columns of A. Denoting the k-th column in A by ak,

the mutual-coherence is given by

µ(A) = max
1≤i, j≤m,i 6= j

|aT
i a j|

‖ai‖2 · ‖a j‖2
. (2.1)

It is a well known property of orthogonal matrices that their columns represent an

orthonormal basis of the given vector space, therefore the mutual-coherence µ(A) for

A = [Ψ ,Φ ] becomes

µ(A) = max
1≤i, j≤m

|ψT
i φ j|, (2.2)

ψi and φ j being respectively the columns of Ψ and Φ .

Example 2.2. (a) Consider the two-ortho matrix A = [I,O] where O is a rotation matrix

by the angle θ = π/4.

A =

[

1 0
√

2/2 −
√

2/2

0 1
√

2/2
√

2/2

]

. (2.3)

9



10 CHAPTER 2. UNIQUENESS AND UNCERTAINTY

Using (2.2) we calculate µ(A) = 1/
√

2.

(b) Consider the two-ortho matrix B = [I,O] where O is a rotation matrix by the angle

θ = π/180.

B =

[

1 0 0.9999 −0.0175

0 1 0.0175 0.9999

]

. (2.4)

Using (2.2) we calculate µ(B) = 0.9999 ≈ 1.

(c) Consider the matrix

C =

[

1 0 0.8 1

0 1 0.6 0

]

. (2.5)

Using the definition we calculate µ(C) = 1.

We conclude that the mutual-coherence measures uniformly1 the distance of the given

matrix from an orthogonal matrix (µ is 0 if the matrix is orthogonal and 1 if there are two

equal columns).

Proposition 2.3. The mutual-coherence µ(A) for A = [Ψ ,Φ ] satisfies

1√
n
≤ µ(A)≤ 1. (2.6)

Proof. The upper bound holds trivially and it is attained if the matrices Ψ and Φ share a

same column (which is normalized by definition). For the lower bound we first have to

show that the matrix B =Ψ T Φ is orthogonal

BT B = (Ψ T Φ)T (Ψ T Φ) = ΦTΨΨ T Φ = I. (2.7)

A very similar calculation leads to BBT = I. The orthogonality of B implies that the sum

of squares of its entries in each column equals to 1 2. All entries cannot therefore be less

than 1/
√

n since then we would have that the sum of all squared entries is less than 1.

We are now ready to demonstrate the so called first uncertainty principle which will

bring us to uniqueness and optimality of the solution to (P0) for the special case A = [Ψ ,Φ ].

Theorem 2.4. For an arbitrary pair of orthogonal matrices Ψ and Φ , and A = [Ψ ,Φ ] with

mutual-coherence µ(A) and for an arbitrary non-zero vector b ∈ R
n such that b =Ψα=

Φβ, the following inequality holds true:

Uncertainty Principle 1: ‖α‖0 +‖β‖0 ≥
2

µ(A)
. (2.8)

1The max function creates a uniform constraint to the columns and can be ruined by a single pair of

columns that are ”almost” parallel.
2The columns are normalized in the `2 norm.
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Proof. We present a very elegant proof from [9, p.21] a more complex and general proof

can be found at [11]. Since Ψ and Φ are orthogonal matrices we have that ‖b‖2 = ‖α‖2 =

‖β‖2. Denoting the support of α by I, from b =Ψα= ∑i∈I αiψi we calculate

|β j|2 = |bT φ j|2 =
∣

∣

∣

∣

∣

∑
i∈I

αiψ
T
i φ j

∣

∣

∣

∣

∣

2

≤
(

∑
i∈I

α2
i

)

·
∣

∣

∣

∣

∣

∑
i∈I

(ψT
i φ j)

2

∣

∣

∣

∣

∣

≤ ‖α‖2
2 ·∑

i∈I

(ψT
i φ j)

2

≤ ‖b‖2
2 · |I| ·µ(A)2.

(2.9)

In the third step we have used the Cauchy-Schwartz inequality3 and in the last the definition

of the mutual-coherence. Summing the above over all j ∈ J, J being the support of β, we

obtain

∑
j∈J

|β j|2 = ‖b‖2
2 ≤ ‖b‖2

2 · |I| · |J| ·µ(A)2. (2.10)

Rewriting the above in a more convenient way and using the fact that |I| = ‖α‖0 and

|J|= ‖β‖0 it follows

1

µ(A)
≤
√

‖α‖0 · ‖β‖0 (2.11)

≤ 1

2
(‖α‖0 +‖β‖0) , (2.12)

where in the last step we used the inequality of arithmetic and geometric means4.

This result suggests that if the mutual-coherence of a matrix A = [Ψ ,Φ ] is small (con-

sidering (2.2) we can refer to this as mutual-coherence of two orthonormal bases), then α

and β cannot both be very sparse. It is absolutely stunning but what we just showed is

indeed somehow related to the Heisenberg’s uncertainty principle, more can be found at

[9, p.18-21], [7] and related articles.

We now make a connection to the uniqueness problem by introducing the second un-

certainty principle.

Theorem 2.5. Any two distinct solutions x1 and x2 of the linear system Ax = b for b arbi-

trary and non-zero and A = [Ψ ,Φ ] cannot both be very sparse, indeed they are governed

by the following uncertainty principle:

Uncertainty Principle 2: ‖x1‖0 +‖x2‖0 ≥
2

µ(A)
. (2.13)

3The Cauchy-Schwartz inequality is given by: |xT y|2 ≤ ‖x‖2
2 · ‖y‖2

2.
4√xy ≤ 1

2
(x+ y) for two nonnegative real numbers x and y.
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Proof. We define the vector e := x1 − x2 which must be in the null-space of A, indeed

Ae = Ax1 −Ax2 = b−b = 0. We partition e into eΨ and eΦ of the first n entries and last

n entries, respectively.

Using the known composition of A it follows that Ae = 0 can be written as ΨeΨ +
ΦeΦ = 0. In other words

ΨeΨ =−ΦeΦ = y 6= 0. (2.14)

The vector y is non-zero because e is non-zero and because Ψ and Φ , being orthogonal

matrices, are nonsingular5. Invoking (2.8):

‖e‖0 = ‖eΨ‖0 +‖eΦ‖0 ≥
2

µ(A)
. (2.15)

Since e = x1 −x2 applying the triangle inequality for the `0 norm to (2.15) we obtain

‖x1‖0 +‖x2‖0 ≥ ‖e‖0 ≥
2

µ(A)
. (2.16)

A direct consequence of the Uncertainty Principle 2 (2.13) is the uniqueness-optimality

result:

Corollary 2.6. (Uniqueness-Optimality) If a candidate solution of the linear system Ax =
b for A = [Ψ ,Φ ] has fewer than 1/µ(A) non-zeros, then it is necessarily the sparsest

possible, and any other solution must be ”denser”.

This seemingly simple claim is wonderful and pretty unexpected, namely we can claim

both uniqueness and (global) optimality for sparse enough solutions6. Having showed that

uniqueness and optimality can be claimed for the two-ortho case it is now time to address

general matrices A.

2.2 The General Case

A key property that is crucial for the study of uniqueness in the general case is the spark of

the matrix A, first defined in 2003 (see [6]).

Definition 2.7. The spark of a given matrix A is the smallest number of columns from A

that are linearly-dependent.

In other words if σ = Spark(A) then there exists a subgroup of σ columns from A that

are linearly dependent.

5The null-space of a nonsingular matrix is trivial, Ax = 0 ⇒ x = 0.
6Usually in non-convex optimization problems a given solution can at best be verified as being locally

optimal.
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It can be trivially seen that 1 ≤ spark(A) ≤ n+ 1 for a matrix A of dimensions n×
m, n ≤ m; the spark is 1 if the matrix has a zero column and n+ 1 if the matrix has full

rank. The spark is somewhat opposite to the rank of a matrix which is defined as the

largest number of columns from A that are linearly independent. Nevertheless, the spark

of a matrix is far more difficult to obtain being NP-Hard itself7.

Example 2.8. (a) Consider the matrix

A =





1 0 1 2 2

1 1 0 0 1

0 0 2 5 5



 . (2.17)

Using the definition we calculate spark(A) = 3 (the 5th column is the sum of the 2nd and

the 4th). It is clear that there is no shortcut in calculating the spark; indeed if we change

the 4th column into a4 = [2 0 4]T then spark(A) = 2 (the 3rd column becomes double the

4th).

(b) Consider the matrix B = [I,O] from Example 2.2 (b).

B =

[

1 0 0.9999 −0.0175

0 1 0.0175 0.9999

]

. (2.18)

No pair of columns are linearly dependent: spark(B) = 3.

(c) Consider the matrix B = [I,O] from Example 2.2 (c).

C =

[

1 0 0.8 1

0 1 0.6 0

]

. (2.19)

The 1st and the 4th columns are the same, therefore spark(A) = 2.

We conclude that the spark (being discrete) is not sensible to almost parallel columns

as opposed to the mutual-coherence.

Proposition 2.9. Every vector from the null-space of the matrix A, i.e. Ax = 0 satisfies

‖x‖0 ≥ spark(A). (2.20)

Proof. If x is a vector from the null-space of A it linearly combines columns from A to

give the zero vector, by Definition 2.7 at least spark such columns are necessary.

A direct consequence of the above Proposition is the following simple but important

Theorem.

Theorem 2.10. (Uniqueness-Spark) If a system of linear equations Ax = b has a solution

x obeying ‖x‖0 < spark(A)/2, this solution is necessarily the sparsest possible.

7One needs to do a combinatorial search over all possible subsets of columns of A.
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Proof. Consider an alternative solution y that satisfies the same linear system Ay = b. This

implies A(x−y)= 0, in words the vector x−y is in the null-space of A. We obtain

‖x‖0 +‖y‖0 ≥ ‖x−y‖0 ≥ spark(A). (2.21)

The first inequality follows from the triangle inequality of the `0 norm and the second

follows from (2.20). The claim follows trivially.

It seems that the job is already done and a uniqueness-optimality result, for the general

case, has been found. While this is absolutely true from a theoretical point of view, the

claim of Theorem 2.10 is unaffordable in a practical situation because computing the spark

is not less difficult than solving (exactly) P0 in the first place8. We, therefore, continue to

look for a computationally feasible uniqueness result.

Before continuing we need to mention the following famous theorem which is key for

the next proof (and for the Stability result in chapter 5)

Theorem 2.11. (Gershgorin Disk Theorem) Let A ∈C
n×n and let Gi be the closed disk in

the complex plane centered at Aii with radius given by the row sum ri = ∑ j 6=i |Ai j|:

Gi = {z ∈ C : |z−Aii| ≤ ri} ≡ B(Aii,ri).

Then:

1. All the eigenvalues of A lie in the union of the disks Gi, S(A)⊆
n
⋃

i=1

Gi.

2. If a union of some k disks is disjoint from the union of the other n− k disks, then

exactly k eigenvalues lie in the union of these k disks (algebraic multiplicity is in-

tended).

Proof. See [19, p.4-9].

Proposition 2.12. For any matrix A ∈ R
n×m, the following holds:

spark(A)≥ 1+
1

µ(A)
(2.22)

Proof. First of all, we modify the matrix A by normalizing its columns to be of unit `2

norm obtaining Ã. It can be easily seen that this operation preserves both the spark and the

mutual-coherence. The entries of the resulting Gram matrix G =ÃT Ã satisfy the following

properties:

Gkk = 1 for 1 ≤ k ≤ m, (2.23)

|Gk j| ≤ µ(A) for 1 ≤ k, j ≤ m, k 6= j. (2.24)

8Both problems are NP-Hard.



2.2. THE GENERAL CASE 15

Let p = spark(A) and consider a minor from G of size p× p, built by choosing a subgroup

of p linearly-dependent columns from Ã and computing their sub-Gram matrix, call it G(p).

Assuming the opposite of (2.22) i.e. p < 1+1/µ , we calculate:

∑
j 6=i

|G(p)
i j | ≤ (p−1)µ(A)< 1 = |G(p)

ii | for 1 ≤ i ≤ m, (2.25)

where the first inequality follows from (2.23), the third equality from (2.24) and the second

from an algebraic manipulation of the assumption made above.

It is easy to see that G(p) is a symmetric matrix and therefore all its eigenvalues are

real, (2.25) simply means that G(p) is diagonally dominant and applying the Gershgorin

Disk Theorem 2.11 we obtain that it is also positive-definite9. From [15, p.441] it follows

that the p columns of G(p) are linearly-independent which is clearly a contradiction.

Theorem 2.13. (Uniqueness-Mutual-Coherence) If a system of linear equations Ax = b

has a solution x obeying

‖x‖0 <
1

2

(

1+
1

µ(A)

)

, (2.26)

then that solution is necessarily the sparsest possible.

Proof. Using (2.22) and the assumption of the theorem we obtain:

‖x‖0 <
1

2

(

1+
1

µ(A)

)

≤ 1

2
spark(A). (2.27)

The claim follows directly from Theorem 2.10.

The last theorem is what we were looking for, a computationally feasible uniqueness-

optimality result10. However it has to be noted that we obtained this feasibility at the cost of

a weaker bound. There are some generalizations of the concept of mutual-coherence which

give a tighter bound than Theorem 2.13 (at the cost of higher computational complexity)

like the so called Babel function (see [9, p.27, 28]).

9From the Gershgorin Disk Theorem it follows that the eigenvalues of G(p) are strictly positive.
10It is clear that µ(A) has a complexity of O(m2), m being the number of columns.





Chapter 3

Pursuit Algorithms

In this chapter we will present reliable and efficient methods for solving (1.9). Let us

redefine here (P0) again for better clarity

(P0) : min
x

‖x‖0 subject to Ax = b. (3.1)

As discussed at the end of chapter 1 the problem (P0) is NP-Hard, therefore we need to

use some approximate methods. It is straightforward that the unknown x is composed of

two effective parts: the support of the solution and the non-zero values over that support.

Thus one way to attack (P0) is to focus on the support1 which leads us to the family of

greedy algorithms. A second way is to disregard the support and consider the unknown as

a vector x ∈ R
m over the continuum and relax the `0 norm replacing it by a continuous or

even smooth approximation of it.

3.1 The Core Greedy Idea

Let us consider a simple case where the matrix A has spark(A)> 2 and the problem (P0)

has val(P0) = 1 at the optimal solution, so b is a scalar multiple of some column of A,

and this solution is unique2. These columns can be identified by applying m tests, one per

column, the j-th test can be done by minimizing ε( j) = ‖a jz j −b‖2
2. We calculate3:

ε( j) = 〈a jz j −b,a jz j −b〉
= 〈a jz j,a jz j〉−〈a jz j,b〉−〈b,a jz j〉+ 〈b,b〉
= z2

ja
T
j a j −2z ja

T
j b+bT b.

(3.2)

1Once found the support the non-zero values of x are easily detected by a plain Least-Squares as will be

shown briefly.
2Uniqueness follows from Theorem 2.10.
3For a simpler notation we write ε( j) instead of the more precise ε(z j).

17
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Taking the derivative ∂
∂ z j

and setting it to zero, we obtain:

2z ja
T
j a j −2aT

j b = 0 (3.3)

⇒ z∗j =
aT

j b

‖a j‖2
2

, (3.4)

z∗j being the global minimum because the second derivative is strictly positive. Plugging

(3.4) back into the error expression, we obtain:

ε( j) = min
z j

‖a jz j −b‖2
2 =

∥

∥

∥

∥

∥

aT
j b

‖a j‖2
2

a j −b

∥

∥

∥

∥

∥

2

2

(3.5)

= ‖b‖2
2 −2

(aT
j b)2

‖a j‖2
2

+
(aT

j b)2

‖a j‖2
2

(3.6)

= ‖b‖2
2 −

(aT
j b)2

‖a j‖2
2

. (3.7)

If this error is zero, we have found the proper solution. Thus, in this special case, the test

to be done is basically ‖a j‖2
2 · ‖b‖2

2 = (aT
j b)2 (Cauchy-Schwartz inequality satisfied with

equality). It is worth noting that we indeed found the orthogonal projection of the vector

b into the subspace generated by a j and that (3.5)-(3.7) is the Pythagorean theorem.

Generalizing the previous calculations one might think to enumerate all
(

m
k0

)

=O(mk0)
subsets of k0 columns from A and test each but this strategy is exponentially complex.

A greedy strategy abandons exhaustive search in favor of a series of locally optimal

single-term updates. Starting from x0 = 0 it iteratively constructs a k-term approximant xk

by maintaining a set of active columns, initially empty, and expanding it by one additional

column at each stage. The column chosen at each stage more or less optimally reduces the

residual `2 error in approximating b with the currently active columns. After constructing

an approximant including the new column, the residual `2 error is computed; if it falls

below a specified threshold the algorithm terminates. The following sections describe four

different algorithms which follow this rationale.

3.2 The Greedy Pursuit Algorithms

We now present a series of algorithms which follow the above rationale, their name is

known in the literature of signal processing as (Prefix) Matching Pursuit algorithms. We

present the Orthogonal Matching Pursuit (OMP) algorithm first.
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The OMP Algorithm

Algorithm 3.1: Orthogonal Matching Pursuit

Task: Approximate the solution of (P0).

Parameters: Given the matrix A, the vector b and the error threshold ε0.

