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Introduction

To say that neural networks and deep learning have changed the landscape of many
research areas in academia and industry would be an understatement. Applications
as diverse as protein folding models ([24]), speech recognition ([12]), natural language
processing ([28]) and recommender systems ([29]) are emerging.

However, most dramatic success was found in the field of computer vision with the
advent of convolutional neural networks ([16]), architecture of which was inspired
by visual cortex of living organisms. These networks were used to achieve superior
performance in object detection tasks on large image datasets ([15]).

The exciting prospect is to leverage ability of deep learning in the context of au-
tonomous driving. In the standard line of research, complex perception system with
expensive hardware (e.g. lidar) is used to provide data (most notably positions of
surrounding objects) to object tracking algorithms and finally to vehicle control sys-
tems. If deep learning can be used as a perception module via accurate analysis of
images obtained from the single camera mounted on the vehicle, serious cost reduc-
tion of such a product would be achieved.

This work aims to examine such a possibility by combining state of the art monocular
detection system with the proven tracking algorithm - Kalman filter ([14]) - into
multiple object tracking pipeline, and reporting its performance on public KITTI
benchmark video sequences.

In the first chapter we review some important properties of multivariate normal distri-
bution, with the stress on the Bayes’ theorem for Gaussian densities. We immediately
remind ourselves of the version of Bayes’ theorem for the case of continuous random
variables (similar statement holds for vectors and/or discrete variables):

Proposition 0.0.1 (Bayes’ theorem). Let (X, Y ) : Ω → R2 be a continuous ran-
dom vector on the probability space (Ω,F ,P), and (x, y) ∈ R2 an element in its range.
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Introduction

Then

fX|Y (x|y) =
fX(x)fY |X(y|x)

fY (y)
=

fX(x)fY |X(y|x)∫
x
fY |X(y|x)fX(x)dx

. (1)

Tracking algorithms have firm grounding in recursive reasoning developed on top
of Bayes’ theorem, which we show in the second chapter after giving some introduc-
tion to object tracking problem and terminology. Then we give detailed derivation
of Kalman filter and overview of its notable variations, extended Kalman filter and
unscented Kalman filter.

In chapter 3 we shortly review state of the art object detection and tracking systems,
and present our method. In the final chapter we give notes on the implementation
and report results on the KITTI tracking benchmark.

I thank my mentor dr.sc. Drago Špoljarić for his guidance, effort and patience
in writing this thesis. I also thank my mother Nevenka for her support during my
education.
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Chapter 1

Multivariate Gaussian distribution

1.1 Elementary properties

Continuous k-dimensional random vector X = (X1, . . . , Xk) is said to have a multi-
variate normal distribution if its density at point x ∈ Rk is given by:

φ(x|µ,Σ) =
1

(2π)k/2
√

det Σ
exp

{
−1

2
(x− µ)τΣ−1(x− µ)

}
, (1.1)

for some Σ ∈ Rk×k positive definite matrix and µ ∈ Rk. Then it can be shown that
E(X) = µ and cov(X) = E((X − µ)(X − µ)τ ) = Σ, i.e. matrix Σ and vector µ
are covariance matrix and expectation of the random vector X, respectively. When
X is distributed according to (1.1), we write:

X ∼ Nk(µ,Σ),

and call it k-dimensional Gaussian random vector X. We often write N(µX ,ΣX)
to further specify the parameters and ignore dimensionality. This is so-called non-
degenerate case of multivariate normal distribution, degenerate case with Σ being
singular is of no importance in this work.

It is convenient to observe for future considerations the form of the logarithm of
the density from (1.1):

lnφ(x|µ,Σ) = −1

2
(x− µ)τΣ−1(x− µ) + const =

= −1

2
xτΣ−1x+ xτΣ−1µ+ const. (1.2)
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1. Multivariate Gaussian distribution

where we denote with const those terms that are independent of x. Therefore, when
the logarithm of the density of the given random vector has the form (1.2), one can
safely conclude that vector is Gaussian and infer the parameters.

Well known property of the multivariate Gaussian distribution is the following:

Theorem 1.1.1 (Conditional and marginal Gaussian distributions). Let W :
Ω→ Rm and Z : Ω→ Rn be jointly Gaussian random vectors on the probability space
(Ω,F ,P), with joint distribution given by:(

W
Z

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
. (1.3)

Marginal distributions of vectors W and Z are then given by:

W ∼ Nm(µ1,Σ11), (1.4)

Z ∼ Nn(µ2,Σ22). (1.5)

Furthermore, let us denote with Λ the partitioned matrix obtained by inverting the
covariance matrix Σ from (1.3):

Λ =

(
Λ11 Λ12

Λ21 Λ22

)
=

(
Σ11 Σ12

Σ21 Σ22

)−1
.

Conditional distribution of W given Z = z is then given by:

W |Z=z ∼ Nm

(
µ1 −Λ−111 Λ12(z − µ2), Λ−111

)
. (1.6)

Analogous result is obtained for conditional distribution of Z given W = w.

Complete derivation can be found in e.g. [3], but it is a standard topic in the
M.S. level statistics courses as well.

1.2 Bayes’ theorem for Gaussian random vectors

In this section we present the important result that will play the central role in our
treatment of Kalman filter in the next chapter. It is in fact a variation of the Bayes’
theorem 0.0.1, adapted for the special case of Gaussian densities.

First we state without a proof a formula for the inverse of partitioned matrix (see
e.g. [2]), which we employ in the proof of the subsequent theorem:
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1.2. Bayes’ theorem for Gaussian random vectors

Lemma 1.2.1 (Inverse of a partitioned matrix). Let A ∈ Rn×n, B ∈ Rn×m, C ∈
Rm×n and D ∈ Rm×m such that D and A−BD−1C are regular. Then(

A B
C D

)−1
=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
, (1.7)

where it was abbreviated:
M = (A−BD−1C)−1. (1.8)

Matrix M−1 is known as the Schur complement of the partitioned matrix on the
left-hand side in (1.7), with respect to the submatrix D.

Theorem 1.2.2 (Bayes’ theorem for Gaussian vectors). Let W : Ω→ Rm and
Z : Ω→ Rn be random vectors on probability space (Ω,F ,P) such that:

W ∼ N(µ,Σ), (1.9)

Z|W=w ∼ N(Aw + b,Λ), (1.10)

where µ,w ∈ Rm, b ∈ Rn, A ∈ Rn×m, Σ ∈ Rm×m and Λ ∈ Rn×n. Then, distribution
of Z is given by:

Z ∼ N(Aµ+ b,Λ +AΣAτ ) (1.11)

and conditional distribution of W given z is:

W |Z=z ∼ N
(
Π
(
AτΛ−1(z − b) + Σ−1µ

)
,Π
)
, (1.12)

where the matrix Π ∈ Rm×m is given by:

Π =
(
Σ−1 +AτΛ−1A

)−1
. (1.13)

Proof. Define random vector U : Ω→ Rm+n

U =

(
W
Z

)
and notice that its density at some point u =

(
w z

)τ
can be written as:

fU (u) = fW (w)fZ|W (z|w).

We now examine the logarithm of this density, taking into account the assumptions
(1.9) and (1.10):

ln fU (u) = ln fW (w) + ln fZ|W (z|w) =

= lnφ(w|µ,Σ) + lnφ(z|Aw + b,Λ)

= −1

2
(w − µ)τΣ−1(w − µ)− 1

2
(z −Aw − b)τΛ−1(z −Aw − b) + const =

= −1

2
wτΣ−1w +wτΣ−1µ− 1

2
(z −Aw)τΛ−1(z −Aw)+

+ (z −Aw)τΛ−1b+ const. (1.14)

5



1. Multivariate Gaussian distribution

Notice that in the last equality we used (1.2) to split the two exponents.

We proceed by grouping the expression (1.14) into linear and quadratic terms (with
respect to variables w and z). First order terms read as:

wτΣ−1µ+zτΛ−1b−wτAτΛ−1b =

= wτ
(
Σ−1µ−AτΛ−1b

)
+ zτΛ−1b =

(
w
z

)τ (
Σ−1µ−AτΛ−1b

Λ−1b

)
.

Second order terms are rearranged as:

− 1

2
wτΣ−1w − 1

2
(z −Aw)τΛ−1(z −Aw)

= −1

2
wτΣ−1w − 1

2
zτΛ−1z +

1

2
zτΛ−1Aw +

1

2
(Aw)τΛ−1z − 1

2
(Aw)τΛ−1Aw =

= −1

2
wτΣ−1w − 1

2
zτΛ−1z +

1

2
zτΛ−1Aw +

1

2
wτAτΛ−1z − 1

2
wτAτΛ−1Aw =

= −1

2
wτ
(
Σ−1 +AτΛ−1A

)
w − 1

2
zτΛ−1z +

1

2
zτΛ−1Aw +

1

2
wτAτΛ−1z =

= −1

2

(
w
z

)τ (
Σ−1 +AτΛ−1A −AτΛ−1

−Λ−1A Λ−1

)(
w
z

)
.