Initialization: Initialize k = 0 and set

• The initial solution x0 = 0.

• The initial residual r0 = b−Ax0 = b.

• The initial solution support S0 = Support{x0}= /0.

while ‖rk‖2 > ε0 do

• Counter: Increment k by 1.

• Sweep: Compute the errors ε( j) = minz j
‖a jz j − rk−1‖2

2

for all j using the optimal choice z∗j = aT
j rk−1/‖a j‖2

2.

• Update Support: Find the minimizer j0 of ε( j) i.e.

∀ j : j 6∈ Sk−1 ε( j0)≤ ε( j), and update Sk = Sk−1 ∪{ j0}.

• Update Provisional Solution: Compute xk, the

minimizer of ‖Ax−b‖2
2 subject to Support{x}= Sk.

• Update Residual: Compute rk = b−Axk.

end

Output: The proposed solution is xk obtained after k iterations.

The first thing that has to be noted is that the Sweep stage gives error values of the same

form as in (3.5). Calculating as above we obtain

ε( j) = min
z j

‖a jz j − rk−1‖2
2 = ‖rk−1‖2

2 −
(aT

j rk−1)2

‖a j‖2
2

. (3.8)

Thus the quest for the smallest error is actually equivalent to the quest for the largest (in

absolute value) inner product between the residual rk−1 and the normalized columns of the

matrix A4.

In the Update Provisional Solution stage we minimize the term ‖Ax−b‖2
2 with respect

to x, such that its support is Sk. We denote ASk as a matrix of size n×|Sk| that contains

the columns from A that belong to this support. Thus, the problem to be solved is a mini-

mization of ‖A
Skx

Sk −b‖2
2, where x

Sk is the non-zero portion of the vector x. The solution

4The function f (x) = x2 is a non-decreasing monotone function.
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is, therefore, given by zeroing the derivative of this quadratic form:

AT
Sk(ASkx

Sk −b) =−AT
Skrk = 0 (3.9)

⇒ x
Sk =

(

AT
SkA

Sk

)−1
AT
Skb. (3.10)

In the second equality we used the formula of the residual in the Update Residual stage

and the fact that Axk = A
Skx

Sk .

The relation (3.9) simply means that the columns in A that are part of the support Sk

are necessarily orthogonal to the residual rk and this implies that they will never be chosen

twice by the OMP algorithm5. It is obvious that this orthogonalization is the reason for the

name of the algorithm.

The LS-OMP Algorithm

A more complex and somewhat better behaving (less greedy) variant of the above algorithm

can be suggested where each of the tests in the sweep stage is done by a full Least-Squares.

Indeed if we rewrite the Sweep stage using the formula of the residual we obtain

ε( j) = min
z j

‖a jz j − rk−1‖2
2 = min

z j

‖a jz j +A
Sk−1x

Sk−1 −b‖2
2. (3.11)

It is now straightforward that in the minimization above we are doing a very sub-optimal

search because the whole term A
Sk−1x

Sk−1 is fixed6. The less greedy, Least Squares Or-

thogonal Matching Pursuit (LS-OMP) approach, is to calculate the minimum w.r.t. z j and

x
Sk−1 which values are allowed to change in each iteration. More precisely

ε( j) = min
z j,xSk−1

‖a jz j +A
Sk−1x

Sk−1 −b‖2
2. (3.12)

A very efficient implementation of the LS-OMP is given at [9, p.38] which uses a recursive

approach to considerably speed up the Sweep stage of each iteration. The whole strategy

of the LS-OMP algorithm is given on the next page.

5This also justifies the j 6∈ Sk−1 part in the Update Support stage.
6It was calculated in the previous iterations.
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Algorithm 3.2: Least Squares Orthogonal Matching Pursuit

Task: Approximate the solution of (P0).

Parameters: Given the matrix A, the vector b and the error threshold ε0.

Initialization: Initialize k = 0 and set

• The initial solution x0 = 0.

• The initial residual r0 = b−Ax0 = b.

• The initial solution support S0 = Support{x0}= /0.

while ‖rk‖2 > ε0 do

• Counter: Increment k by 1.

• Sweep: Compute the errors

ε( j) = minz j,xSk−1
‖a jz j +A

Sk−1x
Sk−1 −b‖2

2 for all j.

• Update Support:a Find the minimizer j0 of ε( j) i.e.

∀ j : j 6∈ Sk−1 ε( j0)≤ ε( j), and update Sk = Sk−1 ∪{ j0}.

• Update Provisional Solution: Compute xk, the

minimizer of ‖Ax−b‖2
2 subject to Support{x}= Sk.

• Update Residual: Compute rk = b−Axk.

end

Output: The proposed solution is xk obtained after k iterations.

a j 6∈ Sk−1 is justified because the errors for j ∈ Sk−1 are always calculated over a smaller set, the mini-

mum of a subset is never lower than the minimum of the whole set.

The MP Algorithm

Another variant of the above OMP algorithm is a more greedy but faster algorithm7, the so

called Matching Pursuit algorithm.

The difference is that there is no orthogonality like in (3.9). After the Sweep and the

Update Support stages, rather than solving a Least-Squares for re-evalu-

ating all the coefficients in x, the coefficients of the Sk−1 entries of the last iteration remain

unchanged and the new coefficient that refers to the new member j0 ∈ Sk is simply chosen

as being z∗j0
8. The complete strategy is given on the next page.

7But also less accurate.
8z∗j0 is the minimizer of ε( j) and is defined as in the Sweep stage in Algorithm 3.1 (OMP).
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Algorithm 3.3: Matching Pursuit

Task: Approximate the solution of (P0).

Parameters: Given the matrix A, the vector b and the error threshold ε0.

Initialization: Initialize k = 0 and set

• The initial solution x0 = 0.

• The initial residual r0 = b−Ax0 = b.

• The initial solution support S0 = Support{x0}= /0.

while ‖rk‖2 > ε0 do

• Counter: Increment k by 1.

• Sweep: Compute the errors ε( j) = minz j
‖a jz j − rk−1‖2

2

for all j using the optimal choice z∗j = aT
j rk−1/‖a j‖2

2.

• Update Support: Find the minimizer j0 of ε( j):

∀1 ≤ j ≤ ma, ε( j0)≤ ε( j), and update Sk = Sk−1 ∪{ j0}.

• Update Provisional Solution: Set xk = xk−1

and update the entry xk( j0) = xk−1( j0)+ z∗j0 .

• Update Residualb: Compute rk = rk−1 − z∗j0a j0 .

end

Output: The proposed solution is xk obtained after k iterations.

aBecause of no orthogonality MP does not guarantee that a column cannot be chosen twice, indeed it can

happen.
brk = b−Axk = b−Axk−1 − z∗j0 a j0 = rk−1 − z∗j0a j0 where in the second equality we used the Update

Provisional Solution stage and in the third the Update Residual stage of the k−1 iteration.

The Weak-MP Algorithm

The Weak Matching Pursuit algorithm is a further simplification of the MP algorithm, it

allows for a sub-optimal choice of the next element to be added to the support. The Update

Support stage is relaxed by choosing any index that is a factor t ∈ [0,1] away from the

optimal choice.

More precisely, rather than searching, as in (3.8), for the largest inner-product |aT
j rk−1|

value (up to a normalization factor and a non-decreasing monotone function), we settle for

the first column that exceeds a t-weaker threshold. The Cauchy-Schwartz inequality gives

(aT
j rk−1)2

‖a j‖2
2

≤ max
1≤ j≤m

(aT
j rk−1)2

‖a j‖2
2

≤ ‖rk−1‖2
2. (3.13)
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This puts an upper bound on the maximal achievable inner-product. Thus, we can compute

‖rk−1‖2
2 at the beginning of the Sweep stage and, as we search for j0 that gives the smallest

error ε( j), we choose the first that gives

(aT
j0

rk−1)2

‖a j0‖2
2

≥ t2 · ‖rk−1‖2
2 ≥ t2 · max

1≤ j≤m

(aT
j rk−1)2

‖a j‖2
2

. (3.14)

Note that it is possible that the complete sweep is performed without any index satisfying

the above condition, then we simply choose the maximum that was found as a by-product

of the search.

The Thresholding Algorithm

The simplest of all algorithms is the so called Thresholding algorithm which is also slightly

different in the way greediness is practiced.

It is basically a simplificaton of the OMP algorithm, the key difference is that the de-

cision made about the support of the solution is based on the first projection alone, i.e. it

chooses the k largest inner products |aT
j b| (see (3.5)-(3.7)), as the desired support9. That is

done in the Quality Evaluation stage by a simple sort of the entries of the vector |AT b|.
Another important thing to notice is that we assume that k, the number of required non-

zeros, is known. Alternatively a simple modification can be done by simply increasing k

until the error of ‖Ax−b‖2 reaches a pre-specified value ε0.

The complete strategies of the last two algorithms are given on the next page.

9There is no normalization term because of the following Theorem 3.1.
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Algorithm 3.4: Weak Matching Pursuit

Task: Approximate the solution of (P0).

Parameters: Given the matrix A, the vector b, the error threshold ε0 and the

scalar 0 < t < 1.

Initialization: Initialize k = 0 and set

• The initial solution x0 = 0.

• The initial residual r0 = b−Ax0 = b.

• The initial solution support S0 = Support{x0}= /0.

while ‖rk‖2 > ε0 do

• Counter: Increment k by 1.

• Sweep: Compute the errors ε( j) = minz j
‖a jz j − rk−1‖2

2

for all j using the optimal choice z∗j = aT
j rk−1/‖a j‖2

2. Stop

the sweep when |aT
j rk−1|/‖a j‖2 ≥ t · ‖rk−1‖2.a

• Update Support: Update Sk = Sk−1 ∪{ j0}, with j0 found

in the sweep stage.

• Update Provisional Solution: Set xk = xk−1

and update the entry xk( j0) = xk−1( j0)+ z∗j0 .

• Update Residual: Compute rk = rk−1 − z∗j0a j0 .

end

Output: The proposed solution is xk obtained after k iterations.

aThis is simply the square root of the condition in equation (3.14).

Algorithm 3.5: Thresholding

Task: Approximate the solution of (P0).

Parameters: Given the matrix A, the vector b and the number of atoms desired k.

Quality Evaluation: Compute the errors ε( j) = minz j
‖a jz j −b‖2

2 for all j using

the optimal choice z∗j = aT
j b/‖a j‖2

2.

Update Support: Find the set of indices Sk of cardinality k that contains the

smallest errors: ∀ j ∈ Sk,ε( j)≤ mini6∈S ε(i).
Update Provisional Solution: Compute xk, the minimizer of ‖Ax−b‖2

2 subject to

Support {x}= Sk.

Output: The proposed solution is xk.
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The following technical result is of great importance because it is simpler and compu-

tationally more feasible to work with a matrix A which has `2 normalized columns. We can

normalize the columns by the operation Ã = AW, where W is a diagonal matrix containing

1/‖ai‖2 on the main diagonal.

Theorem 3.1. The greedy algorithms (OMP,MP and weak-MP)10 produce the same solu-

tion support Sk when using either the original matrix A or its normalized version Ã.

Proof. See [9, p.41-43].

We shall assume hereafter, when dealing with these algorithms, that the matrix A is

already normalized. In case we normalized a previously non-normalized matrix A and

used on it any of those greedy algorithms a de-normalization step has to be taken. Suppose

that Ã = AW and that the algorithm provides a solution x̃ that satisfies Ãx̃k = b we obtain

b = Ãx̃k = AWx̃k = Axk ⇒ xk = Wx̃k. (3.15)

3.3 Convex Relaxation Algorithms

As mentioned at the beginning of the chapter a second way to render (P0) more tractable

is to relax the (highly discontinuous) `0 norm, replacing it by a continuous or even smooth

approximation.

There are many ways to do so the most popular options include replacing it with `p

norms for some p ∈ (0,1] or even by smooth functions such as ∑ j log(1+αx2
j), ∑ j x2

j/(α+

x2
j) or ∑ j(1− exp(−αx2

j)), another very efficient algorithm is the so called FOCal Unde-

termined System Solver (FOCUSS), for more details see [14] and [9, p.48-50].

In this section we will discuss in details the `1 norm relaxation also called Basis Pursuit

(BP) which has a very elegant solution and strong theoretical foundations.

The Basis Pursuit

The `1 norm relaxation is done by simply replacing the `0 norm with the `1 norm which is

straightforward. We therefore treat the (P0) problem as a (P1) problem which we define

again for clarity.

(P1) : min
x

‖x‖1 subject to Ax = b. (3.16)

It is important to note that while the `0 norm is indifferent to the magnitude of the non-

zero entries in x the `1 norm is not and tends to penalize higher magnitudes i.e. it biases

the solution towards choosing non-zero entries in locations of x that multiply large norm

columns in A (see [9, p.50]. Therefore, in order to avoid any kind of bias, the columns of

A should be scaled appropriately.

10Following the proof given at [9] it is clear that the result holds for the LS-OMP and Thresholding

algorithms too.
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Identically as above we normalize the matrix A by multiplying it by a matrix W which

is a diagonal positive-definite matrix whose diagonal elements are w(i, i) = 1/‖ai‖2. Con-

sidering the above and putting x̃ = W−1x we transform the problem (P1) into

(P̃1) : min
x̃

‖x̃‖1 subject to Ãx̃ = AWx̃ = b. (3.17)

Just as for greedy methods, once a solution x̃ has been found, it should be de-normalized11

to provide the required vector x. The problem described12, and the algorithms implemented

to solve it, is called Basis Pursuit.

It was already mentioned that the (P1) problem can be cast as a linear programming

(LP) problem, for its importance we report this result here.

Proposition 3.2. Consider (P1) and put x = u−v where u,v ∈ Rm where u takes all the

positive entries in x, with all other entries null, and v does the same for the negative ones.

Putting z = [uT ,vT ]T ∈ R
2m the (P1) optimization problem is equivalent to the following

Linear-Programming (LP) problem of classical structure

min
z

1T z subject to b = [A,−A]z , z ≥ 0. (3.18)

Proof. (⇒) It is easy to see that13:

‖x‖1 = 1T (u+v) = 1T z and Ax = A(u−v) = [A,−A]z. (3.19)

(⇐) We must show that the decomposition of x to positive and negative entries is sat-

isfied, i.e. that solutions to (3.18) cannot be such that the supports of u and v overlap.

This is easily proved by contradiction. Suppose that in a given optimal solution of

(3.18) the k-th entry in both u and v is non-zero (and positive, due to the last constraint)

then these two coefficients multiply the same columns in A with opposing signs. Without

loss of generality if we assume uk > vk, then by replacing these two entries by u′k = uk −vk

and v′k = 0 we satisfy both the positivity and the linear constraints of (3.18) while also

reducing the penalty by

(uk + vk)− (u′k + v′k) = uk + vk −uk + vk = 2vk > 0, (3.20)

which is a contradiction to the optimality of the initial solution.

The proposition above shows that standard techniques for linear programming prob-

lems apply to (P1) and therefore to Basis Pursuit, this techniques include modern interior-

point methods, simplex methods, homotopy methods and others.

Such algorithms are usually far more sophisticated than the greedy algorithms men-

tioned earlier, as they obtain the global solution of a well-defined optimization problem,

11x = Wx̃.
12The term Basis Pursuit was originally used only for the case W = I but each case can be reduced to that

as shown.
13The notation 1 stands for a vector of ones of the proper length.
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but this also means that programming these techniques is far more complicated. As one

would expect there are several well-developed software packages that already exist and

handle this problem which are free and shared on the web, the `1-magic, the CVX or

Sparselab just to mention a few (see [9, p.51] for more).





Chapter 4

Theoretical Guarantees of Pursuit

Algorithms

In this chapter we discuss some theoretical guarantees for optimal solution recovery of the

pursuit algorithms presented before, clearly this guarantees will not be as tight as Theorem

2.10 or 2.13 since this would conflict with the known NP-hardness of the problem in the

general case. However, if the system Ax = b has a sufficiently sparse solution, success

can be guaranteed. Before we embark to this discussion we shall demonstrate another

important result, the rate of decay of the residual in greedy methods.

4.1 Residual Decay in Greedy Methods

In this subsection we show an important result which provides another reason why greedy

methods described above are likely to get a sparse solution to the (P0) problem. We start

with the definition of the decay-factor of a matrix, inspired by the idea at [16], which will

be helpful in further analysis.

Definition 4.1. For the matrix A with m normalized columns, the universal decay-factor

δ (A) is defined by

δ (A) = inf
v6=0

∥

∥AT v
∥

∥

2

∞

‖v‖2
2

. (4.1)

The following theorem is the key result.

Theorem 4.2. The worst decay of the MP, OMP and LS-OMP residual is exponential, with

a rate given by

‖rk‖2
2 ≤ (1−δ (A))k · ‖b‖2

2. (4.2)

Proof. Consider Algorithm 3.3 (MP) and keep in mind the normalization of the matrix A,

as a consequence of Theorem 3.1, the residual is therefore updated by the recursive formula

rk = rk−1 − z∗j0a j0 = rk−1 − (aT
j0

rk−1)a j0 . (4.3)

29
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Taking the norm of the above expression and squaring it we calculate

‖rk‖2
2 =

∥

∥

∥
rk−1 − (aT

j0
rk−1)a j0

∥

∥

∥

2

2

= ‖rk−1‖2
2 −2(aT

j0
rk−1)2 +(aT

j0
rk−1)2

= ‖rk−1‖2
2 − (aT

j0
rk−1)2

= ‖rk−1‖2
2 − max

1≤ j≤m
(aT

j0
rk−1)2

= ‖rk−1‖2
2 −
∥

∥

∥
AT rk−1

∥

∥

∥

2

∞
.

(4.4)

In the first three equations we simply used well known properties of the inner product and

the `2 norm, in the fourth the fact that j0 is the optimal choice and in the last the definition

of the `∞ norm.

Continuing from the last step of the previous calculation and applying the decay-factor

we calculate

‖rk‖2
2 = ‖rk−1‖2

2 −
∥

∥

∥
AT rk−1

∥

∥

∥

2

∞

= ‖rk−1‖2
2 −‖rk−1‖2

2 ·
∥

∥AT rk−1
∥

∥

2

∞

‖rk−1‖2
2

≤ ‖rk−1‖2
2 −‖rk−1‖2

2 ·δ (A)

= (1−δ (A)) · ‖rk−1‖2
2.

(4.5)

Applying the last formula recursively leads to

‖rk‖2
2 ≤ (1−δ (A))k · ‖r0‖2

2 (4.6)

= (1−δ (A))k · ‖b‖2
2. (4.7)

Which establishes clearly an exponential rate of decay. It is important to notice that we im-

mediately obtain the same bound for the OMP and the LS-OMP since these two algorithms

have a more sophisticated Sweep stage and thus they reduce the energy of the residual at

each stage even more1.

Similarly applying (3.14) to the previous calculations we obtain an analogous result for

the Weak-MP.

Theorem 4.3. The worst decay of the Weak-MP residual is exponential, with a rate given

by

‖rk‖2
2 ≤ (1− t ·δ (A))k · ‖b‖2

2. (4.8)

One last thing we need to verify to show convergence for all the above is that δ (A) is

strictly positive and not zero. This result is given by the following Lemma.

1The following holds: ‖rk
LS−OMP‖2

2 ≤ ‖rk
OMP‖2

2 ≤ ‖rk
MP‖2

2, the subscripts simply indicate from which

algorithm the k-th residual comes from.
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Lemma 4.4. The decay rate δ (A) of every full-rank matrix A ∈ R
n×m (with n < m) is

strictly positive (δ (A)> 0).

Proof. From the given assumptions for the matrix A it follows that its columns span the

entire Rn space, thus no vector v could be orthogonal to all these columns and that implies

δ (A)> 0.

4.2 Performance for the Two-Ortho Case

In this section we discuss the performance guarantees of the Orthogonal Matching Pursuit

(OMP) and the Basis Pursuit (BP), similar results are valid for other algorithms but we

omit them since this section refers to a particular case presented mainly for completeness.

Proofs of these results are not explicitly written for the same reason given above.

Theorem 4.5. (Performance Guarantee-OMP-Two Ortho Case): Given a system of linear

equations Ax = [Ψ ,Φ ]x = b with two orthogonal matrices Ψ and Φ of size n× n, if a

(unique2) solution x exists such that it has kp non-zeros in its first half, kq in the second 3

and the two obey

max(kp,kq)<
1

2µ(A)
, (4.9)

then OMP, run with threshold parameter ε0 = 0, is guaranteed to find it exactly in k0 =

kp + kq steps.

Proof. See [9, p.55-57].

Theorem 4.6. (Performance Guarantee-BP-Two Ortho Case): Given a system of linear

equations Ax = [Ψ ,Φ ]x = b with two orthogonal matrices Ψ and Φ of size n× n, if a

(unique) solution x exists such that it has kp non-zeros in its first half, kq ≤ kp in the second

and the two obey

2µ(A)2kpkq +µ(A)kp −1 < 0, (4.10)

then BP is guaranteed to find it exactly, i.e. that solution is both the unique solution of

(P1) and (P0).

Proof. See [9, p.58-64].

Since the above condition may seem obscure, we provide a weaker but simpler version

to interpret it:

‖x‖0 = kp + kq <

√
2−0.5

µ(A)
. (4.11)

Figure 4.1 presents a comparison between the performance bounds for the OMP and BP

algorithms together with the uniqueness result of Theorem 2.6. It is clear that OMP is

2In each of these Performance Guarantee Theorems the bounds are always tighter than the one in Corol-

lary 2.6 therefore the solutions presented are always unique.
3x can be partitioned into two parts, xΨ and xΦ, each of them is labelled with the matrix it multiplies.
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found to be weaker compared to the BP in handling the (P0) problem, BP is even not so

far away from the Uniqueness bound which is the best possible bound. However it has to

be said that the tightness of BP was established by Feuer and Nemirovsky [13] while the

tightness of OMP remains questionable4.

Figure 4.1: Uniqueness, Corollary 2.6, and performance bounds for the OMP, Equation (4.9), and BP, Equa-

tions (4.10) and (4.11), for the two-ortho case, assuming µ(A) = 0.1.

4.3 Performance for the General Case

We now turn to handle the general case with an arbitrary matrix A. As already shown before

we can assume, without loss of generality, that the columns of this matrix are normalized.

4Until this result remains unproven a better bound for OMP is still possible.
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The following result generalizes the one in Theorem 4.5 for general matrices and there-

fore it is necessarily weaker.

Theorem 4.7. (Performance Guarantee - OMP - General Case): Given a system of linear

equations Ax = b (A ∈R
n×m full-rank with n < m), if a (unique5) solution x exists obeying

‖x‖0 <
1

2

(

1+
1

µ(A)

)

, (4.12)

then OMP, run with threshold parameter ε0 = 0, is guaranteed to find it exactly.

Proof. Suppose, without loss of generality, that the (unique) sparsest solution of the linear

system is such that all its k0 non-zero entries are at the beginning of the vector in decreasing

order i.e. |x1| ≥ |x2| ≥ ...≥ |xk0
|. Thus,

b = Ax =
k0

∑
t=1

xtat . (4.13)

At the first iteration (k = 0) of the algorithm rk = r0 = b and, using Equation (3.8), the set

of computed errors from the Sweep stage is given by

ε( j) = min
z j

‖a jz j −b‖2
2 = ‖b‖2

2 − (aT
j b)2 ≥ 0. (4.14)

For that reason, for the first iteration to choose the first of the k0 entries in the vector and

do well, we must require that for all i > k0 (columns outside the true support)

|aT
1 b|> |aT

i b|. (4.15)

Substituting b as defined in Equation (4.13) we obtain
∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
1 at

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
i at

∣

∣

∣

∣

∣

. (4.16)

The idea is to construct a lower bound for the left side, an upper bound for the right side

and then pose the above inequality again6. For the left side we obtain
∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
1 at

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x1 +
k0

∑
t=2

xta
T
1 at

∣

∣

∣

∣

∣

≥ |x1|−
k0

∑
t=2

|xt | ·
∣

∣aT
1 at

∣

∣

≥ |x1|−
k0

∑
t=2

|xt | ·µ(A)

≥ |x1|− |x1|(k0 −1)µ(A)

≥ |x1| · (1−µ(A)(k0 −1)) .

(4.17)

5Theorem 2.13 guarantees uniqueness.
6LS ≥ Lbound > Ubound ≥ RS.
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In the first inequality we used |a + b| ≥ |a| − |b|, in the third Definition 2.1 (mutual-

coherence) and the decreasing order of the values |x j|. The right side is bounded by

∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
i at

∣

∣

∣

∣

∣

≤
k0

∑
t=1

|xt | ·
∣

∣aT
i at

∣

∣

≤
k0

∑
t=1

|xt | ·µ(A)

≤ |x1| ·µ(A)k0,

(4.18)

where, again, we exploited similar properties as above. Using these two bounds and plug-

ging them into (4.16) we obtain

∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
1 at

∣

∣

∣

∣

∣

≥ |x1| · (1−µ(A)(k0 −1))

> |x1| ·µ(A)k0

≥
∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
i at

∣

∣

∣

∣

∣

.

(4.19)

The second inequality leads to

1+µ(A)> 2µ(A)k0 ⇔ ‖x‖0 = k0 <
1

2

(

1+
1

µ(A)

)

, (4.20)

which is the condition we are looking for. However, so far we have showed that the con-

dition is sufficient only for the first iteration i.e. the column of A related to the entry of x

having the highest magnitude will be chosen.

The next step is an update of the residual, and since this is done by decreasing a term

proportional to a1 (or any other atom from within the correct support), this residual is also

a linear combination of the same k0 columns in A at the most, therefore Equation (4.13)

holds in each iteration. The rest of the calculation is a little more complicated and we

report it for more clarity.

Suppose we are at the i0 < k0 iteration, the condition, similar to (4.15), that needs to be

satisfied for i > k0 is

|aT
i0

b|> |aT
i b|. (4.21)

Substituting again b as defined in Equation (4.13) and calculating cleverly the two bounds

(majorizing |x1| ≥ ...≥ |xi0−1| by |x1| and |xi0 | ≥ ...≥ |xk0
| by |xi0 |) we obtain

|xi0 |− |xi0 | ·µ(A)(k0 − i0)−|x1| ·µ(A)(i0 −1)>

|x1| ·µ(A)(i0 −1)+ |xi0 | ·µ(A)(k0 − i0 +1).
(4.22)
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Simplifying

⇔ |xi0 |(1−µ(A)(k0 − i0))−|xi0 |µ(A)(k0 − i0 +1)> 2|x1|µ(A)(i0 −1)

⇒ |xi0 |(1−µ(A)(k0 − i0))−|xi0 |µ(A)(k0 − i0 +1)> 2|xi0 |µ(A)(i0 −1)

⇔ (1−µ(A)(k0 − i0))−µ(A)(k0 − i0 +1)> 2(i0 −1)µ(A)

⇔ 1−2µ(A)k0 >−µ(A).

(4.23)

In the second step we used |x1| ≥ |xi0 | the rest is simple algebra.

From the last step we easily obtain Equation (4.20) which demonstrates that the con-

dition is sufficient for every iteration 1 ≤ i0 ≤ k0. After k0 such iterations the residual

becomes zero and the algorithm stops ensuring the success in recovering the correct solu-

tion x as the theorem claims7.

The next result is the performance guarantee for the Thresholding algorithm. The

Thresholding algorithm is the simplest, and the one with the highest level of greediness, it

is then somewhat expected that his success rate is weaker than the OMP.

Theorem 4.8. (Performance Guarantee - Thresholding - General

Case): Given a system of linear equations Ax = b (A ∈ R
n×m full-rank with n < m), if

a (unique) solution x (with minimal non-zero value |xmin| and maximal one |xmax|) exists

obeying

‖x‖0 <
1

2

(

1+
1

µ(A)
· |xmin|
|xmax|

)

, (4.24)

then the Thresholding algorithm, run with threshold parameter ε0 = 0, is guaranteed to

find it exactly.

Proof. Similarly as in the previous proof suppose that the (unique) sparsest solution x has

k0 non-zero entries and that they are at the beginning of the vector, from the Update Support

stage success of the Thresholding algorithm is guaranteed by the requirement

min
1≤i≤k0

|aT
i b|> max

j>k0

|aT
j b|. (4.25)

Substituting b which is defined exactly as in Equation (4.13) the left side term becomes

min
1≤i≤k0

|aT
i b|= min

1≤i≤k0

∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
i at

∣

∣

∣

∣

∣

. (4.26)

As before we are looking for a lower bound for the left side and an upper bound for the

right side. We continue the calculations

7The Update Provisional Solution stage of the OMP, Algorithm 3.1, is powerful enough to guarantee

perfect recovery if the exact support is found.
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min
1≤i≤k0

∣

∣

∣

∣

∣

k0

∑
t=1

xta
T
i at

∣

∣

∣

∣

∣

= min
1≤i≤k0

∣

∣

∣

∣

∣

xi + ∑
1≤t≤k0,t 6=i

xta
T
i at

∣

∣

∣

∣

∣

≥ min
1≤i≤k0

{

|xi|−
∣

∣

∣

∣

∣

∑
1≤t≤k0,t 6=i

xta
T
i at

∣

∣

∣

∣

∣

}

≥ min
1≤i≤k0

|xi|− max
1≤i≤k0

∣

∣

∣

∣

∣

∑
1≤t≤k0,t 6=i

xta
T
i at

∣

∣

∣

∣

∣

≥ |xmin|− |xmax| ·µ(A)(k0 −1).

(4.27)

In the first inequality we used the relation |a+b| ≥ |a|−|b|, in the second we exploited the

well-known property of min and max functions8, in the third the fact that the columns of A

are normalized and that their inner product is bounded from above by µ(A), see Definition

2.1.

Turning to the right side of Equation (4.25), using the exact same steps as in (4.18) and

noting that in this case |x1| becomes more generically |xmax| we obtain

max
j>k0

|aT
j b| ≤ |xmax| ·µ(A)k0. (4.28)

Recalling that ‖x‖0 = k0, the condition we get is

|xmin|− |xmax| ·µ(A)(‖x‖0 −1)> |xmax| ·µ(A)‖x‖0, (4.29)

which, after a few simple algebraic steps, leads to the condition claimed by the Theorem.

Other greedy algorithms have very similar results but since the proofs have little to no

structural difference than the ones already given we omit them. We turn instead to the

Basis-Pursuit, surprisingly the same bound on the sparsity as in the OMP analysis also

guarantees success. However it is important to note that this does not imply that the two

algorithms perform similarly9.

Theorem 4.9. (Performance Guarantee - BP - General Case): Given a system of linear

equations Ax = b (A ∈ R
n×m full-rank with n < m), if a (unique) solution x exists obeying

‖x‖0 <
1

2

(

1+
1

µ(A)

)

, (4.30)

then BP is guaranteed to find it exactly, i.e. that solution is both the unique solution of

(P1) and (P0).

8min(| f (x)|− |g(x)|)≥ min | f (x)|+min(−|g(x)|) = min | f (x)|−max |g(x)|.
9Already for the two-ortho case this was found not to be true and it will be further confirmed in Section

4.4
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Proof. Let us define the set of alternative solutions:

C =
{

y : y 6= x,‖y‖1 ≤ ‖x‖1,‖y‖0 > ‖x‖0 and Ay = b
}

. (4.31)

The set C contains all the possible solutions that are different from the given x, have larger

`0 norm, satisfy the linear system of equations Ay = b = Ax and are at least as good from

the `1 norm perspective. This set being non-empty implies that there is an alternative

solution that the Basis-Pursuit will (or could, in case ‖y‖1 = ‖x‖1) find, rather that the

desired x.

Considering Theorem 2.13 and ‖x‖0 < 1/2(1+1/µ(A)) which is the given assump-

tion, x is necessarily the unique sparsest possible solution and therefore the third condition

of C is redundant. Defining e = y−x we can rewrite C as a shifted version of it around x:

Cs = {e : e 6= 0, ‖e+x‖1 −‖x‖1 ≤ 0 and Ae = 0} . (4.32)

The strategy of the proof will be to enlarge the set Cs and show that even that enlarged

set is empty which will prove that BP indeed succeeds in recovering x giving a sufficient

condition for doing so.

We start with the second requirement. Assuming, without loss of generality, that by a

simple columns permutation of A, the k0 non-zeros in x are located at the beginning of the

vector, the requirement can be written as

‖e+x‖1 −‖x‖1 =
k0

∑
j=1

(

|e j + x j|− |x j|
)

+ ∑
j>k0

|e j| ≤ 0. (4.33)

Using the inequality −|a| ≤ |a+b|− |b| we obtain

−
k0

∑
j=1

|e j|+ ∑
j>k0

|e j| ≤
k0

∑
j=1

(

|e j + x j|− |x j|
)

+ ∑
j>k0

|e j| ≤ 0. (4.34)

The last inequality can be written more compactly by adding and subtracting the term

∑
k0

j=1 |e j| and denoting it as 1T
k0
|e| (1k0

is a column vector of length m which has ones at the

first k0 entries and zeros at the rest). This leads to

‖e‖1 −21T
k0
|e| ≤ 0. (4.35)

Substituting into the definition of Cs we get

Cs ⊆C1
s =

{

e : e 6= 0, ‖e‖1 −21T
k0
|e| ≤ 0 and Ae = 0

}

. (4.36)

The new set C1
s enlarges the initial set Cs because, as shown, every vector e satisfying the

condition ‖e+x‖1 −‖x‖1 ≤ 0 must also satisfy ‖e‖1 −21T
k0
|e| ≤ 0 but not vice-versa10.

10This simply derives from −|a| ≤ |a+b|− |b| which can also be strictly less.
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We now turn to handle the third requirement Ae = 0. A simple multiplication by AT

(which does not yet change Cs) yields the condition AT Ae = 0. Subtracting the vector e to

both sides we obtain

− e =
(

AT A− I
)

e. (4.37)

Taking an entry-wise absolute value on both sides we calculate

|e|= |(AT A− I)e| ≤ |AT A− I||e|
≤ µ(A)(11T − I)|e|
= µ(A)(1T |e|)1−µ(A)|e|
= µ(A)(‖e‖1)1−µ(A)|e|

⇒ |e| ≤ µ(A)

1+µ(A)
‖e‖11.