Substituting these findings back into (1.14) while introducing following notation:

C =

(
Σ−1 +AτΛ−1A −AτΛ−1

−Λ−1A Λ−1

)−1
, (1.15)

γ = C

(
Σ−1µ−AτΛ−1b

Λ−1b

)
, (1.16)

leads to:

ln fU (u) = −1

2
uτC−1u+ uτC−1γ + const.

Comparing this with the earlier result (1.2), we find:

U =

(
W
Z

)
∼ N(γ,C). (1.17)

We should clarify expressions for C and γ further. To calculate C, we use lemma
1.2.1. First evaluate the corresponding Schur complement by substituting the appro-
priate values in (1.8):

(Σ−1 +AτΛ−1A−
(
−AτΛ−1

)
Λ
(
−Λ−1A

)
)−1 = Σ.
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1.2. Bayes’ theorem for Gaussian random vectors

Using (1.7) we then obtain:

cov(U) = C =

(
Σ ΣAτ

AΣ Λ +AΣAτ

)
. (1.18)

Next, performing the multiplication in (1.16) now gives:

E(U) = γ =

(
Σ ΣAτ

AΣ Λ +AΣAτ

)(
Σ−1µ−AτΛ−1b

Λ−1b

)
=

(
µ

Aµ+ b

)
. (1.19)

Having in mind (1.17), and the fact that we just calculated the parameters of the
distribution, we see that we can use theorem 1.1.1 to reach conclusions on the dis-
tributions of marginal Z and conditional W |Z=z. Namely, statement (1.11) follows
directly from (1.5) using (1.18) and (1.19) because submatrix Λ+AΣAτ corresponds
to cov(Z)) and vector Aµ+ b to E(Z).

Statement (1.12) is verified similarly. From (1.6) it follows that W |Z=z is normally
distributed, with the covariance matrix (denoted with Π) being the inverse of the
first diagonal block in the inverted matrix C. The required inverse is then found in
equation (1.15):

Π := cov(W |Z=z) =
(
Σ−1 +AτΛ−1A

)−1
.

Hence (1.13) holds. It is left to justify the mean from (1.12). We use the expression
for the mean from (1.6) in theorem 1.1.1, again substituting the required matrix
terms from (1.15):

E(W |Z=z) = µ−Π
(
−AτΛ−1

)
(z −Aµ− b) =

= ΠΠ−1µ+ ΠAτΛ−1(z −Aµ− b) =

= Π

Π−1µ−AτΛ−1Aµ︸ ︷︷ ︸
=Σ−1µ

+AτΛ−1(z − b)

 =

= Π
(
AτΛ−1(z − b) + Σ−1µ

)
,

which finishes the proof.
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Chapter 2

Basics of Kalman filtering

2.1 Introduction to object tracking

In the problem of object tracking, the aim is to estimate dynamic properties of the
object, such as its position, speed etc., cumulatively denoted by a vector xk ∈ Rdx ,
as it evolves through time. Time is considered discrete, represented as k ∈ N. Vector
xk is called object state.

The primary means in doing so are measurements or observations, denoted by
yk ∈ Rdy , along with any information (or assumption) on the object dynamics by
which its state propagates through time, and the relationship between measurements
and the object state.

For example, in a very simplistic vehicle tracking scenario, we might declare the
object state at time k to be xk = [rk, ṙk]

τ , where rk = [xk, yk]
τ ∈ R2 is the vehicle

center position at time k (assuming flat earth with all objects grounded at z = 0),
and ṙk = [ẋk, ẏk]

τ are velocities in respective directions. Then the object dynamics
is captured as follows:

rk = rk−1 + T ṙk−1,

where T = tk − tk−1 is the time interval between measurements, assumed to be
constant. Velocity is assumed constant, ṙk = ṙk−1. Furthermore, we imagine having a
sensor of some kind, providing us with successive measurements of the object position
yk = [xk, yk]

τ . Assuming perfect sensor, we then expect that sensor measurements
at time k correspond exactly to the object state component rk. All of this can be
summarized in the form of the object dynamics equation and measurement

9



2. Basics of Kalman filtering

equation, as follows:

xk = Fxk−1, (2.1)

yk = Hxk, (2.2)

where we set a transition matrix

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


and measurement matrix

H =

[
1 0 0 0
0 1 0 0

]
.

It is highly unlikely that the measurements of a given sensor are perfect. Sensor
noise is a major source of uncertainty in the problem of object tracking. In this work,
the sensor is in fact a camera, and the measurements (e.g. the coordinates of the
center of the vehicle) are inferred from monocular images. Camera is mounted on
the ego-vehicle, the movement of which could be very challenging. Furthermore, it is
well known that inference of depth from a single monocular image is in itself already
a demanding task. Thus it seems natural to introduce some randomness in equations
(2.1) and (2.2), and to make object state xk and observations yk random variables,
instead of deterministic quantities.

Therefore, we impose a probabilistic model on the problem as follows. The nota-
tion follows that of [6], with minor changes that hopefully contribute to clarity. Let
(Ω,F ,P) be a probability space, and dx, dy ∈ N. We define a stochastic process of
the object state (Xk)k∈N with Xk : Ω → Rdx . Similarly, observation (measurement)
process is defined as (Yk)k∈N, Yk : Ω → Rdy . We also introduce a serious restriction
so that both the object state and measurement process random vectors are continu-
ous, and that joint distribution of states and observations, until any moment in time
k, is continuous. We denote this joint distribution density simply with f , and time
moment k is implied from the arguments in the expression:

f(x1, . . . ,xk,y1, . . . ,yk). (2.3)

Sometimes this is called the complete-data density function. Because of the complete-
data distribution being continuous, any marginal distribution is continuous as well,
and can be obtained by integrating over (2.3). We use f for any marginal distribution

10



2.1. Introduction to object tracking

density with respect to the above complete-data distribution, when it contains at least
one state and one observation vector. E.g. we would write:

f(x1, . . . ,xk,yk) =

∫
y1

· · ·
∫
yk−1

f(x1, . . . ,xk,y1, . . . ,yk)dy1 . . . dyk−1.

Marginal distribution densities of state vectors are in turn denoted with p, and q is
used for observation vector densities. We give two notable examples:

p(x1, . . . ,xk) =

∫
y1

· · ·
∫
yk

f(x1, . . . ,xk,y1, . . . ,yk)dy1 . . . dyk,

q(y1, . . . ,yk) =

∫
x1

· · ·
∫
xk

f(x1, . . . ,xk,y1, . . . ,yk)dx1 . . . dxk.

A crucial task in probabilistic modelling of tracking problems is to translate the
object dynamics equation (e.g. (2.1)) and measurement equation (e.g. (2.2)) into
corresponding conditional densities:

• xk 7→ p(xk|xk−1) for given xk−1 ∈ Rdx is called transition density,

• yk 7→ q(yk|xk) for given xk ∈ Rdx is called likelihood function, also known
as emission density.

This is done by analyzing the underlying dynamical system and its sources and types
of uncertainty.

Another conditional density of central importance in future considerations is the
following:

p(xk|y1, . . . ,yk) =
f(xk,y1, . . . ,yk)

q(y1, . . . ,yk)
. (2.4)

This is conditional density function of the k-th object state vector, conditioned on
the first k observations Y1 = y1, . . . ,Yk = yk. It captures our knowledge on the
object state at time k, having received k-th observation yk. In Bayesian framework,
it is called the posterior state density, and represents our primary analysis target.
The corresponding random vector is denoted

Xk|y1,...,yk

and similar notational convention for random vectors is used throughout.

As we shall see, Bayesian reasoning lends itself nicely to the problem of tracking.
The general objective is the following:

11



2. Basics of Kalman filtering

• suppose that at time k−1, the posterior density p(xk−1|y1, . . . ,yk−1) is known,

• use this as a prior, and employ Bayes’ theorem to calculate the posterior,
p(xk|y1, . . . ,yk).

This recursive procedure, that we call recursive Bayesian solution to object tracking,
will be presented in some detail in the following sections.

2.2 Recursive Bayesian solution to object

tracking

In this section, we introduce certain assumptions on the complete-data joint distribu-
tion from (2.3) in order to develop a recursive solution for posterior state density from
(2.4). These assumptions come in the form of conditional independence properties,
and seem to reflect many real-world phenomena. They are based on the discussion
from [6].

To simplify the notation for the expressions including historical data, we use Xk =
(X1, . . . ,Xk) and Yk = (Y1, . . . ,Yk), for any k ∈ N.