(4.38)

In the first inequality we used the well-known relation ‖∑i givi‖ ≤ ∑i |gi||vi| and applied

it for every row of the vector, in the second inequality we simply used the definition of

the mutual-coherence, see Definition 2.1, for A already normalized, and the rest is pure

algebraic manipulation where 1 is a column vector of ones of length m.

Substituting into the definition of C1
s we get

C1
s ⊆C2

s =

{

e : e 6= 0, ‖e‖1 −21T
k0
|e| ≤ 0 and |e| ≤ µ(A)

1+µ(A)
‖e‖11

}

. (4.39)

The new set C2
s enlarges the set C1

s as shown in the calculations above and it is a scale-

invariant set since if e ∈ C2
s then αe ∈ C2

s for all α 6= 0. Since our aim is to investigate

whether C2
s is empty (or not) it is sufficient to consider the intersection of this set with the

unit `1 sphere11. We denote this intersection as Cr:

Cr =

{

e : ‖e‖1 = 1, 1−21T
k0
|e| ≤ 0 and |e| ≤ µ(A)

1+µ(A)
1

}

. (4.40)

Our goal is to find a requirement for which the set Cr = /0. In order to do so we first put an

equality sign in the third condition, we thus obtain |e j| = µ(A)/(1+ µ(A)). We already

used the first condition ‖e‖1 = 1 when constructing Cr therefore we turn to the second, i.e.

we want the second condition not to be true. It follows

1−21T
k0
|e|= 1−2k0

µ(A)

1+µ(A)
> 0. (4.41)

After some simple algebraic steps we obtain

‖x‖0 = k0 <
1

2

(

1+
1

µ(A)

)

. (4.42)

11Cr = /0 ⇒ C2
s = /0 : supposing C2

s 6= /0 this means that there exist a vector e ∈ C2
s which from the scale

invariance described implies that e/‖e‖1 ∈Cr. Cr ⊆C2
s trivially implies Cr 6= /0 ⇒C2

s 6= /0.
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4.4 Numerical Demonstration of Algorithms

After analysing the problem (P0), demonstrating the uniqueness-optimality results and in-

troducing different greedy and relaxation algorithms and their theoretical guarantees, it is

now time to demonstrate their comparative behaviour on a relatively simple but represen-

tative case study.

We create a random matrix A of size 30× 50 with entries drawn from the standard

normal distribution. We normalize the columns of this matrix to have a unit `2-norm12. We

generate sparse vectors x ∈ R
50 in two steps: first we choose k random entries which will

serve as the random support S , secondly each chosen entry is drawn from a continuous

uniform distribution; once in the range [−2,−1]∪ [1,2] and once in the range [−1,1]13.

Once x is generated, we compute b = Ax and then apply the algorithms to seek for x.

We perform 200 such tests per each cardinality k ∈ [1,15]. The k ≤ 15 bound is deliber-

ately chosen because it guarantees that in all our tests the original solution x is also the

sparsest possible: spark(A) = 31 (see [9, p.24]) and uniqueness-optimality then follows

from Theorem 2.10.

We compare all the six algorithms presented above: the LS-OMP, the OMP, the MP,

the Weak-MP with t = 0.5, the Thresholding and the BP. All the greedy algorithms seek

the proper solution until the residual is below a certain threshold: ‖rk‖2 ≤ ε0 = 10−2.

When testing the success of an approximation algorithm, there are many ways to define

the distance between the solution it proposes x̂ and the ideal one x. Here we present two

such measures, the standard `2-error and the recovery of the support.

The `2-error is computed as

err(x̂) =
‖x− x̂‖2

2

‖x‖2
2

, (4.43)

which is the `2-proximity between the two solutions relative to the energy of the true so-

lution. In this case such measure does not reveal the complete story because it fails to

indicate whether the support is recovered perfectly or at least partially. Thus we add an-

other measure which computes the distance between the supports of the two solutions.

Denoting as Ŝ the support proposed by the algorithm and as S the support of the true

solution we define this distance by

dist(Ŝ,S) = max{|Ŝ|, |S|}− |Ŝ ∩S|
max{|Ŝ|, |S|}

= 1− |Ŝ ∩S|
max{|Ŝ|, |S|}

. (4.44)

It is straightforward that dist(Ŝ,S) ∈ [0,1] being zero when the two supports are exactly

the same and one when they are entirely different, with no overlap.

It has to be added that, for practical reasons, when evaluating the support we considered

as being zero all entries smaller than 10−8.

12The importance of normalization was discussed at the end of the last Chapter.
13We expect a somewhat different behaviour for the greedy algorithms.
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Figure 4.2: Algorithm performance in terms of relative `2-error for non-zero entries of x in range [−2,−1]∪
[1,2] (up) and [−1,1] (down).

Looking at Figure 4.2 we observe that pretty much every algorithm has an increase in

performance, regarding the relative `2-error, for entries of x in the [−1,1] range, the only

exception is the Thresholding algorithm which performs worse14. The BP algorithm seems

to perform similarly in both cases.

Looking at Figure 4.3 we observe a very similar behaviour for the support recovery

error. A somewhat unexpected behaviour is the increasingly better performance of the

”greediest” algorithms, especially the Thresholding which almost outperforms the LS-

OMP and the OMP (in its optimal settings of the [−2,−1]∪ [1,2] range). This behaviour

14This is consistent with Theorem 4.8.
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Figure 4.3: Algorithm performance in terms of success rate in detecting the support for non-zero entries of x

in range [−2,−1]∪ [1,2] (up) and [−1,1] (down).

could be further explored in future analysis.

From both Figures we can conclude, as expected, that the performance is positively

correlated with the cardinality of the true solution. The algorithm that without a doubt

performs best (in the framework of our experiment) is the Basis-Pursuit, which has perfect

recovery for all cardinalities k smaller or equal to 7.

It is interesting that for random matrices A as in our experiment the expected mutual-

coherence is µ(A) ≈ 0.58815 which applying Theorems 4.7 and 4.9 leads to a theoretical

15With a 95% confidence interval of [0.515,0.687] and no value smaller than 0.451 obtained with a ran-

dom sample of 10,000.
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perfect recovery for approx. k ≤ 1.35, we therefore conclude that the theory results are

probably not tight and far too pessimistic.

Figure 4.4: Average execution time of algorithms.

We purposely omit extensive analysis of the complexity of the given algorithms since it

highly depends on implementational choices which in some cases were not optimal because

the performance (and not the speed) was the main focus.

The average time of execution is presented in Figure 4.4, the LS-OMP is omitted since it

was not implemented optimally16 and therefore its results are not representative. The most

important information the Figure gives is that the time of execution (i.e. the complexity)

increases with the cardinality k. Secondly, as expected, the Basis-Pursuit is slower than the

greedy methods.

We implemented the greedy algorithms directly and the BP applying Proposition 3.2

and then using the standard Matlab solver for linear programming problems: linprog17.

16The recursive approach mentiooned in the LS-OMP Algorithm subsection was not implemented.
17We used the option which runs the Interior-point methods.



Chapter 5

The Distended Problem

In the previous chapters we thoroughly analyzed the (P0) problem, demonstrated its unique-

ness - optimality results and introduced different pursuit algorithms analyzing them as well.

But, as mentioned already in the first chapter, real life applications are often more complex

and therefore a different approach is needed, which includes questioning the fundamentals

of our discussion, the problem (P0) itself.

5.1 The (Pε
0 ) Problem

For clarity purposes we rewrite the definition of the (P0) problem.

(P0) : min
x

‖x‖0 subject to Ax = b. (5.1)

The main issue is the exact equality constraint Ax = b which happens to be too strict. From

this exactness two undesirable behaviours arise:

• Suppose that for a given vector b the system Ax = b has a sparse solution x0. For

a slightly perturbed vector b0:= b+ e (e being random noise) the system Ax = b0

does not need to have a sparse solution at all, and therefore (P0) would not find the

original solution x0.

• Suppose that x0 is very sparse and consider a slight random perturbation of it, x :=

x0 + εu (0 < ε � 1 and ‖u‖2 ≤ 1). It is clear that x can become fully dense and

therefore x0 would never be considered by (P0) as a potential solution1.

In other words the problem (P0) is not robust to small perturbations (of the signal b or

of the hypothetical signal source, which leaves in the space of the solution x) and this is

a very important property because in real world applications small random perturbations

occur very often2.

1More precisely if we define b := Ax and then solve for x the problem (P0) that arises would never

consider x0 even though it is ”very near”.
2Physical obstacles, measure errors, numerical approximations etc...

43
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The solution to this issue lies indeed in the introduction of an error-tolerant version of

(P0).

Definition 5.1. The problem (Pε
0 ), for error tolerance ε> 0, is defined as

(Pε
0 ) : min

x
‖x‖0 subject to3 ‖b−Ax‖2 ≤ ε. (5.2)

Proposition 5.2. Consider the problem (Pε
0 ) such that b := Ax0 for a very sparse x0. The

given problem is robust to small perturbations e such that ‖e‖2 ≤ ε0, of both the signal b

(ε0 = ε) and the candidate solution x0 (ε0 ≤ ε/‖Au‖2 where e := ε0u,‖u‖2 ≤ 1).

Proof. (Signal perturbation robustness) Slightly perturbing the vector b we obtain b0 =

b+ e. We calculate

‖b0 −Ax0‖2 = ‖b+ e−Ax0‖2 = ‖e‖2 ≤ ε. (5.3)

(Solution perturbation robustness) Slightly perturbing the candidate solution x0 and putting

e := ε0u,‖u‖2 ≤ 1 we obtain x = x0 +ε0u. We calculate

‖Ax−b‖2 = ‖A(x0 +ε0u)−b‖2 = ‖ε0Au+Ax0 −b‖2 = ε0‖Au‖2. (5.4)

Robustness is obtained if we choose ε0 such that ε0‖Au‖2 ≤ ε.

It is worth noticing that when (P0) and (Pε
0 ) are applied on the same problem instance,

the error-tolerant problem must always give results at least as sparse as those arising in

(P0), since the feasible set is wider4.

Another important thing to underline is that the signal perturbation robustness means

in fact that (Pε
0 ) has a naturally strong capacity for noise removal, and indeed a similar

application of that will be explored in the last chapter.

5.2 The Lack of Uniqueness

As will be intuitively shown in this Subsection we can no longer claim uniqueness of a

sparse solution for (Pε
0 ) in the general case. Suppose similarly as before that a sparse

vector x0 is multiplied by A and obtain a noisy observation of this product b = Ax0 + e

with ‖b−Ax0‖2 ≤ ε. Consider applying (Pε
0 ) to obtain an approximation of x0 i.e. getting

a solution xε0
xε0 = argmin

x
‖x‖0 subject to ‖b−Ax‖2 ≤ ε. (5.5)

The question is how good is this approximation? How its accuracy is affected by the

sparsity of x0? All this will be answered briefly through the concept of stability which,

put in words, is the claim that if a sufficiently sparse solution exists, then all alternative

solutions necessarily reside ”not far away from it”.

3The use of the `2-norm is completely arbitrary due to the well-known norm equivalence in a finite-

dimensional linear space.
4It follows from well-known properties of minimums over sets and their subsets.
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Example 5.3. In this representative example we demonstrate that uniqueness can no longer

be claimed. In the same settings as in (5.5) let us choose a two-ortho matrix A = [I,O] of

size 2×4, x0 = [0 0 1 0]T and a generated random noise e such that ε= ‖e‖2. Thus,

Ax0 + e =

[

1 0 0.6 −0.8
0 1 0.8 0.6

]









0

0

1

0









+

[

e1

e2

]

=

[

0.6+ e1

0.8+ e2

]

. (5.6)

Figure 5.1: 2D demonstration of the lack of uniqueness for (Pε

0 ) with a relatively weak noise.

In Figure 5.1 are presented the locations of Ax0,b and the regions

{v : ‖v−Ax0‖2 ≤ ε} and {v : ‖v−b‖2 ≤ ε} with ε = 0.25. The second of those is the

region of all the feasible solutions5 x to the problem (Pε
0 ).

5After multiplication by A.
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All the feasible sparse solutions are marked in green and, as already shown in Propo-

sition 5.2, the vector x0 belongs to that set as well, indeed it is an optimal solution in the

sense that no sparser solution exists. More precisely every point of the set marked in green

is an optimal sparse solution having the smallest possible cardinality (one) thus uniqueness

cannot be claimed.

Figure 5.2: 2D demonstration of the lack of uniqueness for (Pε

0 ) with a stronger noise. Alternative solutions,

even with different support, are possible.

In Figure 5.2 the same experiment is presented, the only difference is the use of a

stronger noise: ε = 0.55. This leads to a different scenario where not only we have lost

uniqueness with respect to the same support but other supports with cardinality ‖x‖0 = 1

are possible, indeed even the null solution is included, being therefore the optimal solution

to (Pε
0 ).
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A more formal way of explaining this behaviour is the following. Let us assume that x

is a sparse candidate solution to the problem (Pε
0 ) over the support S , i.e. ‖x‖0 = |S| and,

similarly as before, Let us denote with xS and AS the portions related to that support. We

therefore obtain that the constraint ‖b−ASxS‖2 ≤ ε is satisfied.

Defining the function fS(z) as

fS(z) = ‖b−ASz‖2, (5.7)

if xS happens to be the minimizer of fS and fS(xS) = ε, then no other solution over the

same support can be proposed6, since any perturbation around xS leads to an increase in

the value of fS thus violating the constraint.

Observing Figure 5.1, this case would take place if the closest point to b, on the green

line, was Ax0 i.e. if the distortion e = b−ASxS was orthogonal to the columns of AS .
7

In all other cases the fact that minz fS(z)< ε implies an ability to perturb xS in a way

that preserves its feasibility and the support and thus we get a set of solutions that are as

good as x (as in Figure 5.1).

Furthermore if some of the non-zero entries in x are small enough the perturbation may

null them, leading to an even sparser solution (as in Figure 5.2).

5.3 Introduction to Stability Analysis

In the last section we showed that for the (Pε
0 ) problem we cannot expect uniqueness of

the solution, but there is a less tight result that can be obtained, which is the stability of the

solution.

In order to present this theoretical analysis we need to introduce a new measure of

quality of a given matrix A that replaces the spark. This measure is called Restricted

Isometry Property (RIP) and was introduced by Candes and Tao in [4].

Definition 5.4. (RIP) Let A be a matrix of size n×m with `2-normalized columns and let

1≤ s≤m be an integer. If there exist a constant δs ≥ 0 such that, for every m×s sub-matrix

As of A and for every s-dimensional8 vector z,

(1−δs)‖z‖2
2 ≤ ‖Asz‖2

2 ≤ (1+δs)‖z‖2
2, (5.8)

then the matrix A is said to satisfy the RIP with constant δs.

Two comments have to be made. The first one is that we can replace (5.8) with an

equivalent condition more optimal to our analysis where we never mention the sub-matrices

As and instead use the complete matrix A while putting a constraint on the cardinality of z,

(1−δs)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1+δs)‖z‖2
2

∀z ∈ R
m s.t. ‖z‖0 = s.

(5.9)

6We have uniqueness over the support S , nothing can be guaranteed over a different support.
7As the minimizer of fS , the vector xS should satisfy AT

S
(b−ASxS) = AT

S
e = 0.

8The matrix A and the vector z can be complex or real, but in our analysis we consider them always real.
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The second one, is what we are really interested in, is the so called s-Restricted Isometry

Constant (s-RIC) which is simply defined as the infimum of δs over all s of same cardinality

δC
s = inf

{

δs :
(1−δs)‖z‖2

2 ≤ ‖Az‖2
2 ≤ (1+δs)‖z‖2

2

∀z ∈ R
m s.t. ‖z‖0 = s

}

. (5.10)

The intuition behind the s-RIC is that the matrix A is guaranteed to only change the

length of any vector z ”very little” (behaves almost like an orthogonal transform) as long

as the vector z is at least s-sparse. Also it is easy to comprehend that given a matrix A it is

almost impossible9 to evaluate δC
s for s � 1.

Proposition 5.5. The s-RIC, δC
s and the mutual-coherence, µ(A) of the matrix A are re-

lated through the following inequality

δC
s ≤ (s−1)µ(A). (5.11)

Proof. Applying the Gershgorin Disk Theorem 2.11 and the definition of the mutual-

coherence to the matrix AT
s As

10 we obtain that for all its eigenvalues λ it holds

|λ−1| ≤ (s−1)µ(A), (5.12)

where | · | is a complex norm.

Recalling that our analysis takes place in a real vector space where A is real and there-

fore AT
s As is a real symmetric matrix it follows

1− (s−1)µ(A)≤ λ≤ 1+(s−1)µ(A). (5.13)

Applying the properties of the Rayleigh quotient, see [17], to the matrix AT
s As we obtain

λmin ≤
‖Asz‖2

2

‖z‖2
2

≤ λmax. (5.14)

Combining (5.13) and (5.14) we basically showed that (s− 1)µ(A) is a possible δs con-

stant, the claim of the proposition follows from the basic infimum property of δC
s .