The assumptions read as follows:

C0 Causality principle - past cannot depend on the future:

q
(
yk−1|xk+m

)
= q
(
yk−1|xk−1

)
, m ∈ N0. (2.5)

C1 Current state is conditionally independent of the past data, given the most
recent state:

p(xk|xk−1) = p
(
xk|xk−1,yk−1

)
. (2.6)

C2 Current observation is conditionally independent of the past data, given the
current state:

q(yk|xk) = q(yk|xk,yk−1). (2.7)

CM State process (Xk)k∈N has Markov property, meaning that state at time k does
not depend on the previous states at k − 2, . . . , 1, given the last state (time
k − 1). For continuous random vectors, this means that for every k ≥ 2:

p
(
xk|xk−1

)
= p(xk|xk−1). (2.8)

12



2.2. Recursive Bayesian solution to object tracking

As mentioned, interesting recursive relation is now derived for the posterior density
p(xk|y1, . . . ,yk) of the state process.

Theorem 2.2.1. Let the object state process (Xk)k∈N and the measurement process
(Yk)k∈N for the tracking problem be assembled from continuous random vectors. Then,
under assumptions C0 - C2 and that state process is Markov, one has the following
recursive relation for the posterior state density:

p
(
xk|yk

)
=

q(yk|xk)
q(yk|yk−1)

∫
xk−1

p(xk|xk−1)p
(
xk−1|yk−1

)
dxk−1. (2.9)

Proof. We take a step back from the posterior density required in (2.9) and first take
a look at complete conditional density of the object state variables p

(
xk|yk

)
. Using

Bayes’ formula from proposition (0.0.1):

p
(
xk|yk

)
=
q
(
yk|xk

)
p
(
xk
)

q(yk)
. (2.10)

We now use causality principle to write the likelihood function q
(
yk|xk

)
differently:

q
(
yk|xk

)
= q
(
yk,y

k−1|xk
)

= q
(
yk|yk−1,xk

)
q
(
yk−1|xk

)
= q
(
yk|yk−1,xk

)
q
(
yk−1|xk−1

)
.

In the last equality, (2.5) was used with m = 0. We substitute this into (2.10),
together with

p
(
xk
)

= p
(
xk,x

k−1) = p
(
xk|xk−1

)
p
(
xk−1

)
,

q
(
yk
)

= q
(
yk,y

k−1) = q
(
yk|yk−1

)
q
(
yk−1

)
.

to find:

p
(
xk|yk

)
=
q
(
yk|yk−1,xk

)
q
(
yk−1|xk−1

)
p
(
xk|xk−1

)
p
(
xk−1

)
q(yk|yk−1)q(yk−1)

=

=
q
(
yk|yk−1,xk

)
p
(
xk|xk−1

)
q(yk|yk−1)

q
(
yk−1|xk−1

)
p
(
xk−1

)
q(yk−1)︸ ︷︷ ︸

=p(xk−1|yk−1)

=

=
q
(
yk|yk−1,xk

)
p
(
xk|xk−1

)
q(yk|yk−1)

p
(
xk−1|yk−1

)
,

13



2. Basics of Kalman filtering

where in the last equality we again used Bayes’ formula from (1). Continue simplifying
this expression by noticing that conditional independence property from (2.7) and
Markov property (2.8) give:

p
(
xk|yk

)
=

q(yk|xk)
q(yk|yk−1)

p(xk|xk−1)p
(
xk−1|yk−1

)
. (2.11)

To obtain the recursion for p
(
xk|yk

)
instead of p

(
xk|yk

)
, we integrate out variables

x1 through xk−1 from (2.11):

p
(
xk|yk

)
=

∫
xk−1

p
(
xk|yk

)
dxk−1 =

=
q(yk|xk)
q(yk|yk−1)

∫
xk−1

p(xk|xk−1)p
(
xk−1|yk−1

)
dxk−1 =

=
q(yk|xk)
q(yk|yk−1)

∫
xk−1

p(xk|xk−1)
(∫

xk−2

p
(
xk−1|yk−1

)
dxk−2

)
dxk−1.

The inner integral is recognized as:∫
xk−2

p
(
xk−1|yk−1

)
dxk−2 =

∫
xk−2

p
(
xk−1,x

k−2|yk−1
)
dxk−2 = p

(
xk−1|yk−1

)
.

Substituting this back gives the recursion from (2.9).

Observe again the integral in recursion (2.9), and notice that in fact:∫
xk−1

p(xk|xk−1)p
(
xk−1|yk−1

)
dxk−1 = p

(
xk|yk−1

)
. (2.12)

Now we can shortly summarize how recursion (2.9) is used for real-time tracking
applications:

• Prediction step. Suppose that at time k−1 distribution of vectorXk−1|y1,...,yk−1

is known, i.e. function xk−1 7→ p
(
xk−1|yk−1

)
is given. Determine the predicted

distribution density xk 7→ p
(
xk|yk−1

)
by evaluating the integral in (2.12). This

is the distribution density of the object state at future time k, given the data
up until the time k − 1.

• Filtering step. Upon arrival of new data yk at time k, determine the pos-
terior distribution density function xk 7→ p

(
xk|yk

)
by multiplying p

(
xk|yk−1

)
obtained in the prediction step with likelihood function q(yk|xk). Quantity
q
(
yk|yk−1

)
is a normalization factor.
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2.3. Kalman filter

If one needs a point estimate for the state vector at time k, integrate to obtain the
expected value of Xk|y1,...,yk denoted by x̂k|k:

x̂k|k := E(Xk|y1,...,yk) =

∫
xk

p
(
xk|yk

)
xkdxk.

In order to gauge the uncertainty of the estimate, covariance matrix is calculated:

Pk|k := cov(Xk|y1,...,yk) =

∫
xk

p
(
xk|yk

)(
xk − x̂k|k

)(
xk − x̂k|k

)τ
dxk.

Note that first and second moment of the predicted distribution density p
(
xk|yk−1

)
are denoted analogously:

x̂k|k−1 := E
(
Xk|y1,...,yk−1

)
,

Pk|k−1 := cov
(
Xk|y1,...,yk−1

)
.

2.3 Kalman filter

In the previous section, we explored a somewhat general case of the tracking prob-
lem. Apart from a few natural conditional independence properties, not much was
assumed about the distributions of state and observation processes. There are many
tracking models, varying greatly in their assumptions on the transition distribution
p(xk|xk−1), likelihood function q(yk|xk) and treatment of recursion (2.9).

Possibly the most famous one is that of Kalman filter, named after one of its main
contributors, Rudolf E. Kálmán (see [14]). In addition to the general assumptions
from previous section, i.e. C0, C2 and CM, Kalman filter makes precise statements
on system dynamics and probability distributions.

The dynamical system in question is considered linear, with dynamics and mea-
surement equations given as in section 2.1:

xk = Fxk−1, (2.13)

yk = Hxk. (2.14)

Even though these were stated for quite a simple case of 2D vehicle tracking, they
are in fact very common in practice (for varying choices of xk, yk, F and H).

15



2. Basics of Kalman filtering

Their probabilistic counterparts are obtained by introducing additive Gaussian noise:

Xk = Fxk−1 + vk, (2.15)

Yk = Hxk +wk, (2.16)

where

vk ∼ N(0,Qk),

wk ∼ N(0,Rk).

Matrices Qk, Rk are called process covariance and measurement covariance matrix,
respectively. We interpret equations (2.15) and (2.16) conditionally, and introduce
the initial state distribution assumption:

K0 Initial state X1 is normally distributed:

X1 ∼ N(x̂1,P1). (2.17)

K1 Transition density of Kalman filter is Gaussian:

p(xk|xk−1) = φ(xk|Fxk−1,Qk). (2.18)

K2 Likelihood function at time is Gaussian:

q(yk|xk) = φ(yk|Hxk,Rk). (2.19)

In filtering literature (see e.g. [6]) one can encounter another assumption - that
posterior state density is Gaussian:

KP Posterior state distribution at time k is Gaussian, and we denote the parameters
of mean and covariance at time k with x̂k|k and Pk|k:

p(xk|y1, . . . ,yk) = φ
(
xk|x̂k|k,Pk|k

)
. (2.20)

However, we show in the next section that (2.20) is in fact emergent phenomenon
from assumptions K0 - K2, and therefore doesn’t need to be assumed.

Under assumptions K0 - K2, posterior distribution is Gaussian at every time step.
Furthermore, predicted distribution (from equation (2.12)) is Gaussian as well (see
proposition 2.4.1 from next section). Notice how this simplifies the program pre-
sented in previous section - all the distributions are Gaussian, and in essence there is
no need for updating them by costly procedures such as integral evaluation in (2.12).
One just has to keep track of the mean and covariance. The method of updating
these parameters upon arrival of new data is subject of the next section.
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2.4. Derivation of Kalman filtering equations

2.4 Derivation of Kalman filtering equations

In this section the aim is to derive celebrated Kalman filtering equations. We begin
by establishing the distribution of vector

Xk|y1,...,yk−1
,

the predicted object state at time k.

Proposition 2.4.1. Suppose that at time k − 1, posterior object state is Gaussian:

Xk−1|y1,...,yk−1
∼ N(x̂k−1|k−1,Pk−1|k−1). (2.21)

Conditioned on the values of observation variables up until the time step k − 1

y1, . . . ,yk−1,

predicted object state is normally distributed according to

Xk|y1,...,yk−1
∼ N

(
x̂k|k−1,Pk|k−1

)
, (2.22)

x̂k|k−1 = F x̂k−1|k−1, (2.23)

Pk|k−1 = Qk + FPk−1|k−1F
τ . (2.24)

Proof. Define random vectors W and Z as follows:

W = Xk−1|y1,...,yk−1
,

Z = Xk|y1,...,yk−1
.

Vector W is assumed to be normally distributed in (2.21). We determine the density
of vector Z conditioned on W = xk−1:

fZ|W (xk|xk−1) = p(xk|xk−1,y1, . . . ,yk−1) = p(xk|xk−1). (2.25)

First equality holds because both vectorsW and Z have conditioning on y1, . . . ,yk−1
in their definitions. In the second equality we notice these conditions can be omitted,
by invoking a conditional independence property from (2.6).
From (2.25) it now follows that vector Z conditioned on W = xk−1 has the same
normal distribution as in (2.18), i.e. transition distribution.
Let’s summarize our findings on properties of vectors W and Z:

W ∼ N
(
x̂k−1|k−1,Pk−1|k−1

)
,

Z|W=xk−1
∼ N(Fxk−1,Qk).

The predicted state distribution is now inferred directly from theorem 1.2.2. Namely,
distribution of Z = Xk|y1,...,yk−1

is specified in (1.11), and we easily recover results
(2.23) and (2.24).
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2. Basics of Kalman filtering

Couple of simple but useful results from matrix algebra will be needed to derive
Kalman filtering equations.

Lemma 2.4.2. Let A ∈ Rn×n, B ∈ Rm×n and C ∈ Rm×m, such that A, C, A−1 +
BτC−1B and BABτ +C are all regular. Then following identity holds:(

A−1 +BτC−1B
)−1
BτC−1 = ABτ (BABτ +C)−1. (2.26)

Proof. Multiplying left-hand side by BABτ +C gives:(
A−1 +BτC−1B

)−1
BτC−1(BABτ +C) =

=
(
A−1 +BτC−1B

)−1(
BτC−1BABτ +Bτ

)
=

=
(
A−1 +BτC−1B

)−1(
BτC−1B +A−1

)
ABτ =

= ABτ .

Multiplying right-hand side by BABτ + C evidently gives ABτ as well. Identity
(2.26) now holds because matrix BABτ +C was assumed regular.

Lemma 2.4.3 (Woodbury identity). Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and
D ∈ Rm×m, such that A, D, A+BD−1C and D +CA−1B are all regular. Then
following identity holds:(

A+BD−1C
)−1

= A−1 −A−1B
(
D +CA−1B

)−1
CA−1. (2.27)

Proof. Multiplying right-hand side by A+BD−1C gives:(
A−1 −A−1B

(
D +CA−1B

)−1
CA−1

)(
A+BD−1C

)
=

= I +A−1BD−1C −A−1B
(
D +CA−1B

)−1
CA−1

(
A+BD−1C

)
=

= I +A−1BD−1C −A−1B
(
D +CA−1B

)−1(
I +CA−1BD−1

)
C =

= I +A−1BD−1C −A−1B
(
D +CA−1B

)−1(
D +CA−1B

)
D−1C =

= I +A−1BD−1C −A−1BD−1C =

= I,

which proves the identity.

Finally, the following theorem states how to update the parameters of the pos-
terior object state distribution at moment of time k − 1 with the arrival of the new
observation yk at time k.
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2.4. Derivation of Kalman filtering equations

Theorem 2.4.4. Suppose that at time k − 1, posterior object state is Gaussian:

Xk−1|y1,...,yk−1
∼ N(x̂k−1|k−1,Pk−1|k−1). (2.28)

Posterior object state at time k is then normally distributed as well:

Xk|y1,...,yk ∼ N(x̂k|k,Pk|k), (2.29)

and its mean and covariance obey the following recursive relations:

x̂k|k = x̂k|k−1 +Kk

(
yk −Hx̂k|k−1

)
, (2.30)

Pk|k = (I −KkH)Pk|k−1, (2.31)

where:
Kk = Pk|k−1H

τ
(
Rk +HPk|k−1H

τ
)−1

(2.32)

is called Kalman gain matrix. Furthermore, predicted observation vector Yk|y1,...,yk−1

is normally distributed as well:

q(yk|y1, . . . ,yk−1) = φ(yk|Hx̂k|k−1,Rk +HPk|k−1H
τ ). (2.33)

Proof. Define random vectors W and Z as follows:

W = Xk|y1,...,yk−1
,

Z = Yk|y1,...,yk−1
.

Vector W is the predicted object state at time k, and its distribution is described
in proposition 2.4.1. Z is predicted observation vector at time k. We determine the
density of vector Z conditioned on W = xk:

fZ|W (yk|xk) = q(yk|xk,y1, . . . ,yk−1) = q(yk|xk). (2.34)

First equality holds because both vectorsW and Z have conditioning on y1, . . . ,yk−1
in their definitions. In the second equality we notice these conditions can be omitted,
by invoking a conditional independence property from (2.7).
Noticing that distribution found in (2.34) is exactly the emission distribution from
(2.19), we summarize:

W ∼ N
(
x̂k|k−1,Pk|k−1

)
, (2.35)

Z|W=xk
∼ N(Hxk,Rk), (2.36)

to conclude that we are under conditions of theorem 1.2.2. Mean and covariance of
Z = Yk|y1,...,yk−1

, as stated in (2.33), are then easily verified via (1.11).
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2. Basics of Kalman filtering

We now pursue the other consequence of theorem 1.2.2, i.e. results on

W |Z=yk = Xk|y1,...,yk−1,yk ,

which is in fact a posterior object state vector at time k. It is normally distributed,
as acknowledged in (2.29):

W |Z=yk ∼ N(x̂k|k,Pk|k).

Comparing this with (1.12) and (1.13) combined with (2.35) and (2.36) gives:

Pk|k = Π =
(
P−1k|k−1 +HτR−1k H

)−1
, (2.37)

x̂k|k = Pk|k

(
HτR−1k yk + P−1k|k−1x̂k|k−1

)
. (2.38)

To continue, first apply the matrix identity (2.27) from lemma 2.4.3 to (2.37) to
derive (2.31):

Pk|k = Π =
(
P−1k|k−1 +HτR−1k H

)−1
=

(2.27)
= Pk|k−1 − Pk|k−1Hτ

(
Rk +HPk|k−1H

τ
)−1︸ ︷︷ ︸

=Kk

HPk|k−1 =

= Pk|k−1 −KkHPk|k−1

= (I −KkH)Pk|k−1.

Now expand (2.38) using both expressions for Pk|k:

x̂k|k = Pk|k

(
HτR−1k yk + P−1k|k−1x̂k|k−1

)
=

=
(
P−1k|k−1 +HτR−1k H

)−1
HτR−1k yk + (I −KkH)Pk|k−1P

−1
k|k−1x̂k|k−1 =

=
(
P−1k|k−1 +HτR−1k H

)−1
HτR−1k yk + (I −KkH)x̂k|k−1.

For the second addend, the Kalman gain matrix expression from (2.31) was used, but
for the first addend we employ the inverse form in (2.37) in order to apply matrix
identity (2.26) from lemma 2.4.2:

(P−1k|k−1 +HτR−1k H)−1HτR−1k =

(2.26)
= Pk|k−1H

τ
(
HPk|k−1H

τ +Rk

)−1
=

(2.32)
= Kk.
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2.4. Derivation of Kalman filtering equations

Now look back to conclude:

x̂k|k = Kkyk + (I −KkH)x̂k|k−1 =

= x̂k|k−1 +Kk

(
yk −Hx̂k|k−1

)
,

as stands in (2.30) of the theorem statement.

As noted in section 2.1, posterior object state density at time k, i.e. distribution
of random vector Xk|y1,...,yk , is of the greatest importance in real-time tracking appli-
cations. It captures total available information on object state at time k, and should
be continuously updated as new sensory data arrives.

In Kalman filter tracking algorithm, this updating is done via equations (2.30) and
(2.31), stated and derived in previous theorem, which we repeat here for convenience:

x̂k|k = x̂k|k−1 +Kk

(
yk −Hx̂k|k−1

)
, (2.39)

Pk|k = (I −KkH)Pk|k−1. (2.40)

Together with connections (2.23) and (2.24) from proposition 2.4.1 on predicted state
density:

x̂k|k−1 = F x̂k−1|k−1, (2.41)

Pk|k−1 = Qk + FPk−1|k−1F
τ , (2.42)

these equations are called Kalman filtering equations. The first recursion con-
cerns the mean of the multivariate normal distribution of the posterior state, and the
second its covariance matrix.