Corollary 5.6. Let A be a matrix of size n×m, n,m > 1 with `2-normalized columns, let

δC
s be its s-RIC and µ(A) its mutual-coherence. The following holds:

(a) δC
1 = 0

(b) δC
2 = µ(A)

(c) δC
s ≤ δC

s+1

(d) δC
s ≥ 1 ⇒ s ≥ spark(A)

(e) δC
s ≤ (s−1)µ(A)

9The computation of the RIP/s-RIC is a Strong NP-Hard problem.
10Recall that z ∈ R

s and z ∈ R
m s.t. ‖z‖0 = s are equivalent.
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Proof. (a) If s = 1 it follows that z is a scalar and As is a single normalized column from

A. Thus

‖Asz‖2
2 = zT As

T Asz = z2 ⇒ δs = 0. (5.15)

and therefore δC
1 = 0.

(b) If s = 2 it follows that As contains two normalized columns from A. Thus

AT
s As =

[

aT
1

aT
2

]

[

aT
1 aT

2

]

=

[

1 aT
1 a2

aT
2 a1 1

]

. (5.16)

For all pairs of two columns there must be at least one that gives aT
1 a2 = µ meaning that

the eigenvalues of that matrix are exactly 1− µ and 1+ µ11. Applying (5.14) it follows

that δC
2 = µ .

(c) Looking at the definition of s-RIC it is immediately clear that δC
s+1 < δC

s cannot be

because the one ”extra” scalar in z cannot decrease the value of the s-RIC (if the new extra

scalar in z is chosen very small it can make δs+1 arbitrarily near but always greater or equal

to δC
s , therefore δC

s+1 ≥ δC
s ). See also [9, p.88].

(d) Applying δC
s ≥ 1 to the left inequality in the definition of s-RIC we obtain

∃z ∈ R
m, ‖z‖0 = s s.t. ‖Az‖2

2 = 0. (5.17)

Using the well-known property of norms if follows Az = 0 which means that A has at least

s linearly dependent columns and therefore

s ≥ spark(A), (5.18)

with equality obtained for s0 = min{s : δC
s ≥ 1}.

(e) See Proposition 5.5.

We now have all the tools necessary for an elegant proof of the stability result.

Theorem 5.7. (Stability of (Pε
0 )) Consider the instance of problem (Pε

0 ) defined by the

triplet (A,b,ε). Suppose that a vector x0 ∈ R
m is a feasible potential solution to (Pε

0 )

satisfying the sparsity constraint

‖x0‖0 <
1

2

(

1+
1

µ(A)

)

, (5.19)

then every solution x̃ of (Pε
0 ) must obey12

‖x̃−x0‖2
2 ≤

4ε2

1−µ(A)(2‖x0‖0 −1)
. (5.20)

11The interval [1− µ,1+ µ] contains the eigenvalues of every AT
s As matrix due to the well-known basic

majorization property of µ(A).
12Recall that we do not have uniqueness, therefore many solutions are generally possible.
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Proof. First of all let us put s0 = ‖x0‖0 and recall that x0 being a feasible potential solution

simply means that ‖b−Ax0‖ ≤ ε.

Now, as assumed, we solve (Pε
0 ) and get a candidate solution, denoted by x̃. As already

seen it follows that x̃ has to be at least as sparse as x0, i.e. ‖x̃‖0 ≤ s0 and ‖b−Ax̃‖ ≤ ε.

Defining d := x̃−x0 we obtain

‖Ad‖2 = ‖Ax̃−Ax0‖2 ≤ ‖Ax̃‖2 +‖Ax0‖2 ≤ 2ε (5.21)

and similarly

‖d‖0 = ‖x̃−x0‖0 ≤ ‖x̃‖0 +‖x0‖0 ≤ 2s0. (5.22)

After some standard algebraic manipulations we obtain that the assumption

(5.19) is equivalent to

(2s0 −1)µ(A)< 1. (5.23)

Thus, using Proposition 5.5, it follows that δC
2s0

< 1. Using the last obtained inequality13

and exploiting the lower bound in the definition of s-RIC we get

(1−δC
2s0

)‖d‖2
2 ≤ ‖Ad‖2

2 ≤ 4ε2 (5.24)

and thus we get a stability claim of the form

‖d‖2
2 = ‖x̃−x0‖2

2 ≤
4ε2

1−δC
2s0

. (5.25)

Using the upper bound of Proposition 5.5 again we finally obtain

‖d‖2
2 = ‖x̃−x0‖2

2 ≤
4ε2

1−δC
2s0

≤ 4ε2

1− (2s0 −1)µ(A)
. (5.26)

The final stability result holds if and only if the denominator is positive, which is equivalent

to (5.23) which, as stated, is another way of writing the initial sparsity assumption.

In words, the stability of the problem (Pε
0 ) means that, if there exist a sufficiently sparse

feasible vector x0 then every solution cannot be far from it. This immediately implies that

all the solutions of (Pε
0 ) lie in a bounded set and are very near one to another14.

It is also very interesting to notice that for ε= 0 the stability result suggests that x̃ = x0

which is perfectly aligned with the claim of Theorem 2.13 (meaning the two claims are

consistent) thus stability can be rightfully referred to as an extension of uniqueness.

13Equations (5.21) and (5.22) guarantee the existence of the s-RIC.
14Follows from the triangle inequality of the `2 norm.
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5.4 Stability of Pursuit Algorithms

Let us recall the greedy algorithms: the OMP, the LS-OMP, the MP, the Weak-MP and the

Thresholding. These algorithms are tailored to efficiently solve the (P0) problem, how do

we modify them to solve the (Pε
0 ) problem?

The answer is incredibly simple! We just put the error threshold ε0 = ε i.e. we stop

the iterations when the `2-norm of the residual rk = b−Axk is equal (or slightly less) to ε,

which is exactly the radius of the ball centered at b were the feasible solutions of (Pε
0 ) lie.

We now present, without proofs, the stability results of the most important greedy al-

gorithms.

Theorem 5.8. (Stability of OMP) Consider the OMP algorithm applied to the problem

instance (Pε
0 ) defined by the triplet (A,b,ε). Suppose that a vector x0 ∈ R

m is a feasible

potential solution to (Pε
0 ) satisfying the sparsity constraint

‖x0‖0 <
1

2

(

1+
1

µ(A)

)

− ε

µ(A)|xmin|
, (5.27)

where |xmin| is the minimum value of the vector |x0| within its support. The solution pro-

duced by the OMP algorithm must obey

‖xOMP −x0‖2
2 ≤

ε2

1−µ(A)(‖x0‖0 −1)
. (5.28)

Furthermore, this algorithm is guaranteed to recover a solution with the correct support

and in exactly s = ‖x0‖0 steps.

Proof. See [8, p.12-13].

Theorem 5.9. (Stability of Thresholding) Consider the Thresholding algorithm applied

to the problem instance (Pε
0 ) defined by the triplet (A,b,ε). Suppose that a vector x0 ∈R

m

is a feasible potential solution to (Pε
0 ) satisfying the sparsity constraint

‖x0‖0 <
1

2

(

1+
|xmin|
|xmax|

· 1

µ(A)

)

− ε

µ(A)|xmax|
, (5.29)

where |xmin| and |xmax| are the minimum and maximum values of the vector |x0| within its

support. The solution produced by the Thresholding algorithm must obey

‖xT HR −x0‖2
2 ≤

ε2

1−µ(A)(‖x0‖0 −1)
. (5.30)

Furthermore, this algorithm is guaranteed to recover a solution with the correct support.

Proof. See [9, p.105-107].
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Similarly, a few words have to be spent regarding the modification of the Basis Pursuit

for the solution of the (Pε
0 ) problem. This modification is straightforward and is called the

Basis Pursuit Denoising (BPDN). Assume that the matrix A has normalized columns the

(Pε
1 ) is defined as

(Pε
1 ) : min

x
‖x‖1 subject to ‖b−Ax‖2 ≤ ε. (5.31)

This is a more complex optimization problem being quadratic in nature and the presentation

of its possible solutions is beyond the purposes of this work. More can be found at [9, p.90-

100].

For completeness, the stability result of the BDPN is presented.

Theorem 5.10. (Stability of BDPN) Consider the instance of problem (Pε
1 ) defined by the

triplet (A,b,ε). Suppose that a vector x0 ∈ R
m is a feasible potential solution to (Pε

0 )

satisfying the sparsity constraint

‖x0‖0 <
1

4

(

1+
1

µ(A)

)

, (5.32)

then the solution xε1 of (Pε
1 ) must obey

‖xε1 −x0‖2
2 ≤

4ε2

1−µ(A)(4‖x0‖0 −1)
. (5.33)

Proof. See [9, p.103-104].

It can be observed that the theorem does not guarantee support recovery and that there

is a noise magnification phenomenon by a factor of 4.

However this does not mean that the BDPN is worse than the other two greedy algo-

rithms presented15, indeed a more complex theoretical analysis and appropriate simulations

would show competitiveness.

Lastly we present a theoretically strong result which guarantees stability for an arbi-

trary pursuit algorithm A used for solving (Pε
0 ).

Theorem 5.11. (Stability of arbitrary pursuit algorithm A) Consider the instance of prob-

lem (Pε
0 ) defined by the triplet (A,b,ε). Suppose that a vector x0 ∈R

m is a feasible poten-

tial solution to (Pε
0 ) satisfying the sparsity constraint

‖x0‖0 <
1

2

(

1+
1

µ(A)

)

, (5.34)

then the solution x̃ of (Pε
0 ) produced by the algorithm A must obey

‖x̃−x0‖2
2 ≤

4ε2

1−δC
s0+s1

≤ 4ε2

1−µ(A)(s0 + s1 −1)
(5.35)

where s0 = ‖x0‖0 and s1 = ‖x̃‖0.

15All known variants of greedy algorithms are included because they perform ”somewhere in between”

these two algorithms, the only exception is the LS-OMP.
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Proof. Same as Theorem 5.7 but using δC
s0+s1

< 1.

The result is very powerful but useless in practice, since it depends on the sparsity of the

proposed solution x̃ (and therefore is not a constant that can be tied to a specific algorithm).





Chapter 6

Applications to Signal Processing

In all the previous chapters we have shown that the problem of finding a sparse solution

to an underdetermined linear system of equation, or approximation of it, can be given a

meaningful definition and can be computationally tractable. In this last chapter we show

an application to signal and image processing which is image inpainting and noise removal.

The application chosen gives a meaningful and strong understanding of how powerful the

algorithms and the ideas in this domain can be.

In the following discussion we shall replace the notation b in the linear system Ax = b

with y, in order to reflect the nature of this vector as a signal of interest.

It is important to remind that the presented is just a narrow subset of all the possible

applications and ideas, for more see [9, p.169-353].

6.1 The Sparseland Model

In order to describe the Sparseland model Let us first consider the linear system Ax = y

and interpret it as a way of constructing signals y.

Every column in A is a possible signal in R
n, usually these m columns are called atomic

signals and therefore the matrix A displays a dictionary of atoms.

The multiplication of A by a sparse vector x with ‖x‖0 = k0 produces a linear combina-

tion of k0 atoms with varying portions, generating the signal y. The vector x that generates

y will be called its representation, since it describes which atoms and what portions of

them where used for its construction. This process is called atomic-composition.

The actual generation of a signal from the given dictionary is controlled by a prior P(y),
which is nothing else but a probability density function (PDF) of signals1.

Many different priors (and models) have been proposed in the last 40 years of devel-

opment in signal processing and many have a Gibbs distribution form2 (Total-Variation,

Wavelet transform based, Gaussian-mixture-models, etc.). For a relevant and rich list see

[9, p.169-172].

1The prior is a function that quantifies how likely a particular signal is to exist.
2P(y) =C · e−G(y), for a given function G(y).
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Let us describe the above more precisely: we can think of Sparseland as being a random

generator machine M with parameters A,λ,α and ε, and describe the prior of it through

several simple steps.

• Choose the cardinality of x, k0, by sampling from an exponential probability distri-

bution X1 ∼ Exp(λ).3

• Choose the support of x by sampling from a discrete uniform distribution, i.e. be-

tween the s =
(

m
k0

)

possible supports choose one with probability 1/s.

• Choose the values of x by sampling from a multivariate normal distribution X2 ∼
N (0,Σ(α)).4

• Generate the signal y such that y := Ax+ e, the vector e being random gaussian

noise s.t. ‖e‖2 ≤ ε.

Even though the prior of the Sparseland model is not written directly (which is possible but

unnecessarily complex) it is clear that the four steps above provide a clear and complete

definition of P(y).

Moreover it is straightforward that Sparseland is a generative model, meaning that it

directly describes a way for how signals are synthetized (making sampling of new one very

easy). More details and even a geometric interpretation can be found at [9, p.173-180].

Hereafter by Sparseland model we imply the machine M(A,λ,α,ε).

6.2 Dictionary Learning

From the definition of Sparseland it is clear that the dictionary A is a fundamental ingredi-

ent and hyperparameter for the successful deployment of the model.

In the quest for the proper dictionary to use in applications, one line of work (the oldest

one) considers choosing pre-constructed dictionaries such as Fourier, DCT, Wavelet, etc.

In this section, in order to show the full potential of this field and perhaps to connect it

to the very popular field of Machine Learning we indeed choose a different line which is

the learning approach. This learning option starts by building a training database of signal

instances and constructing an empirically learned dictionary, in which the atomic signals

come from the underlying data, rather than some theoretical model.

This approach has one important advantage and that is the capacity of adaptation to

any family of signals that complies with the Sparseland model. However all this, firstly,

comes at the price of a much higher computational load since learned dictionaries have to

be held as explicit structure-less matrices, and, secondly, at a restriction to low dimensional

signals5.

3λ chosen such that the sample tends to sparsity, i.e. k0 � n.
4This notation simply means that α is a parameter of the covariance matrix Σ .
5An image has to be divided in small patches in order to get a big enough training set for learning,

therefore some information is necessarily lost.
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We now turn to discuss the learning methodology precisely. Assume that a training

database {yi}N
i=1 is given and thought to have been generated by some fixed but unknown

Sparseland model M(A,λ,α,ε).
The learning objective can be posed as the following optimization problem, which we

define as (DL).

(DL) : min
A,{xi}N

i=1

N

∑
i=1

‖yi −Axi‖2
2 s.t. ‖xi‖0 ≤ k0, 1 ≤ i ≤ N. (6.1)

For (DL) to be well-posed and admit a unique solution we need:

• The normalization6 of the columns of A, i.e. diag{AT A}= I.

• The assumption that the solution is invariant to permutations of columns of A.

Under the above assumptions there are a lot of theoretical and practical results that prove

the usefulness of (DL) for the dictionary learning task, see [3], [9, p.229] and related work.

The K-SVD Algorithm

The K-SVD was developed in 2006 and designed to solve (DL) and, at publication time,

it achieved state-of-the-art results, see [2].

Let us rewrite (DL) in a matrix form

(DL′) : min
A,X

‖Y−AX‖2
F s.t. ‖xi‖0 ≤ k0, 1 ≤ i ≤ N, (6.2)

where the n×N matrix Y is formed by concatenating all the training database vectors

column-wise and similarly the m×N matrix X by concatenating the corresponding sparse

representations. We calculate

‖Y−AX‖2
F =

∥

∥

∥

∥

∥

Y−
m

∑
j=1

a jx
T
j

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

(

Y− ∑
j 6= j0

a jx
T
j

)

−a j0xT
j0

∥

∥

∥

∥

∥

2

F

=
∥

∥E j0 −a j0xT
j0

∥

∥

2

F
,

(6.3)

where xT
j stands for the j-th row of X and E j0 refers to the term in parentheses as a known

pre-computed error matrix.

The core step of the K-SVD is to find the optimal a j0 and xT
j0

which minimizes (6.3) for

each j0. It is well-known that this can be obtained via a rank-1 SVD approximation [12,

p.57-65] but this typically yields to a dense vector xT
j0

ruining sparsity.

6In order to define a precise scale between A and xi.
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Algorithm 6.1: K-SVD

Task: Train a dictionary A which is an approximate solution to (DL).
Parameters: Given the training data {yi}N

i=1, the error threshold ε0 and the

maximum number of iterations kmax.

Initialization: Initialize k = 0, and

• Initialize Dictionary: Build A(0) ∈ R
n×m, either by using

random entries or using m randomly chosen training vectors.

• Normalization: Normalize the columns of A(0).

Main Iteration: Increment k by 1, and apply:

• Sparse Coding: Use any pursuit algorithm to approximate

the solution of

x̂i = argmin
x

‖yi −A(k−1)x‖2
2 s.t. ‖x‖0 ≤ k0

obtaining sparse representations x̂i for 1 ≤ i ≤ N. These form

the matrix X(k).

• K-SVD Dictionary Update: Use the following to update

the columns of the dictionary and obtain A(k).

For each column j0 = 1,2, ...,m in A(k−1) do

– Define the group of training signals that use the atom a j0

ω j0 = {i | 1 ≤ i ≤ N, X(k)[ j0, i] 6= 0}.

– Define P j0 as a matrix of size N ×|p j0 | with ones on the

(ω j0(i), i)th entries and zeros elsewhere.

– Compute the residual matrix

E j0 = Y− ∑
j 6= j0

a jx
T
j

where xT
j are the rows of the matrix X(k).

– Calculate ER
j0
= E j0P j0 .

– Apply SVD decomposition ER
j0
= UΣVT . Update the

dictionary atom a j0 = u1
a and the representation

xR
j0
= Σ[1,1] ·v1.