Suppose that at time k − 1, distribution of Xk−1|y1,...,yk−1
is known, meaning that

x̂k−1|k−1 and Pk−1|k−1 are given. The object state (x̂k−1|k−1) and its uncertainty
(Pk−1|k−1) are then propagated through time using object dynamics assumptions.
This is done in (2.41) and (2.42), giving x̂k|k−1 and Pk|k−1. These predictions are
then updated in Bayesian fashion with new evidence in eqs. (2.39) and (2.40).

Observe the mechanism of the updating procedure in (2.39). Predicted state x̂k|k−1
is corrected for the quantity proportional to the error between currently observed yk
and predicted observation (from measurement process assumptions of Kalman filter)
Hx̂k|k−1. The coefficient of proportionality is given by Kalman gain matrix Kk.
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Let us revisit the redundancy of assumption (2.20). This requires inspecting the
initial conditions in Kalman filtering equations. Using (2.17) instead of predicted
state distribution, we can replicate verbatim the proof of the theorem 2.4.4, and con-
clude that posterior distribution at every step is indeed Gaussian. More specifically,
we set

W = X1,

Z = Y1,

repeat the proof and arrive at following formulas, which are analogous to (2.30),
(2.31), (2.32) and (2.33) but have x̂1 and P1 in place of x̂k|k−1 and Pk|k−1:

x̂1|1 = x̂1 +K1(y1 −Hx̂1),

P1|1 = (I −K1H)P1,

K1 = P1H
τ (R1 +HP1H

τ )−1,

q(y1) = φ(y1|Hx̂1,R1 +HP1H
τ ).

2.5 Extended Kalman filter

In this section we shortly describe another famous and widely used filter - extended
Kalman filter. It is an elegant application of ideas from standard Kalman filtering
to the case of nonlinear systems, prevalent in many engineering fields. Nonlinearity
here is in terms of object dynamics and measurement equations - their linear forms
(2.13) and (2.14) are no longer suitable. We keep other assumptions of Kalman filter
intact.

We begin by reminding ourselves of the first order approximation of multivariable
scalar valued functions due to Taylor’s theorem. Let f : Rn → R be differentiable at
point x0 ∈ Rn, with the gradient vector ∇f(x0) ∈ Rn. Then for x in vicinity of x0,
we approximate:

f(x) ≈ f̂(x) := f(x0) +∇f(x0)
τ (x− x0).

For sufficiently smooth vector valued function f = (f1, . . . , fn) : Rn → Rn we then
assemble the approximations for all the component functions fi and thereby get:

f(x) ≈ f̂(x) := f(x0) +

∇f1(x0)
τ

...
∇fn(x0)

τ

 (x− x0). (2.43)
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The matrix in the second term on the right hand side of (2.43) is of course the
Jacobian matrix of f which we denote Jf :

Jf (x) :=

∇f1(x)τ

...
∇fn(x)τ

 =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)

...
. . .

...
∂fn
∂x1

(x) · · · ∂fn
∂xn

(x)

 .

In extended Kalman filter we assume that object dynamics and measurement process
are captured by differentiable functions f : Rdx → Rdx and h : Rdx → Rdy :

xk = f(xk−1),

yk = h(xk).

Gaussian noise assumptions K0-KP from the Kalman filter setup are replicated in
the context of extended Kalman filtering, only with revised expressions . Transition
density, likelihood function and posterior density are therefore given by:

p(xk|xk−1) = φ(xk|f(xk−1),Qk), (2.44)

q(yk|xk) = φ(yk|h(xk),Rk), (2.45)

p(xk−1|y1, . . . ,yk−1) = φ
(
xk−1|x̂k−1|k−1,Pk−1|k−1

)
. (2.46)

Exact derivation of the posterior distribution p(xk|y1, . . . ,yk) at next time step (i.e.
integrating in eq. (2.9) given the relations (2.44), (2.45) and (2.46)) is not trivial re-
gardless of the normality assumptions. Therefore we resort to linearization procedure
from (2.43). Specifically, we approximate f(xk−1) by the first order terms in Taylor
series expansion of f(xk−1) at x̂k−1|k−1:

f(xk−1) ≈ f̂(xk−1) = f
(
x̂k−1|k−1

)
+ Fk

(
xk−1 − x̂k−1|k−1

)
, (2.47)

where we denoted:
Fk = Jf

(
x̂k−1|k−1

)
.

We regroup terms in (2.47) and apply this approximation in transition density (2.44):

p(xk|xk−1) ≈ φ
(
xk|Fkxk−1 + (f

(
x̂k−1|k−1

)
− Fkx̂k−1|k−1),Qk

)
. (2.48)

In the similar fashion, we approximate function h(xk) with first order terms from
Taylor expansion about x̂k|k−1:

h(xk) ≈ ĥ(xk) = h
(
x̂k|k−1

)
+Hk

(
xk − x̂k|k−1

)
,
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where we denoted:
Hk = Jh

(
x̂k|k−1

)
to approximate likelihood function (2.45):

q(yk|xk) ≈ φ
(
yk|Hkxk + (h

(
x̂k|k−1

)
−Hkx̂k|k−1),Rk

)
.

Having linearized the means of both transition distribution and likelihood function,
we quickly show how results of section on Kalman filtering equations (previous sec-
tion) can be rewritten for extended Kalman filter setup.

Consider proposition 2.4.1 which derives the predicted state distribution p(xk|y1, . . . ,yk−1).
Define random vectors W and Z as in the proof of the proposition:

W = Xk−1|y1,...,yk−1
,

Z = Xk|y1,...,yk−1
.

We follow the remainder of the proof as well, applying approximated transition den-
sity (2.48) and (2.46) to get:

W ∼ N
(
x̂k−1|k−1,Pk−1|k−1

)
,

Z|W=xk−1
∼ N

(
Fkxk−1 + (f

(
x̂k−1|k−1

)
− Fkx̂k−1|k−1),Qk

)
. (2.49)

The proof of the proposition finishes by invoking theorem 1.2.2. This is the case here
as well. Term f

(
x̂k−1|k−1

)
− Fkx̂k−1|k−1 is independent of xk−1, therefore mean in

(2.49) is linear function and theorem applies with conclusions:

Xk|y1,...,yk−1
∼ N

(
x̂k|k−1,Pk|k−1

)
,

Pk|k−1 = Qk + FkPk−1|k−1F
τ
k ,

x̂k|k−1 = Fkx̂k−1|k−1 + f
(
x̂k−1|k−1

)
− Fkx̂k−1|k−1 =

= f
(
x̂k−1|k−1

)
.

Similarly, one can replicate the procedure from theorem 2.4.4 and arrive at the rest
of extended Kalman filtering equations:

Sk := Rk +HkPk|k−1H
τ
k ,

q(yk|y1, . . . ,yk−1) = φ(yk|h
(
x̂k|k−1

)
,Sk),

x̂k|k = x̂k|k−1 + Pk|k−1H
τ
kS
−1
k

(
yk − x̂k|k−1

)
,

Pk|k = Pk|k−1 − Pk|k−1Hτ
kS
−1
k HkPk|k−1.

While there are many similarities and analogies between Kalman and extended Kalman
filters, notice that posterior covariance matrix Pk|k is dependent on measurements in
extended version. Indeed, Jacobian Hk is evaluated at object state estimate x̂k|k−1,
which in turn depends on observations y1, . . . ,yk−1.
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2.6 Unscented Kalman filter

In section 2.4 we derived a closed form solution to the recursion (2.9), under general
assumptions C0-CM from section (2.2) and Kalman filter assumptions K0-KP. In
the previous section we dropped assumption that underlying dynamical system is
linear, and approximated the object dynamics function f and measurement function
h with linear terms from their respective Taylor expansions, to get the approximate
solution to (2.9).

In this section, we continue this program by presenting the unscented Kalman
filter - another approximate solution of (2.9). It has similar computational load as
extended Kalman filter, but covers broader class of object dynamics and measure-
ment functions and usually achieves better performance. In fact, it is in general on
par with the second-order extended Kalman filter, without requiring calculation of
Jacobian or Hessian ([6], [13]).

Unscented Kalman filter is based on the unscented transformation - numerical
algorithm for approximating moments of non-linearly transformed random variable
or vector. Let f : Rn → Rm be a non-linear function and X : Ω → Rn random
vector on the probability space (Ω,F ,P). We are interested in calculating the mean
and covariance of the random vector f(X):

E(f(X)) =

∫
Rn

p(x)f(x)dx,

cov(f(X)) =

∫
Rn

p(x)(f(x)− E(f(X)))(f(x)− E(f(X)))τdx.