• Stopping Rule: If ‖Y−A(k)X(k)‖2
F < ε0 or k > kmax stop.

Otherwise, continue.

Output: The desired result is A(k).

aThe column is already normalized because U is unitary.
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The density of the vector xT
j0

can be solved by taking only a subset of the columns of

E j0 , i.e. those columns that correspond to the training signals in Y which are using the

j0-th atom, namely those columns where the entries in the row xT
j0

are non-zero. This is

done by multiplying E j0 from the right by a restriction operator7, P j0 , which has N rows

and M j0 columns8.

Algebraically the last equation in (6.3) becomes

∥

∥E j0P j0 −a j0xT
j0

P j0

∥

∥

2

F
=
∥

∥E j0P j0 −a j0(x
R
j0
)T
∥

∥

2

F
. (6.4)

For the sub-matrix E j0P j0 a rank-1 SVD approximation can be applied, updating simulta-

neously both the atom a j0 and the corresponding coefficients in the sparse representations,

xR
j0

. Note that one does not need to use the full SVD as only the first rank part of E j0P j0 is

required, thus an alternative numerical approach is possible, see [9, p.233].

The whole K-SVD algorithm is written above. In order to increase the quality of the

obtained dictionary we mention a simple Correction Stage. After each Dictionary Update

stage do:

• If two atoms in the dictionary are too similar, discard one of them.

• If an atom in the dictionary is rarely used, discard it.

In both cases choose the worst-represented training signal from Y as the replacement.

6.3 Image Inpainting

Image inpainting refers to filling-in missing pixels in known locations in the image, due to

undesired scratches, occlusions or because of image editing needs (removing objects from

the scene). Extensive work on this problem is reported in the image processing literature,

using various techniques. In this section we focus on ways to inpaint images using the

Sparseland model.

Assume that y0 ∈R
n is a Sparseland signal, meaning that there exists a sparse represen-

tation vector x0 with ‖x0‖0 such that y0 = Ax0. Assume further that we measure y = My0,

where M is a degradation operator that removes p samples from the signal9.

Considering this as a classic inverse problem we may formulate the inpainting task as

(INP) : min
x

‖x‖0 subject to y = MAx. (6.5)

If the representation that solves this problem is denoted as x̂0 then the recovered (full)

signal ŷ0 = Ax̂0.

7The restriction operator is simply an identity matrix I with some missing columns.
8The number of training signals using the j0-th atom.
9This matrix is of size (n− p)× n, built by taking the n× n identity matrix I and removing the p rows

that correspond to the dropped samples.
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Similarly when noise is added (to the model and to the measurements) the inpaiting

task simply becomes

(INPε) : min
x

‖x‖0 subject to ‖y−MAx‖2 ≤ δ . (6.6)

There are several theoretical and practical reasons why both these methods should (and do)

work, for more see [9, p.324-327].

Image Inpainting with Local K-SVD

Let us formulate the inpainting problem in a slightly different way which will allow us to

apply the K-SVD dictionary learning algorithm.

• Assume that the unknown and complete image y0 is such that every patch in it is

expected to have a sparse representation with respect to a dictionary A.

• Assume that the measured signal is y = My0 where M is a degradation operator.

• Assume that the remaining pixels in y are noisy, contaminated by white zero-mean

additive Gaussian noise with variance σ2.

It can be shown, see [10] and [9, p.202-211], that the MAP10 estimator for this problem is

(INPL
ε) :

{

ŷ,{q̂k}N
k=1

}

= arg min
z,{qk}N

k=1

λ‖Mz−y‖2
2 +

∑
k

µk‖qk‖0 +∑
k

‖Aqk −Rkz‖2
2.

(6.7)

Even without a maximum probability background this minimization problem is very intu-

itive. The first term requires a proximity between the measured image y and the unknown

version z, only in the existing pixels (multiplication by M). The second and third terms are

the image prior that ensures that in the reconstructed image z every patch pk = Rkz of size√
n×√

n in every location k should have a sparse representation with a bounded error.

The algorithm for solving (6.7) is summarized below. It can be seen that a block-

coordinate minimization process is adopted which starts with an initialization of ŷ and

then, for a few steps, seeks the optimal q̂k while learning the dictionaty A and finally, in

the last step, computes the inpainted signal ŷ.

10Maximum a posteriori probability estimator. In our case given a (known) measurement vector y and

an unknown vector to be estimated x, then x̂MAP = argmaxxP(x|y), i.e. the most probable original signal x

under the condition that a corrupted signal y is observed.
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Algorithm 6.2: Inpainting with local K-SVD

Task: Inpaint an image y by approximating the solution to the inpainting problem

(INPL
ε).

Parameters: Given the measured image y, the mask M, the noise gain c, the noise

variance σ2, the parameter λ and the maximum number of iterations jmax.

Initialization: Initialize j = 0, and

• Initialize Dictionary: Put the redundant DCT as A(0) ∈ R
n×m.

• Initialize Signal: Put z = MT y.

Main Iteration (K-SVD): Increment j by 1, and apply:

• Sparse Coding: Use any pursuit algorithm to approximate

the solution of

q̂k = argmin
q

‖q‖0 s.t. ‖Mk(A( j−1)q−pk)‖2
2 ≤ c2nkσ2

for 1 ≤ k ≤ N. Obtaining sparse representations q̂k for every

patch pk.

• K-SVD Dictionary Update: Update the columns of the

dictionary and obtain A( j). Similarly to Algorithm 6.1.

• Stopping Rule: If j > jmax stop.

Otherwise, continue.

Final Step: Given {q̂k}N
k=1 from the last iteration update z by

z =

(

λMT M−∑
k

RT
k Rk

)−1(

λMT y−∑
k

RT
k A jmax

q̂k

)

.

Output: The desired result is ŷ = z.

Some clarifications of the algorithm stages need to be done.

In the Initialization stage we initialize the dictionary with a redundant DCT which is

the Discrete cosine transform, more precisely we use the type-II, see [5].

In the Sparse Coding stage we are able to completely separate the minimization task

of the inpainting problem (INPL
ε) into N different simpler problems because they are all

mutually independent.

Another thing that justifies this minimization approach is the fact the here we consider

z = MT y as being fixed and therefore the first term becomes constant and can be omitted

in the minimization. Note how we also turned the quadratic penalty (3rd term) into a

constraint11, thus removing the need to choose the parameters µk.

Another thing to notice in this stage is the matrix Mk which simply constraints the

11This is a somewhat ”inverse” operation of the Lagrange multipliers method.
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patch-error Aq−pk to be evaluated using only the existing pixels of the patch12, indeed

Mk = RkMT MRT
k i.e. the local mask that corresponds to the k-th patch. The threshold

c2nkσ2 to compare with must also take into account the number of existing pixels nk in each

patch i.e. nk = 1T Mk1, while c and σ2 are parameters considered known or experimentally

found.

Summarizing the Sparse Coding stage works as a sliding window sparse coding stage,

operating on each block of size
√

n×√
n at a time and thus can be parallelized.

The K-SVD Dictionary Update stage is similar to the one of the K-SVD algorithm 6.1

but with some little differences that need to be adressed. As in the classical K-SVD, we

target the update of the atoms of A one at a time while considering only the patches k that

use that particular atom. More precisely considering the j0-th atom a j0 and denoting by

Ω j0 the set of the patches that use this atom, the error we need to minimize is13

Error(A) = ∑
k∈Ω j0

‖Mk(Aqk −pk)‖2
2

= ∑
k∈Ω j0

‖Mk(Aqk −a j0qk( j0)−pk)+Mka j0qk( j0)‖2
2

= ∑
k∈Ω j0

‖Mk(y
j0
k −a j0qk( j0))‖2

2,

(6.8)

where we denoted y
j0
k = pk −Aqk +a j0qk( j0) which is the residual in the representation of

the k-th patch, using all atoms apart from the j0-th. Thus, the task of the K-SVD stage is

min
a j0

,{q̂k( j0)}k∈Ω j0

∑
k∈Ω j0

‖Mk(y
j0
k −a j0qk( j0))‖2

2. (6.9)

While the above could be solved as a rank-1 SVD approximation, a simpler approach14 is

a short iterative (2-3 iterations) process where we update the two unknowns alternatingly.

Fixing {qk( j0)}k∈Ω j0
and taking the derivative ∂

∂a j0

of Error(A), we obtain

∂

∂a j0

Error(A) = ∑
k∈Ω j0

MT
k Mk

(

y
j0
k −a j0qk( j0)

)

qk( j0)

= ∑
k∈Ω j0

Mky
j0
k qk( j0)− ∑

k∈Ω j0

Mkqk( j0)
2a j0 ,

(6.10)

where we used the well-known vector derivative formula and MT
k Mk = Mk. Setting the

last term to zero, we obtain

â j0 =



 ∑
k∈Ω j0

Mkqk( j0)
2





−1

∑
k∈Ω j0

Mky
j0
k qk( j0) (6.11)

12The matrix Mk could be omitted but it leads to faster convergence since the initialization z = MT y

totally corrupts the missing values.
13The local mask Mk makes it more challenging to write the error in a matrix form as in (DL′).
14And more straightforward given that we did not provide a matrix form of the error.
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and once computed, the atom â j0 should be normalized. Similarly as above the update of

qk( j0) is attained by

q̂k( j0) =
[

aT
j0

Mka j0

]−1
aT

j0
Mky

j0
k (6.12)

computed for all k ∈ Ω j0 .

After the Main Iteration (K-SVD) process the calculated representations

{q̂k}N
k=1 and the matrix A can be fixed. Therefore the second term in (6.7) becomes con-

stant thus the optimization we need to solve becomes

ŷ = argmin
z

λ‖Mz−y‖2
2 +∑

k

‖Aq̂k −Rkz‖2
2, (6.13)

which is a simple quadratic term whose closed-form solution (attained by setting the deriva-

tive to zero) is

ŷ =

(

λMT M+
N

∑
k=1

RT
k Rk

)−1(

λMT y+
N

∑
k=1

RT
k Aq̂k

)

. (6.14)

This rather complex expression is misleading because the matrix to invert is diagonal and

simply introduces a normalization factor per each pixel in the resulting image. In words,

the expression does the following

• For missing pixels: suggests a simple averaging of the contributions of the recovered

patches directly.

• For existing pixels: suggests an averaging which takes into account the measured

values of y with a proper weight.
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6.4 Experiments and Results

The image processing experiments were performed on four images (two standard and two

non-standard) 8-bit gray-scale15 images of size 256×256 pixels shown in Figure 6.1.

These images are contaminated by an additive white Gaussian noise with σ = 20 and

then sub-sampled in some locations (first randomly then structurally), such that only a

portion of the pixels remains.

Figure 6.1: The images Lena, Peppers, Cat and Ship on which the inpainting experiments are performed.

We treat the problem as a (INPL
ε) one, using Algorithm 6.2 for its solution. The

15The standard images are carefully selected for algorithm evaluation, see [1], 8-bit means that the values

of the pixels are between 0 and 255.
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inpainting operates on patches of size 8×8 pixels, extracted with full-overlaps16 from the

corrupted image.

The dictionary A is chosen to have 256 atoms, thus its complete size is 64×256. The

Sparse Coding stage is performed using the OMP algorithm with the parameters c = 1.1

and λ= 0, the parameters are fixed according to [10] and [9, p.326-p.330]. The total num-

ber of iteration jmax is fixed to be 20 and the inpainted image selected, in each experiment,

is the one with the least RMSE17 error.

Figure 6.2 presents the inpainted images for the image Peppers for three different exper-

iments (removing randomly 25%, 50% and 75% of the pixels) the locations of the missing

pixels are stored in the degradation operator M (mask) which is considered known18.

Figure 6.2: Inpainting results of the image Peppers. The figure shows the given images (top) and their

inpainting results (bottom), for 25% missing pixels (left, RMSE= 8.14), 50% missing pixels (center, RMSE=
9.98) and 75% missing pixels (right, RMSE= 17.61).

Figure 6.3 presents the inpainted images for the images Ship, Cat and Lena when the

missing pixels are not random but rather structural. The first four images from the left

show the inpainting results when the mask is obtained from some text19. We can see

16The total number of patches is therefore (256−8+1)2 = 62,001.

17RMSE simply means root mean squared error i.e.

√

∑
M
i=1(y

i
0 − ŷi)2/M, where y0 is the original image,

ŷ the recovered one and M the number of pixels in each of them.
18One of the assumptions of the (INPL

ε
) problem.

19The preface of the book Convex Optimization by S. Boyd and L. Vandenberghe.
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visually and from the RMSE values that the results are quite impressive, thus the method

shows robustness even to structural perturbation.

The two images on the right, on the other hand, present the limitations of the method.

In this case the mask is given by 64 blocks of size 8×8. It can be seen that the inpainted

image presents a lot of visual constructs and that the blocks are only partially removed.

This is expected because the blocks are quite big relatively to the patches, indeed this can

be solved by using bigger patches or, even better, by using a method called The Global

MCA, see [9, p.335-342].

Figure 6.3: Inpainting results of the images Ship, Cat and Lena. The figure shows the given images (top)

and their inpainting results (bottom), for text-Mask of Ship (left, RMSE= 10.90), text-Mask of Cat (center,

RMSE= 10.50) and 8×8 blocks Mask of Lena (right, RMSE= 10.92).

Table 6.1 summarizes the results in terms of the RMSE for all the images. We can see

that the method performs better for the standard gray-scale images Lena and Peppers even

though visually the difference is not substantial (see appendix A).

Figure 6.4 shows the learning curves for the image Peppers with 50% missing pixels

on the left and with 75% missing pixels on the right. The learning curve on the left shows

convergence with a point of minimum at iteration 14 and for a RMSE value of 9.98. The

learning curve on the right has a point of minimum at iteration 11 and for a RMSE value

of 17.61.

Clear signs of overfitting are visible for the right learning curve after the point of mini-

mum, this behaviour is somewhat expected because in that particular case we are training
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Root Mean Squared Errors

Image 25% 50% 75% text blocks

Peppers 8.14 9.98 17.61 7.85 9.76

Lena 8.36 9.92 14.56 7.92 10.92

Ship 11.75 14.99 22.16 10.90 13.55

Cat 11.12 13.01 18.95 10.50 12.79

Table 6.1: RMSE for Algorithm 6.2 with 20 iterations.

Figure 6.4: Learning curves of the RMSE values relative to the number of iterations. The left figure refers to

the image Peppers with 50% missing pixels and the right to the same image with 75% missing pixels.

on an image with 75% missing pixels, making the number of parameters, relative to the

data, higher and therefore increasing the ability of the method to overfit.

Lastly, it is important to remind that the images are contaminated by an additive white

Gaussian noise with σ = 20, which means that the noise level20 is around 20. Observing

Table 6.1 it is clear that the method chosen has a strong denoising effect being able to

obtain a RMSE smaller than 20 (in 3 out of 4 cases) even when the image is so corrupted

that there are as many as 75% missing pixels.

20The RMSE at iteration 0.





Appendix A

Complete Inpainting Results

Figure A.1: Inpainting results of the image Peppers. The figure shows the given images (top) and their

inpainting results (bottom), for 25% missing pixels (left), 50% missing pixels (center) and 75% missing

pixels (right).
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Figure A.2: Inpainting results of the image Lena. The figure shows the given images (top) and their inpainting

results (bottom), for 25% missing pixels (left), 50% missing pixels (center) and 75% missing pixels (right).

Figure A.3: Inpainting results of the image Cat. The figure shows the given images (top) and their inpainting

results (bottom), for 25% missing pixels (left), 50% missing pixels (center) and 75% missing pixels (right).
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Figure A.4: Inpainting results of the image Ship. The figure shows the given images (top) and their inpainting

results (bottom), for 25% missing pixels (left), 50% missing pixels (center) and 75% missing pixels (right).

Figure A.5: The figure shows the given images (top) and their inpainting results (bottom), for text-Mask of

Lena (left), text-Mask of Peppers (center) and text-Mask of Ship (right).
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Figure A.6: The figure shows the given images (top) and their inpainting results (bottom), for 8× 8 blocks

Mask of Lena (left), 8×8 blocks Mask of Peppers (center) and 8×8 blocks Mask of Ship (right).

Figure A.7: Inpainting results of the image Cat. The figure shows the given images (top) and their inpainting

results (bottom), for text-Mask (left), 8×8 blocks Mask (right)



Appendix B

Codes

The codes are taken from [18] and modified for the specific purposes of this work.

The following Matlab code generates the numerical simulations of section 4.4.

1 % ======================================================================

2 % In t h i s program we t e s t t h e p e r f o r m a n c e o f t h e LS−OMP, MP, OMP, WMP,

3 % T h r e s h o l d i n g and BP a l g o r i t h m s by r u n n i n g them on a s e t o f t e s t

4 % s i g n a l s and c h e c k i n g whe the r t h e y p r o v i d e t h e d e s i r e d outcome

5 % ( L2 e r r o r , s u p p o r t e r r o r and p e r f o r m a n c e t ime a r e computed )

6 % ======================================================================

7 n =30; m=50; Smax =15; Exper =200;

8 A= randn ( n ,m) ;

9 W= s q r t ( d i a g (A’∗A) ) ;

10 f o r k = 1 : 1 :m,

11 A ( : , k ) =A ( : , k ) /W( k ) ;

12 end ;

13 Er2= z e r o s ( Smax , Exper , 6 ) ;

14 ErS= z e r o s ( Smax , Exper , 6 ) ;

15 t ime = z e r o s ( Smax , Exper , 6 ) ;

16 f o r S = 1 : 1 : Smax ,

17 f o r e x p e r i m e n t = 1 : 1 : Exper

18 % G e n e r a t e a t e s t s i g n a l o f c a r d i n a l i t y S

19 x= z e r o s (m, 1 ) ;

20 pos= randperm (m) ;

21 % r a n g e [ −1 ,1]

22 x ( pos ( 1 : S ) ) = s i g n ( randn ( S , 1 ) ) .∗ r and ( S , 1 ) ;

23 b=A∗x ;

24

25 % Apply LS−OMP

26 thrLSMP=1e−4;

27 t i c ;

28 r =b ;

29 SS = [ ] ;

30 w h i l e r ’∗ r>thrLSMP ,

31 Z= z e r o s (m, 1 ) ;

32 f o r j j = 1 : 1 :m

33 SStemp =[SS , j j ] ;

34 r temp =b−A ( : , SStemp ) ∗ p inv (A ( : , SStemp ) ) ∗b ;

35 Z ( j j ) =rtemp ’∗ r temp ;

36 end ;

37 posZ= f i n d ( Z==min ( Z ) , 1 ) ;

38 SS= s o r t ( [ SS , posZ ( 1 ) ] ) ;

39 r =b−A ( : , SS ) ∗ p inv (A ( : , SS ) ) ∗b ;

40 end ;
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41 xLSMP= z e r o s (m, 1 ) ;

42 xLSMP( SS ) = p inv (A ( : , SS ) ) ∗b ;

43 t ime ( S , e xpe r ime n t , 1 ) = d oub l e ( t o c ) ;

44 Er2 ( S , e xpe r ime n t , 1 ) =mean ( ( xLSMP−x ) . ˆ 2 ) / mean ( x . ˆ 2 ) ;

45 ErS ( S , e xpe r ime n t , 1 ) =(max ( S , l e n g t h ( SS ) )− l e n g t h ( i n t e r s e c t ( SS , pos ( 1 : S ) ) ) ) /

max ( S , l e n g t h ( SS ) ) ;

46

47 % Apply OMP

48 thrOMP=1e−4;

49 t i c ;

50 r =b ;

51 SS = [ ] ;

52 w h i l e r ’∗ r>thrOMP ,

53 Z= abs (A’∗ r ) ;

54 posZ= f i n d ( Z==max ( Z ) ) ;

55 SS= s o r t ( [ SS , posZ ( 1 ) ] ) ;

56 r =b−A ( : , SS ) ∗ p inv (A ( : , SS ) ) ∗b ;

57 end ;

58 xOMP= z e r o s (m, 1 ) ;

59 xOMP( SS ) = p inv (A ( : , SS ) ) ∗b ;

60 t ime ( S , e xpe r ime n t , 2 ) = d oub l e ( t o c ) ;

61 Er2 ( S , e xpe r ime n t , 2 ) =mean ( ( xOMP−x ) . ˆ 2 ) / mean ( x . ˆ 2 ) ;

62 ErS ( S , e xpe r ime n t , 2 ) =(max ( S , l e n g t h ( SS ) )− l e n g t h ( i n t e r s e c t ( SS , pos ( 1 : S ) ) ) ) /

max ( S , l e n g t h ( SS ) ) ;

63

64 % Apply MP

65 thrMP=1e−4;

66 t i c ;

67 r =b ;

68 xMP= z e r o s (m, 1 ) ;

69 w h i l e r ’∗ r>thrMP ,

70 Z= abs (A’∗ r ) ;

71 posZ= f i n d ( Z==max ( Z ) , 1 ) ;

72 xMP( posZ ) =xMP( posZ ) +A ( : , posZ ) ’∗ r ;

73 r =r−A ( : , posZ ) ∗A ( : , posZ ) ’∗ r ;

74 end ;

75 SS= f i n d ( abs (xMP)>1e−8) ’ ;

76 t ime ( S , e xpe r ime n t , 3 ) = d oub l e ( t o c ) ;

77 Er2 ( S , e xpe r ime n t , 3 ) =mean ( ( xMP−x ) . ˆ 2 ) / mean ( x . ˆ 2 ) ;

78 ErS ( S , e xpe r ime n t , 3 ) =(max ( S , l e n g t h ( SS ) )− l e n g t h ( i n t e r s e c t ( SS , pos ( 1 : S ) ) ) ) /

max ( S , l e n g t h ( SS ) ) ;

79

80 % Apply WMP

81 thrWMP=1e−4; t = 0 . 5 ;

82 t i c ;

83 r =b ;

84 xWMP= z e r o s (m, 1 ) ;

85 w h i l e r ’∗ r>thrMP ,

86 Z= abs (A’∗ r ) ;

87 posZ= f i n d ( Z>=t ∗ s q r t ( r ’∗ r ) , 1 ) ;

88 i f i s e m p t y ( posZ )

89 posZ= f i n d ( Z==max ( Z ) , 1 ) ;

90 end ;

91 xWMP( posZ ) =xWMP( posZ ) +A ( : , posZ ) ’∗ r ;

92 r =r−A ( : , posZ ) ∗A ( : , posZ ) ’∗ r ;

93 end ;

94 SS= f i n d ( abs (xWMP)>1e−8) ’ ;

95 t ime ( S , e xpe r ime n t , 4 ) = d oub l e ( t o c ) ;

96 Er2 ( S , e xpe r ime n t , 4 ) =mean ( (xWMP−x ) . ˆ 2 ) / mean ( x . ˆ 2 ) ;

97 ErS ( S , e xpe r ime n t , 4 ) =(max ( S , l e n g t h ( SS ) )− l e n g t h ( i n t e r s e c t ( SS , pos ( 1 : S ) ) ) ) /

max ( S , l e n g t h ( SS ) ) ;
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98

99

100 % Apply Thr

101 thrTH =1e−4;

102 t i c ;

103 Z=A’∗ b ;

104 [ Za , posZ ]= s o r t ( abs ( Z ) , ’ de scend ’ ) ;

105 r =b ;

106 SS = [ ] ;

107 xTH= z e r o s (m, 1 ) ;

108 w h i l e r ’∗ r>thrTH ,

109 SS =[SS , posZ ( l e n g t h ( SS ) +1) ] ;

110 xTH= z e r o s (m, 1 ) ;

111 xTH( SS ) = p inv (A ( : , SS ) ) ∗b ;

112 r =b−A ( : , SS ) ∗xTH ( SS ) ;

113 end ;

114 SS= f i n d ( abs ( xTH)>1e−8) ’ ;

115 t ime ( S , e xpe r ime n t , 5 ) = d oub l e ( t o c ) ;

116 Er2 ( S , e xpe r ime n t , 5 ) =min ( mean ( ( xTH−x ) . ˆ 2 ) / mean ( x . ˆ 2 ) , 1 ) ;

117 ErS ( S , e xpe r ime n t , 5 ) =(max ( S , l e n g t h ( SS ) )− l e n g t h ( i n t e r s e c t ( SS , pos ( 1 : S ) ) ) ) /

max ( S , l e n g t h ( SS ) ) ;

118

119 % BP u s i n g L1 by Mat lab

120 V= ones (2∗m, 1 ) ;

121 t i c ;

122 xBP= l i n p r o g (V , [ ] , [ ] , [ A, −A] , b , 0∗V,V∗100) ;

123 xBP=xBP ( 1 :m)−xBP (m+1: end ) ;

124 SS= f i n d ( abs ( xBP )>1e−8) ’ ;

125 t ime ( S , e xpe r ime n t , 6 ) = d oub l e ( t o c ) ;

126 Er2 ( S , e xpe r ime n t , 6 ) =mean ( ( xBP−x ) . ˆ 2 ) / mean ( x . ˆ 2 ) ;

127 ErS ( S , e xpe r ime n t , 6 ) =(max ( S , l e n g t h ( SS ) )− l e n g t h ( i n t e r s e c t ( SS , pos ( 1 : S ) ) ) ) /

max ( S , l e n g t h ( SS ) ) ;

128 end ;

129 end ;
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The following Matlab code plots the graphs of section 4.4.

1 % L2 e r r o r

2 f i g u r e ( 1 ) ; c l f ;

3 h= p l o t ( 1 : 1 : Smax , mean ( Er2 ( : , : , 1 ) , 2 ) , ’ b ’ ) ; ho ld on ;

4 s e t ( h , ’ LineWidth ’ , 2 ) ;

5 h= p l o t ( 1 : 1 : Smax , mean ( Er2 ( : , : , 2 ) , 2 ) , ’ r ’ ) ;

6 s e t ( h , ’ LineWidth ’ , 2 ) ;

7 h= p l o t ( 1 : 1 : Smax , mean ( Er2 ( : , : , 3 ) , 2 ) , ’ g ’ ) ;

8 s e t ( h , ’ LineWidth ’ , 2 ) ;

9 h= p l o t ( 1 : 1 : Smax , mean ( Er2 ( : , : , 4 ) , 2 ) , ’ c ’ ) ;

10 s e t ( h , ’ LineWidth ’ , 2 ) ;

11 h= p l o t ( 1 : 1 : Smax , mean ( Er2 ( : , : , 5 ) , 2 ) , ’m’ ) ;

12 s e t ( h , ’ LineWidth ’ , 2 ) ;

13 h= p l o t ( 1 : 1 : Smax , mean ( ErS ( : , : , 6 ) , 2 ) , ’k−. ’ ) ;

14 s e t ( h , ’ LineWidth ’ , 2 ) ;

15 h= x l a b e l ( ’ C a r d i n a l i t y o f t h e t r u e s o l u t i o n ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

16 h= y l a b e l ( ’ Average and R e l a t i v e L 2−E r r o r ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

17 s e t ( gca , ’ F o n t S i z e ’ , 1 4 ) ;

18 h= l e g e n d ({ ’LS−OMP’ , ’OMP’ , ’MP’ , ’Weak−MP ( t = 0 . 5 ) ’ , ’ T h r e s h o l d i n g ’ , ’BP by L i n e a r

Prog . ’ } , ’ L o c a t i o n ’ , ’ n o r t h w e s t ’ , 2 ) ;

19 a x i s t i g h t ;

20 % S u p p o r t e r r o r

21 f i g u r e ( 2 ) ; c l f ;

22 h= p l o t ( 1 : 1 : Smax , mean ( ErS ( : , : , 1 ) , 2 ) , ’ b ’ ) ; ho ld on ;

23 s e t ( h , ’ LineWidth ’ , 2 ) ;

24 h= p l o t ( 1 : 1 : Smax , mean ( ErS ( : , : , 2 ) , 2 ) , ’ r ’ ) ;

25 s e t ( h , ’ LineWidth ’ , 2 ) ;

26 h= p l o t ( 1 : 1 : Smax , mean ( ErS ( : , : , 3 ) , 2 ) , ’ g ’ ) ;

27 s e t ( h , ’ LineWidth ’ , 2 ) ;

28 h= p l o t ( 1 : 1 : Smax , mean ( ErS ( : , : , 4 ) , 2 ) , ’ c ’ ) ;

29 s e t ( h , ’ LineWidth ’ , 2 ) ;

30 h= p l o t ( 1 : 1 : Smax , mean ( ErS ( : , : , 5 ) , 2 ) , ’m’ ) ;

31 s e t ( h , ’ LineWidth ’ , 2 ) ;

32 h= p l o t ( 1 : 1 : Smax , mean ( ErS ( : , : , 6 ) , 2 ) , ’k−. ’ ) ;

33 s e t ( h , ’ LineWidth ’ , 2 ) ;

34 h= x l a b e l ( ’ C a r d i n a l i t y o f t h e t r u e s o l u t i o n ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

35 h= y l a b e l ( ’ P r o b a b i l i t y o f E r r o r i n S u p p o r t ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

36 s e t ( gca , ’ F o n t S i z e ’ , 1 4 ) ;

37 h= l e g e n d ({ ’LS−OMP’ , ’OMP’ , ’MP’ , ’Weak−MP ( t = 0 . 5 ) ’ , ’ T h r e s h o l d i n g ’ , ’BP by L i n e a r

Prog . ’ } , ’ L o c a t i o n ’ , ’ n o r t h w e s t ’ , 2 ) ;

38 a x i s t i g h t ;

39 % Time e x e c u t i o n

40 f i g u r e ( 3 ) ; c l f ;

41 h= p l o t ( 1 : 1 : Smax , mean ( t ime ( : , : , 1 ) , 2 ) , ’ b ’ ) ; ho ld on ;

42 s e t ( h , ’ LineWidth ’ , 2 ) ;

43 h= p l o t ( 1 : 1 : Smax , mean ( t ime ( : , : , 2 ) , 2 ) , ’ r ’ ) ;

44 s e t ( h , ’ LineWidth ’ , 2 ) ;

45 h= p l o t ( 1 : 1 : Smax , mean ( t ime ( : , : , 3 ) , 2 ) , ’ g ’ ) ;

46 s e t ( h , ’ LineWidth ’ , 2 ) ;

47 h= p l o t ( 1 : 1 : Smax , mean ( t ime ( : , : , 4 ) , 2 ) , ’ c ’ ) ;

48 s e t ( h , ’ LineWidth ’ , 2 ) ;

49 h= p l o t ( 1 : 1 : Smax , mean ( t ime ( : , : , 5 ) , 2 ) , ’m’ ) ;

50 s e t ( h , ’ LineWidth ’ , 2 ) ;

51 h= p l o t ( 1 : 1 : Smax , mean ( t ime ( : , : , 6 ) , 2 ) , ’k−. ’ ) ;

52 s e t ( h , ’ LineWidth ’ , 2 ) ;

53 h= x l a b e l ( ’ C a r d i n a l i t y o f t h e t r u e s o l u t i o n ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

54 h= y l a b e l ( ’ Average t ime of e x e c u t i o n ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 4 ) ;

55 s e t ( gca , ’ F o n t S i z e ’ , 1 4 ) ;

56 h= l e g e n d ({ ’LS−OMP’ , ’OMP’ , ’MP’ , ’Weak−MP ( t = 0 . 5 ) ’ , ’ T h r e s h o l d i n g ’ , ’BP by L i n e a r

Prog . ’ } , ’ L o c a t i o n ’ , ’ n o r t h w e s t ’ , 2 ) ;

57 a x i s t i g h t ;
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The following Matlab code is the implementation of the inpainting problem with the

local-KSVD algorithm described in chapter 6.

1 % ======================================================================

2 % This program implemen t s t h e l o c a l −KSVD a l g o r i t h m f o r image i n p a i n t i n g

3 % i n p u t a rgumen t s : f i l e n a m e − name of t h e image

4 % r a t i o s − p e r c e n t a g e o f m i s s i n g p i x e l s

5 % i t e r T o t − t o t a l number o f i t e r a t i o n s

6 % f i l e n a m e o p t i o n s : ’ p e p p e r s 2 5 6 . png ’ ; ’ l e n a . png ’ ; ’ s h i p . jpg ’ ; ’ c a t . jpg ’

7 % r a t i o s i s a l i s t o f d o u b l e s

8 % r a t i o = 0 . . . t e x t m i s s i n g

9 % r a t i o = 0 . 2 5 . . . 25% m i s s i n g

10 % r a t i o = 0 . 5 . . . 50% m i s s i n g

11 % r a t i o = 0 . 7 5 . . . 75% m i s s i n g

12 % r a t i o = 1 . . . b l o c k s m i s s i n g

13 % ======================================================================

14 f u n c t i o n [ Dic tRes ]= C h a p t e r 0 6 K S V D i n p a i n t i n g ( f i l e n a m e , r a t i o s , i t e r T o t )

15 % d i r e c t o r y o f images

16 cd ’C:\ Users \User\Desktop\ d i p l o m s k i r a d \ d i p l o m s k i ’

17 bb =8; % b l o c k s i z e

18 K=256; % number o f atoms i n t h e d i c t i o n a r y

19 N=256; % d i m e n s i o n s o f image

20 [ IMin0 , pp ]= imread ( f i l e n a m e ) ;

21 i f s t r c mp ( f i l e n a m e , ’ c a t . j p g ’ )

22 IMin0 = r g b 2 g r a y ( IMin0 ) ;

23 IMin0 = i m r e s i z e ( IMin0 , 0 . 4 ) ;

24 IMin0=IMin0 ( 1 0 : 2 6 5 , 9 0 : 3 4 5 ) ;

25 e l s e i f s t r c m p ( f i l e n a m e , ’ s h i p . j p g ’ )

26 IMin0 = r g b 2 g r a y ( IMin0 ) ;

27 IMin0 = i m r e s i z e ( IMin0 , 0 . 3 5 ) ;

28 IMin0=IMin0 ( 1 0 : 2 6 5 , 1 2 0 : 3 7 5 ) ;

29 e l s e i f s t r c m p ( f i l e n a m e , ’ l e n a . png ’ )

30 IMin0=IMin0 ( 1 4 8 : 4 0 3 , 1 2 8 : 3 8 3 ) ;

31 end

32 IMin0= im2double ( IMin0 ) ;

33 IMin0 = IMin0 ∗255 ;

34 i f i s e m p t y ( pp )