For that purpose, we compute the weighted sum of the function values on the certain
collection of points from the range of the given random vector. We call this collection
of points sigma points and denote ξ1, . . . , ξn ∈ Rn. The corresponding weights are
ψ1, . . . ,ψn. We impose the following condition on the sigma points and weights:∑n

i=1ψiξi
n

= E(X), (2.50)

∑n
i=1ψi(ξi − E(X))(ξi − E(X))τ

n
= cov(X). (2.51)

In short - we want the sample mean and covariance of sigma points with respect to
”probability distribution” given by the weights to correspond to the mean and covari-
ance of the random vector X. We then approximate the moments of the transformed
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2. Basics of Kalman filtering

random vector f(X) by the following sums:

E(f(X))
∧

=

∑n
i=1ψif(ξi)

n
, (2.52)

cov(f(X))
∧

=

∑n
i=1ψi

(
f(ξi)− E(f(X))
∧)(

f(ξi)− E(f(X))
∧)τ

n
, (2.53)

cov(X,f(X))
∧

=

∑n
i=1ψi

(
ξi − E(X)

)(
f(ξi)− E(f(X))
∧)τ

n
. (2.54)

Determining weights and sigma points that satisfy (2.50) and (2.51) is a problem in
itself, skipped here for brevity. See [6] for an example of the construction.

Assumptions of unscented Kalman filter are similar as those in standard Kalman
filter - big difference is that object dynamics and measurement functions are non-
linear. Object state and measurement processes are given by:

Xk = f(xk−1) + vk, (2.55)

Yk = h(xk) +wk, (2.56)

where

vk ∼ N(0,Qk), (2.57)

wk ∼ N(0,Rk). (2.58)

We further suppose that at time k, joint distribution of latest object state and latest
observation, conditional on the past data, is multivariate normal:

f
(
xk,yk|yk−1

)
= φ

((
xk
yk

)∣∣∣∣(x̂k|k−1ŷk|k−1

)
,

(
Pk|k−1 Ck

Cτ
k Sk

))
. (2.59)

Here it was implicitly assumed:

Xk|yk−1 ∼ N
(
x̂k|k−1,Pk|k−1

)
Yk|yk−1 ∼ N

(
ŷk|k−1,Sk

)
Ck := cov

(
Xk|yk−1 ,Yk|yk−1

)
The goal is to determine posterior state distribution at time k, p

(
xk|yk

)
. But ob-

serve that this is just a conditional distribution with respect to the joint distribution
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2.6. Unscented Kalman filter

f
(
xk,yk|yk−1

)
, conditioned on Yk = yk. Hence retrieving the distribution p

(
xk|yk

)
amounts to estimating all the parameters in (2.59), and then using the theorem 1.1.1.

Focusing on the predicted state distribution for the moment, observe that (2.55)
and (2.57) give:

x̂k|k−1 = E
(
Xk|yk−1

)
=

= E
(
f(Xk−1) + vk|yk−1

)
=

= E
(
f(Xk−1)|yk−1

)
,

and similarly:

Pk|k−1 = cov
(
Xk|yk−1

)
=

= cov
(
f(Xk−1) + vk|yk−1

)
=

= cov
(
f(Xk−1)|yk−1

)
+Qk.

Mean and covariance of the distribution p
(
f(xk−1)|yk−1

)
are now to be estimated

using unscented transformation. Let us denote sigma points and weights at time k−1
with ξ

(k−1)
1 , . . . , ξ

(k−1)
n and ψ

(k−1)
1 , . . . ,ψ

(k−1)
n respectively. These are of course chosen

so that (2.50) and (2.51) are satisfied for the posterior object state at time k − 1,
Xk|yk−1 . We propagate sigma points one time step via function f :

ξ
(k)
i = f

(
ξ
(k−1)
i

)
and facilitate estimates for x̂k|k−1 and Pk|k−1 using (2.52) and (2.53) as follows:

x̂k|k−1 =

∑n
i=1ψ

(k−1)
i ξ

(k)
i

n
,

Pk|k−1 = Qk +

∑n
i=1ψ

(k−1)
i

(
ξ
(k)
i − x̂k|k−1

)(
ξ
(k)
i − x̂k|k−1

)τ
n

.

Parameters Sk and ŷk|k−1 in (2.59) are estimated in the similar fashion, using already
establishd unscented transformation for the posterior distribution at time k−1. This
time however, sigma points are propagated via function h:

η
(k)
i = h

(
ξ
(k)
i

)
.
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2. Basics of Kalman filtering

We get:

ŷk|k−1 =

∑n
i=1ψ

(k−1)
i η

(k)
i

n
,

Sk = Rk +

∑n
i=1ψ

(k−1)
i

(
η
(k)
i − ŷk|k−1

)(
η
(k)
i − ŷk|k−1

)τ
n

.

To estimate final parameter, cross-covariance Ck, employ (2.54):

Ck =

∑n
i=1ψ

(k−1)
i

(
η
(k)
i − ŷk|k−1

)(
ξ
(k)
i − x̂k|k−1

)τ
n

.

Joint distribution (2.59) is now conditioned on Yk = yk using theorem 1.1.1 directly.
First determine the relevant partitioned inverted covariance matrix elements using
lemma 1.2.1:

Λ−111 = Pk|k−1 −CkSkC
τ
k ,

Λ12 = −
(
Pk|k−1 −CkSkC

τ
k

)−1
CkS

−1
k .

Then apply statement (1.6) to calculate the mean:

x̂k|k = x̂k|k−1 +
(
Pk|k−1 −CkSkC

τ
k

)(
Pk|k−1 −CkSkC

τ
k

)−1
CkS

−1
k

(
yk − ŷk|k−1

)
=

= x̂k|k−1 +CkS
−1
k

(
yk − ŷk|k−1

)
and covariance

Pk|k = Λ−111 = Pk|k−1 −CkSkC
τ
k

of the posterior state distribution at time k.
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Chapter 3

Monocular 3D object tracking

3.1 Introduction

The interest in the problem of accurate vehicle detection and tracking in the context
of autonomous driving has been on the rise in recent years. The most successful
approaches in commercial applications rely on fusion of variety of non-trivial and ex-
pensive sensors such as radar, lidar, sonar, GPS, odometry and inertial measurement
units. Specialized control systems are used to analyse sensory output and deduce
navigation paths and obstacles.

One of the drivers of progress in the area was the emergence of public benchmarks
that supply datasets of real-world traffic pictures and scenes, with accurate 3D an-
notations and lidar sensor outputs, such as a pioneer KITTI ([11], used for testing
in this work), and in recent times Waymo Open Dataset ([27]), NuScenes ([5]) and
Argoverse ([7]). The objective on these benchmarks is to infer type and exact 3D
information (position, size and orientation) for all objects in the given image, using
various sensor data (such as lidar point cloud) and images themselves. In the case
of tracking benchmarks, the goal is to identify and give tracks for objects across a
given video sequence. Example of an image in KITTI detection benchmark is shown
in figure 3.1.
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3. Monocular 3D object tracking

Figure 3.1: Sample image from KITTI detection benchmark. Bounding boxes are
due to a recent completely monocular method [4].

Lidar device produces precise depth information in terms of 3D point clouds,
and since the seminal work of [20] and its variants showed how to directly manip-
ulate point cloud by way of deep neural networks, works based on these principles
in both detection and tracking area followed. They became the most performant in
aforementioned public benchmarks; interested reader can follow [25] for an example.

On the other hand, drawbacks of lidar such as high cost and sensitivity to weather
are reason for the recent popularity of monocular methods, which are pursued
in this work. Monocular methods try to infer the object position in 3D world from
single image. This task is inherently ill-posed, due to the overall lack of reliable depth
information. While the gap in performance of monocular and lidar-based methods
is still substantial, the trend is positive. The basic tool in these methods are again
deep neural networks, only this time applied directly to the RGB image produced by
the camera, instead of the expensive lidar point cloud.

In this work, object detection method is borrowed from a recent paper [9] by Ding
M. et al. (2019) in its entirety, and Kalman filter was used as a main component of
the tracking algorithm. Therefore, solution to the problem of monocular 3D vehicle
tracking presented here is naturally divided in 2 self-contained parts - detection and
tracking. Their respective implementations are consequently modular, in a sense that
a different detector can be used in conjunction with the tracker, and different tracker
can be built upon the detector. Finally, their descriptions are going to be separate
as well - detection framework is discussed in section 3.4 and the Kalman filter setup
in section 3.5. But we begin by introducing KITTI Vision Benchmark in section 3.2,
and important technical details in section 3.3.
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3.2. KITTI Vision Benchmark

3.2 KITTI Vision Benchmark

The multiple object tracking (MOT) system described in this work was tested on the
publicly available KITTI benchmark.

This benchmark was developed in 2012 as a joint project of Karlsruhe Institute of
Technology and Toyota Technological Institute at Chicago, with a mission to provide
accurate and challenging benchmark for various visual recognition endeavours such
as:

• 2D and 3D object detection

• Multiple object tracking

• Visual odometry / SLAM, Scene flow, Depth prediction and others

The choice of systems of coordinates in this work is in accordance with the specifica-
tions of KITTI MOT and 3D detection benchmarks.

The reference point (origin) is the camera position, i.e. the origin is moving with
the ego-vehicle. The actual coordinate system used is depicted in figure 3.2.

Figure 3.2: Camera and image coordinates.