35 f i g u r e ( 1 ) ; c l f ;

36 imagesc ( IMin0 ) ; a x i s image ; a x i s o f f ; co lormap ( g r ay ( 2 5 6 ) ) ;

37 e l s e

38 f i g u r e ( 1 ) ; c l f ;

39 imagesc ( IMin0 ) ; a x i s image ; a x i s o f f ; co lormap ( pp ) ;

40 end

41 % Adding n o i s e

42 s igma =20;

43 IMin=IMin0+sigma∗ r andn (N) ;

44 % E x t r a c t i n g t h e n o i s y p a t c h e s

45 b lkMat r i x Im = im2co l ( IMin , [ bb , bb ] , ’ s l i d i n g ’ ) ;

46 f o r i = 1 : s i z e ( r a t i o s , 2 )

47 r a t i o = r a t i o s ( i ) ;

48 Dic tRes =Inp KSVD ( i ∗100 , pp , bb , K, N, IMin , IMin0 , b lkMat r ix Im , sigma , r a t i o , i t e r T o t ,

f i l e n a m e ) ;

49 end

50 r e t u r n ;

51

52 f u n c t i o n [ Dic tRes ]= Inp KSVD ( i f i g , pp , bb , K, N, IMin , IMin0 , b lkMat r ix Im , sigma , r a t i o ,

i t e r T o t , f i l e n a m e )

53 t e x t = s p r i n t f ( ’ I n p a i n t i n g r e s u l t s : %.2 f m i s s i n g p i x e l s ’ , r a t i o ∗100) ;

54 d i s p ( t e x t ) ;

55 d i s p ( ’================================ ’ ) ;

56
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57 % The i n i t i a l d i c t i o n a r y

58 [ D i c t ]= dic t DCT ( bb ,K) ;

59 % C r e a t i n g t h e mask and e x t r a c t i n g i t s p a t c h e s

60 [ Mask , blkMask ]= m a s k c r e a t i o n (N, r a t i o , bb ) ;

61

62 t x t s a v e = s t r c a t ( s p r i n t f ( ’ %.2 f ’ , r a t i o ∗100) , f i l e n a m e ) ;

63 i f i s e m p t y ( pp )

64 i m w r i t e ( IMin .∗Mask , co lormap ( g ra y ( 2 5 6 ) ) , t x t s a v e ) ;

65 e l s e

66 i m w r i t e ( IMin .∗Mask , co lormap ( pp ) , t x t s a v e ) ;

67 end

68 [ Coeff , ˜ ] = i n i t i a l i z a t i o n a n d f i r s t s t e p ( Dic t , blkMask , b lkMat r ix Im , sigma , IMin ,

IMin0 ) ;

69 [ R e s u l t , E r r o r l i s t , D ic tRes ]= i n p a i n t i n g ( Dic t , blkMask , b lkMat r ix Im , Coeff , sigma , IMin

, IMin0 , i t e r T o t ) ;

70 f i g u r e ( i f i g ) ; c l f ;

71 h= p l o t ( 1 : 1 : i t e r T o t , E r r o r l i s t , ’ b ’ ) ; ho ld on ;

72 h= p l o t ( 1 : 1 : i t e r T o t , r epmat ( sigma , 1 , i t e r T o t ) , ’ k−. ’ ) ;

73 h= x l a b e l ( ’ I t e r a t i o n s ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 0 ) ;

74 h= y l a b e l ( ’ Root Mean Squared E r r o r ’ ) ; s e t ( h , ’ F o n t S i z e ’ , 1 0 ) ;

75 h= l e g e n d ({ ’ I n p a i n t i n g R e s u l t s ’ , ’ Noise Leve l ’ } , ’ L o c a t i o n ’ , ’ n o r t h e a s t ’ , 2 ) ;

76 xl im ( [ 1 i t e r T o t ] )

77 yl im ( [ 0 3 0 ] )

78 ho ld o f f ;

79

80 t x t s a v e = s t r c a t ( s p r i n t f ( ’ r e c o v e r e d %.2 f ’ , r a t i o ∗100) , f i l e n a m e ) ;

81 i f i s e m p t y ( pp )

82 i m w r i t e ( R e s u l t , co lormap ( g r ay ( 2 5 6 ) ) , t x t s a v e ) ;

83 e l s e

84 i m w r i t e ( R e s u l t , co lormap ( pp ) , t x t s a v e ) ;

85 end

86 r e t u r n ;

87

88 f u n c t i o n [ D i c t ]= dic t DCT ( bb ,K)

89 D i c t = z e r o s ( bb , s q r t (K) ) ;

90 f o r k = 0 : 1 : s q r t (K) −1,

91 V= cos ( [ 0 : 1 : bb−1] ’∗k∗ p i / s q r t (K) ) ;

92 i f k>0, V=V−mean (V) ; end ;

93 D i c t ( : , k +1)=V/ norm (V) ;

94 end ;

95 D i c t = kron ( Dic t , D i c t ) ;

96 r e t u r n ;

97

98 f u n c t i o n [ Mask , blkMask ]= m a s k c r e a t i o n (N, r a t i o , bb )

99 i f r a t i o ==0

100 Mask= imread ( ’ TextImage3 . png ’ ) ;

101 Mask=Mask ( 1 : N, 1 : N) ;

102 Mask= do ub le ( Mask ( 1 : N, 1 : N) / 2 5 5 ) ;

103 e l s e i f r a t i o ==1

104 Mask= z e r o s ( 8 , 8 ) ;

105 Mask= p a d a r r a y ( Mask , [ 1 2 1 2 ] , 1 , ’ bo th ’ ) ;

106 Mask2= ones ( 8 , 8 ) ;

107 Mask= kron ( Mask2 , Mask ) ;

108 e l s e

109 Pos= randperm (Nˆ 2 ) ;

110 Mask= ones (N,N) ;

111 Mask ( Pos ( 1 :Nˆ2∗ r a t i o ) ) =0 ;

112 end

113 blkMask= im2co l ( Mask , [ bb , bb ] , ’ s l i d i n g ’ ) ;

114 r e t u r n ;

115
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116 f u n c t i o n [ Coeff , R e s u l t ]= i n i t i a l i z a t i o n a n d f i r s t s t e p ( Dic t , blkMask , b lkMat r ix Im ,

sigma , IMin , IMin0 )

117 % I n p a i n t i n g t h e P a t c h e s

118 Coef f = OMPer r Inpa in t ( Dic t , b lkMat r i x Im .∗ blkMask , blkMask , s igma ∗ 1 . 1 ) ;

119 R e s u l t =RecoverImage ( IMin , Dic t , Coef f ) ;

120 R e s u l t =max ( min ( R e s u l t , 2 5 5 ) , 0 ) ;

121 d i s p ( [ ’ Recovery e r r o r = ’ , num2s t r ( s q r t ( mean ( mean ( ( R e s u l t−IMin0 ) . ˆ 2 ) ) ) ) ] ) ;

122 r e t u r n ;

123

124 f u n c t i o n [ R e s u l t , E r r o r l i s t , D ic tRes ]= i n p a i n t i n g ( Dic t , blkMask , b lkMat r ix Im , Coeff ,

sigma , IMin , IMin0 , i t e r T o t )

125

126 f o r KSVDiter = 1 : 1 : i t e r T o t ,

127 f o r atom = 1 : 1 : s i z e ( Dic t , 2 )

128 Omega= f i n d ( abs ( Coef f ( atom , : ) ) >0) ;

129 i f i s e m p t y ( Omega ) , c o n t i n u e ; end ; % t h i s atom w i l l be u s e l e s s

130 CoeffM= Coef f ;

131 CoeffM ( atom , : ) =0 ;

132 E r r =blkMask ( : , Omega ) . ∗ ( b lkMat r i x Im ( : , Omega )−D i c t ∗CoeffM ( : , Omega ) ) ;

133 f o r SVDiter = 1 : 1 : 3

134 dd= d i a g ( 1 . / ( blkMask ( : , Omega ) ∗ ( Coe f f ( atom , Omega ) . ˆ 2 ) ’ ) ) ∗ . . .

135 ( E r r ∗Coef f ( atom , Omega ) ’ ) ;

136 dd=dd / norm ( dd ) ;

137 D i c t ( : , atom ) =dd ;

138 Coef f ( atom , Omega ) =( dd ’∗ E r r ) . / sum ( ( blkMask ( : , Omega ) . ∗ . . .

139 ( dd∗ ones ( 1 , l e n g t h ( Omega ) ) ) ) . ˆ 2 , 1 ) ;

140 end ;

141 end ;

142 Coef f = OMPer r Inpa in t ( Dic t , b lkMat r i x I m .∗ blkMask , blkMask , s igma ∗ 1 . 1 ) ;

143 R e s u l t =RecoverImage ( IMin , Dic t , Coef f ) ;

144 R e s u l t =max ( min ( R e s u l t , 2 5 5 ) , 0 ) ;

145 R e s u l t t e n s o r ( : , : , KSVDiter ) = R e s u l t ;

146 D i c t t e n s o r ( : , : , KSVDiter ) = D i c t ;

147 E r r o r l i s t ( KSVDiter ) = s q r t ( mean ( mean ( ( R e s u l t−IMin0 ) . ˆ 2 ) ) ) ;

148 d i s p ( [ ’ I t e r a t i o n number : ’ , num2s t r ( KSVDiter ) , . . .

149 ’ Recovery e r r o r = ’ , num2s t r ( s q r t ( mean ( mean ( ( R e s u l t−IMin0 ) . ˆ 2 ) ) ) )

] ) ;

150 end ;

151 [M, I ]= min ( E r r o r l i s t ) ;

152 d i s p ( [ ’Minimum r e c o v e r y e r r o r : ’ , s p r i n t f ( ’\n ’ ) , ’ I t e r a t i o n number : ’ , num2s t r ( I )

, . . .

153 ’ Recovery e r r o r = ’ , num2s t r (M) ] ) ;

154 R e s u l t = R e s u l t t e n s o r ( : , : , I ) ;

155 Dic tRes = D i c t t e n s o r ( : , : , I ) ;

156 r e t u r n ;

157

158 f u n c t i o n [A]= OMPer r Inpa in t (D, X, Mask , e r r o r G o a l )

159 % S p a r s e c o d i ng of a group of s i g n a l s based on a g i v e n d i c t i o n a r y and

160 % s p e c i f i e d r e p r e s e n t a t i o n e r r o r t o g e t

161 % i n p u t a rgumen t s : D − t h e d i c t i o n a r y

162 % X − t h e s i g n a l s t o r e p r e s e n t

163 % Mask − t h e m i s s i n g p i x e l s

164 % e r r o r G o a l − t h e maximal a l l o w e d r e p r e s e n t a t i o n e r r o r

165 % o u t p u t a rgumen t s : A − s p a r s e c o e f f i c i e n t m a t r i x

166 [ ˜ , P ]= s i z e (X) ;

167 [ n , ˜ ] = s i z e (D) ;

168 E2 = e r r o r G o a l ˆ2∗ n ;

169 maxNumCoef = n / 2 ;

170 A = s p a r s e ( s i z e (D, 2 ) , s i z e (X, 2 ) ) ;

171 h= w a i t b a r ( 0 , ’OMP on each example . . . ’ ) ;

172 f o r k = 1 : 1 : P ,
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173 w a i t b a r ( k / P ) ;

174 Mpos= f i n d ( Mask ( : , k ) ) ;

175 E2M=E2∗ l e n g t h ( Mpos ) / n ;

176 D i c t =D( Mpos , : ) ;

177 W= 1 . / s q r t ( d i a g ( Dic t ’∗ D i c t ) ) ;

178 D i c t = D i c t ∗ d i a g (W) ;

179 x=X( Mpos , k ) ;

180 r e s i d u a l =x ;

181 i ndx = [ ] ;

182 a = [ ] ;

183 currResNorm2 = sum ( r e s i d u a l . ˆ 2 ) ;

184 j = 0 ;

185 w h i l e currResNorm2>E2M && j < maxNumCoef ,

186 j = j +1 ;

187 p r o j = Dic t ’∗ r e s i d u a l ;

188 pos= f i n d ( abs ( p r o j ) ==max ( abs ( p r o j ) ) ) ;

189 pos=pos ( 1 ) ;

190 i ndx ( j ) =pos ;

191 a= p inv ( D i c t ( : , i ndx ( 1 : j ) ) ) ∗x ;

192 r e s i d u a l =x−D i c t ( : , i ndx ( 1 : j ) ) ∗a ;

193 currResNorm2=sum ( r e s i d u a l . ˆ 2 ) ;

194 end ;

195 i f ( ˜ i s e m p t y ( indx ) )

196 A( indx , k ) =a ;

197 A ( : , k ) =W.∗A ( : , k ) ;

198 end

199 end ;

200 c l o s e ( h ) ;

201 r e t u r n ;

202 % L a s t s t e p o f KSVD

203 f u n c t i o n [ you t ]= RecoverImage ( y , D, CoefMat r ix )

204 N= s i z e ( y , 1 ) ;

205 n= s q r t ( s i z e (D, 1 ) ) ;

206 you t = z e r o s (N,N) ;

207 Weight= z e r o s (N,N) ;

208 i =1 ; j =1 ;

209 f o r k = 1 : 1 : (N−n +1) ˆ 2 ,

210 p a t c h = r e s h a p e (D∗CoefMat r ix ( : , k ) , [ n , n ] ) ;

211 you t ( i : i +n−1, j : j +n−1)= you t ( i : i +n−1, j : j +n−1)+ p a t c h ;

212 Weight ( i : i +n−1, j : j +n−1)=Weight ( i : i +n−1, j : j +n−1) +1;

213 i f i<N−n+1

214 i = i +1 ;

215 e l s e

216 i =1 ; j = j +1 ;

217 end ;

218 end ;

219 you t = you t . / Weight ;

220 r e t u r n ;
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Sažetak

Naslov i tema ovog rada je analiza algoritama za rijetku reprezentaciju signala. Rad uglav-

nom prati knjigu Sparse and redundant representations od Michaela Elada i podijeljen je

u pet dijelova.

U prvom dijelu, koji se sastoji od prvog poglavlja, uvodi se problem (P0) i njemu slični

problemi te opisuje zašto je dobro utemeljen.

U drugom dijelu, koji se sastoji od drugog poglavlja, izlažu se i dokazuju dovoljni

uvjeti za koje je rješenje problema (P0), za specijalni dvo-ortogonalni te općeniti slučaj,

jedinstveno i optimalno. U tom postupku uvedena su dva pojma vezana za matricu A: Iskra

i medusobna-uskladenost.

U trećem dijelu, koji se sastoji od trećeg i četvrtog poglavlja, opisuje se šest različitih

algoritama za rješavanje (P0) problema koji su podijeljeni u dvije glavne kategorije: po-

hlepni i konveksno relaksacijski. Četvrto poglavlje je posvećeno teorijskim aspektima tih

algoritama.

U četvrtom dijelu, koji se sastoji od petog poglavlja, uvodi se problem (Pε
0
) koji je

robusnija verzija od (P0) i zato prikladniji za primjene. Za novouvedeni problem jedins-

tvenost (koja više ne vrijedi) je zamijenjena sa pojmom stabilnosti. Elegantni rezultat

stabilnosti od (Pε
0
) je dokazan korištenjem pojma Ograničenog Izometrijskog Svojstva ma-

trice.

U petom dijelu, koji se sastoji od šestog poglavlja, uvodi se generirajući model pod

nazivom Sparseland i pokazuje se snažna primjena jedne verzije od (Pε
0
) za rekonstrukciju

oštećenih slika. Korišten je tzv. K-SVD algoritam čiji su rezultati bili na State-of-the-art

razini na dan publikacije 2006. godine. Eksperimenti su detaljno opisani u zadnjoj sekciji

te potvrduju odlične rezultate i pokazuju puno potencijala za daljni razvoj.



Summary

The topic of this thesis is sparse representations of signals. The thesis follows mainly the

book Sparse and redundant representations by Michael Elad and is divided into five parts.

The first part, consisting of chapter one, introduces the problem (P0) and related and

describes the reason why is well founded.

The second part, consisting of chapter two, presents the conditions under which the

solution to the problem (P0), for the special two-orthogonal and general case, exhibits

uniqueness and optimality. In doing so two special measures of a matrix A are introduced:

the spark and the mutual-coherence.

The third part, consisting of chapters three and four, describes six different algorithms

for solving (P0) which are divided into two main categories: greedy and convex relaxati-

onal. Chapter four deals with theoretical guarantees of those algorithms.

The fourth part, consisting of chapter five, introduces the (Pε
0
) problem which is a more

robust version of (P0) and thus better for applications. For this new problem uniqueness

(which cannot be claimed) is replaced by stability of the solution. The elegant result of

the stability of (Pε
0
) is proved using the subtle concept of Restricted Isometry Property of a

matrix.

The fifth part, consisting of chapter six, introduces the generative model named Spar-

seland and presents a powerful application of a version of (Pε
0
) to image inpainting. The

algorithm used is called K-SVD and it achieved State-of-the-art performance by the time

of first publication in 2006. The experiments are presented in the last section showing

excellent results and great potential for future work.
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