The origin is at position (0, 0, 0)τ ∈ R3, y axis points vertically downward and z
axis represents depth (from the camera standpoint). The separate coordinate system
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3. Monocular 3D object tracking

is that of the image plane, also depicted above. Its origin is at the top left corner of
the image, with directions of the axes as indicated in the figure.

3.3 Bounding box representation

In this discussion, we employ the aircraft principal axes terminology, where x, y and
z axis from figure 3.2 are called pitch or transverse axis, yaw or normal axis and roll
or longitudinal axis respectively.

The corresponding Euler angles, i.e. rotations around the axes are denoted with
φ (pitch), θ (yaw) and ψ (roll). Positive direction of rotation is determined by right-
hand rule.

The location and orientation of detected objects in 3D world are described by way
of their bounding boxes, which are rectangular cuboids enclosing the object.

There are various ways to specify such a bounding box. We choose the following
set of parameters, guided by the KITTI labeling conventions:

• p = (x0, y0, z0)
τ ∈ R3 is the location of the bottom center of the cuboid in

camera coordinate system,

• θ ∈ [−π, π] - yaw, heading angle on the ground plane,

• w, h and l - width, height and length of the cuboid.

In KITTI MOT benchmark video sequences, as well as in 3D detection benchmark
images, roll and pitch are assumed to be zero, i.e. ψ = φ = 0. Therefore they don’t
feature in bounding box parametrization.

Furthermore, we introduce the observation angle α ∈ [−π, π], the relative rotation
of the bounding box with respect to the line connecting the camera (ego-vehicle)
with the detected object. Although this angle is not important in specification of
the bounding box, it is crucial in recovering the bounding box from the image patch
containing the observed object.
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3.4. Detection

Figure 3.3: Global (θ) and local (α) orientation of the object from the bird-eye view.
Image taken from [17].

The definition of α and relationship with heading angle θ, and their positive
orientations, are much clearer from the bird-eye view in figure 3.3. We can see that
the difference between θ and α, for the case in the figure where both α > 0 and θ > 0,
is in fact the ray angle (angle between positive z-axis and the ray which connects the
camera and the object center):

θ = α + arctan
(x
z

)
.

3.4 Detection

As mentioned earlier, monocular methods in 3D object detection are experiencing
rapid development. This development is primarily driven by advancements in deep
learning applications to computer vision domain, which has been nothing short of
magical throughout the last decade.

The aim in monocular 3D detection is to provide the 3D bounding boxes (intro-
duced in section 3.3) for all the relevant objects captured in the single image of the
scenery. The starting point in majority of the approaches is to use an accurate 2D de-
tector, i.e. to obtain 2D bounding box (a rectangle) for the relevant objects, thereby
for the moment ignoring depth and orientation estimation.

The seminal work in this regard is [22], Faster R-CNN (Regions with Convolutional
Neural Networks), a culmination of the R-CNN family of papers that changed the
landscape of object detection in computer vision. These papers cover the gradual
transition from traditional methods (template matching techniques using HOG and
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SIFT descriptors, SVM classifiers, selective search etc.) to completely neural net-
work based, accurate and blazingly fast end-to-end frameworks popular today. These
networks usually consist of:

• Region proposal algorithm to generate proposals of bounding boxes for possible
objects in the image. Prior to the final paper a selective search procedure was
used, but in Faster R-CNN this is a neural network as well, called RPN (Region
Proposal Network).

• Feature generation network. This is usually a convolutional neural network that
generates features for objects.

• Classification layer which assigns classes to objects.

• Regression layer which refines the coordinates of the bounding boxes.

Many monocular 3D detection methods use Faster R-CNN (or variation) in some way
or the other in their pipelines. They differ in their approach to solve the fundamental
problem of inferring depth (distance from the camera) of the object from single view
of the scene, i.e. arrive at 3D bounding box for the object, instead of the rectangle
obtained from Faster R-CNN framework (and its variations). We outline two popular
approaches:

• Distance estimation through 2D/3D constraints

• Direct generation of 3D proposal

In the first approach, consistency between 2D and 3D box is imposed in order to
derive the missing information. One observes that although the inference problem of
depth and orientation from single view is not well posed, the vehicles are rigid bodies
and as such can be constrained to particular geometric setups of known shape and
size. The pioneering work in this direction is so called Deep3DBox, [18]. In this work,
the local orientation (observation angle α from figure 3.3) and size of the object (w,
h and l of the bounding box) are directly regressed from the corresponding image
patch. The authors then leverage the assumption that 3D bounding box projected
onto the image fits the 2D box tightly to obtain the missing center location. This
amounts to all 4 sides of the 2D bounding box having at least one vertex of the
3D bounding box projected onto them (visualized in figure 3.4). The resulting over-
constrained optimization problem is tractable, and multiple solutions were proposed
over the recent years, improving on mentioned [18].
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3.4. Detection

Figure 3.4: Tight 2D/3D constraint. Image taken from [21].

A more direct approach traces its roots to the influential work of Uber Advanced
Technologies Group, [8]. Their method relies on densely (exhaustively) generating 3D
proposals for object bounding boxes using various priors (e.g. cars are constrained to
the ground-plane). Each proposal is then scored according to hand-crafted features,
and final result is obtained by the algorithm of non-maximum suppression (NMS) - a
simple technique of filtering proposals (of which there are possibly many) based on a
given criterion (in this case the score obtained from various features). It is worth not-
ing that non-maximum suppression is also employed in filtering the proposals in the
Faster R-CNN framework introduced earlier. We explain this procedure immediately.

Let us denote with P = {1, . . . , N} the input of the algorithm, i.e. set of N proposal
boxes. The set of their individual scores is in turn denoted S = {s1, . . . , sN}. Let
δ > 0 be a positive real which we call overlap threshold. The output of the algo-
rithm will be a set of filtered proposals F ⊆ P , initially empty. Define a function
0 ≤ IOU(i, j) ≤ 1 which takes two box proposals i and j and calculates their inter-
section over union (IOU), which is literally the quotient of the area of intersection of
two boxes over the area of their union. This function serves as a similarity measure
of two proposal boxes. Repeat as follows, until P = ∅:

1. Select the proposal i with highest score si, i = arg maxS, remove it from P
and add it to output F .

2. For every j ∈ P , remove j from P if IOU(i, j) > δ.

35



3. Monocular 3D object tracking

The monocular detection method used in this work is D4LCN from [9], recently
published at 2020 Conference on Computer Vision and Pattern Recognition. It is
currently the best performing purely monocular method on the KITTI 3D detection
benchmark.

This method is in line with the direct proposal generation approach, though it differs
greatly in its implementation details. We limit ourselves to a short summary - full
technical description of the method is beyond the scope of this text.

The key component in understanding depth in a given scene (and scene in general)
is a depth map, which encodes depth of various points of the image. The authors
choose fully monocular state of the art depth map generator (again a specialized
CNN system) from [10] called DORN. The example of a depth map is shown in figure
3.5.

Figure 3.5: Example of a depth map

Instead of using hand-crafted features to score proposals, D4LCN employs a novel
CNN pipeline to serve as feature extraction network. Rather than learning global
convolutional kernels and applying them to all images, kernels in this work are spe-
cific to each pixel, taking into account pixel’s location and depth (as retrieved from
the depth map).
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It is worth mentioning that availability of depth maps gives rise to another type
of monocular methods, called pseudo-lidar. Depth maps are transformed into a point
cloud similar to one produced by lidar devices. Then, state of the art lidar-based
CNN systems are applied. The problem with this approach is heavy reliance on ac-
curacy of depth maps. Although D4LCN (the method we employ) uses depth maps
as well, authors claim to have somewhat reduced this dependence.

3.5 Tracking

In this work, Kalman filter algorithm is used as a base of the tracking pipeline. More
complicated filtering algorithms are used in recent works, such as Poisson multi-
Bernoulli mixture filter in [23] and unscented Kalman filter in [19], but more com-
plexity does not necessarily lead to a significant increase in performance. Apart from
filtering, data association is important part of any tracking system - one has to match
predicted trajectories with new detection results at each frame.

Our choice of object state (in the context of filtering algorithm) is pretty standard.
Constant velocity model is assumed, and the object state at time k is set to be

xk = [xk, yk, zk, θk, lk, wk, hk, ẋk, ẏk, żk]
τ ∈ R10.

Object here (what we are trying to track) is in fact a bounding box. Its state is
described with vector xk, where x, y, z is the position of the bottom center of the
box, l, w, h are dimensions of the box and θ is the heading angle. Note that these
definitions are in line with the bounding box representation in section 3.3. Finally, ẋk,
ẏk, żk are velocities of the bounding box in respective directions. From the constant
velocity model, we derive object dynamics equations (regarded deterministically, i.e.
not including the noise terms):

xk = xk−1 + T ẋk,

yk = yk−1 + T ẏk,

zk = zk−1 + T żk,

where T = 0.1s is time interval between frames, specific of course to the KITTI
benchmark setup. Taking into account that in the case of constant velocity heading
angle and velocities do not change, we are ready to specify the object dynamics
equation of the Kalman filter:

xk = Fxk−1,
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where transition matrix F ∈ R10×10 is given by:

F =



1 0 0 0 0 0 0 T 0 0
0 1 0 0 0 0 0 0 T 0
0 0 1 0 0 0 0 0 0 T
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.

Detection module described in section 3.4 returns bounding boxes (specified in section
3.3) at every frame. We denote the measurement vector with yk for k ∈ N to be
exactly this detection output:

yk = [xk, yk, zk, θk, lk, wk, hk]
τ ∈ R7.

Furthermore, since measurement components correspond without any transformation
to state components, we have the measurement equation:

yk = Hxk,

with the measurement matrix H ∈ R7×10 given by

H =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0


.

This completes the specification of our Kalman filter setup.
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Chapter 4

Implementation and results

4.1 Detection module

This work was implemented in Python, and the implementation will be made pub-
licly available at [1]. Due to lack of appropriate hardware (strong GPU specifications
are required for the task) we use Google Colaboratory environment for running CNN
models (GPU: 1xTesla K80 , compute capability 3.7, having 2496 CUDA cores and
12GB GDDR5 VRAM).

In detection module, we use the models provided by the authors of D4LCN([9]) (Py-
torch as deep learning framework) and DORN([10]) (Caffe framework), pretrained on
the KITTI 3D detection and depth prediction benchmarks, respectively.

KITTI single image depth prediction benchmark consists of close to a hundred thou-
sand training images, providing ample training dataset. In contrast, KITTI 3D
detection benchmark training set contains merely 7481 images, due to arduous task
of correct data labeling. In case reader wonders if the size of this set is sufficient
to adequately train complex CNN systems used in D4LCN, such as backbone net-
work ResNet-50, the answer lies in the concept of transfer learning, which pervades
the modern deep learning methodology. Deep neural networks (e.g. ResNet-50) are
trained on huge datasets such as COCO by Microsoft with hundreds of thousands and
ImageNet with millions of very diverse images. Then final layers of these pretrained
models are additionally trained on the target dataset. The objective is to have ini-
tial layers of networks learning generic features such as edges, shapes, textures etc.
(transferable across multiple domains), while the final layers are specialized for task
at hand.
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These pretrained models showcased decent performance on the images from KITTI
multiple object tracking benchmark. The main drawback with respect to lidar based
detectors is high number of false negatives - while the provided detections turned out
to be solid input to our tracking pipeline, more distant or occluded vehicles often
remained undetected. The example of a vehicle occluded by a cyclist and not picked
up by D4LCN detector is displayed in figure 4.1.

Figure 4.1: Example of a missed partially occluded target. White van is not detected,
as well as the orange vehicle which is probably too far away.

Figure 4.2: Distant future from figure 4.1 (around 100 frames). White van is now far
away, but it is not occluded and we track it successfully.

4.2 Tracking module

Python library FilterPy was used to implement the Kalman filtering logic, outlined
in the previous chapter. While this is the main component of the tracking module, in
realistic tracking scenarios more than one object is encountered in each frame, hence
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this has to be accounted for.

Indeed, suppose that at time (frame) k − 1, mk−1 tracks are available. We denote
them with Sk−1, therefore:

Sk−1 = {x1
k−1, . . . ,x

mk−1

k−1 }.

Denote with Spk the predicted object tracks (states) at frame k. These are obtained
by propagating Sk−1 from k−1 to k using object dynamics equation, which amounts
to multiplying by matrix F .

On the other hand, denote with Dk a set of nk bounding boxes that are detected
at frame k:

Dk = {y1
k, . . . ,y

nk
k }.

In order to utilize this novel information, we update the object states (trajectories)
Spk via Kalman filtering equations derived in chapter 2. Important practical consider-
ation here is that of the data association problem. i.e. properly matching detections
with trajectories.

While Spk still has mk−1 tracks, this number is generally different than number of
detected objects in the current frame, nk. Vehicles enter and exit camera field of view
frequently. Spatial distance between individual objects may be small, and changes
from one frame to another abrupt. Apart from matching detections from the current
frame with the existing trajectories, identity of the vehicles throughout the duration
of a sequence should be preserved.

A convenient way to interpret this problem is as a bipartite graph matching. First, we
introduce the weighted bipartite graph on sets of predicted trajectories Spk (predicted
bounding boxes at frame k) and detection results Dk (observed bounding boxes at
frame k), where the weight between trajectory i and detection j is their intersection
over union IOU(i, j). A matching in a graph is a subset of its edges, where no two
selected edges share a vertex. We then solve the problem of maximum weight match-
ing, i.e. finding the matching where the sum of the weights is the greatest.

Maximum weight matching is a known variation on the assignment problem (un-
balanced bipartite graph, maximum weight instead of minimum cost), which is a
well studied example in linear programming. Polynomial solutions exist, such as the
Hungarian algorithm, which we employ in this work.

In case of missing detections in a given frame, existing track is propagated no more

41



4. Implementation and results

than 2 frames into the future, in hope for the next observation.

Finally, we address the problem of initializing the track. In order to decrease the
number of false positives, i.e. tracking non-existent vehicles, we consider the require-
ment of more than one successive observation for a given vehicle before confirming
a track. Number of observations required (duration of the confirmation phase) is
denoted with C in further text.

4.3 KITTI tracking benchmark

KITTI multiple object tracking benchmark contains 21 video sequences in a training
dataset, with the total of around 8000 frames and 30000 annotated objects. The test-
ing dataset is bigger with 28 sequences, but no labels are provided for them. While
the supported classes of objects are car, cyclist and pedestrian, we limit ourselves on
the car class in this work.

Track i (i.e. a bounding box) provided by the tracking algorithm is considered a
match, or a true positive if the IOU(i, j) with respect to the appropriate ground
truth track j is greater than 0.5. Total number of true positives in all frames of all
sequences is denoted TP. It is important to note that KITTI tracking benchmark
projects bounding boxes and takes intersection over union in the image plane, as
opposed to considering 3D overlap, whereas our algorithm provides 3D information.

Any unmatched tracks (according to the definition given above) are called false pos-
itives, while undetected ground truth tracks are called false negatives. Respective
total occurrences of those are denoted FP and FN. Amongst true positives, identity
switch happens when track is lost and then recovered but with changed identity (e.g.
vehicle was occluded for few frames and propagation into the future was terminated
due to lack of observations), or in case of collision with another track identities are
not adequately preserved. We denote total number of identity switches with IDS.

Then we can define the metrics used in the benchmark:

• MOTA (Multiple Object Tracking Accuracy) aims to capture the overall perfor-
mance of the tracking algorithm taking into account multiple sources of errors
- false positives, false negatives and identity switches:

MOTA = 1− FN + FP + IDS

GT
, (4.1)

where GT denotes the total number of ground truth objects.
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• MOTP (Multiple object tracking precision) measures the average precision of
the matched true positives. Let M be the set of all ordered pairs of (t, g), where
t is true positive track, and g is its ground truth counterpart. Then |M | = TP ,
and we define:

MOTP =

∑
(t,g)∈M IOU(t, g)

TP
.

Since t is true positive, 0.5 ≤ IOU(t, g) ≤ 1 and hence 0.5 ≤ MOTP ≤ 1.

• Ground truth trajectory is classified as either mostly tracked (successfully tracked
for at least 80% of its life span), mostly lost (tracked for under 20% of its lifes-
pan) and partially tracked (any other track). Proportions of these with respect
to the total number of ground truth tracjectories are denoted MT, ML and PT.
Identity switches are not taken into account in these metrics.

Metrics introduced here can be evaluated directly on the training set of KITTI track-
ing benchmark, due to existence of labels. To measure performance on the test set,
scientific research projects (not students who are writing master’s degree thesis) are
allowed to upload their results on the KITTI server, with outcomes displayed in pub-
lic benchmark.

To compare monocular detection with lidar-based version, we adopt the detection
results on KITTI tracking dataset from recent state of the art lidar-based detector
[26]. We then use both detection methods in conjunction with our tracking module
to obtain the following results on the training dataset:

Detection module C MOTA MOTP MT PT ML ID switches
Monocular 3 0.633486 0.871845 0.3 0.54 0.16 7
Monocular 2 0.657250 0.868709 0.34 0.53 0.13 10
Monocular 1 0.673120 0.863316 0.45 0.45 0.1 243
Lidar-based 3 0.797175 0.868170 0.74 0.22 0.04 13

Table 4.1: Results on KITTI tracking benchmark training dataset

Detection module C FP TP FN Recall Precision
Monocular 3 904 17023 7911 0.68 0.95
Monocular 2 1003 17794 7237 0.71 0.95
Monocular 1 1271 18838 6354 0.75 0.94
Lidar-based 3 1667 25653 3212 0.89 0.94

Table 4.2: Subset of confusion matrix for different detection modules
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4. Implementation and results

While not state of the art (which is approximately 90%), MOTA values above
60% (for the length of confirmation phase C = 1 we have MOTA = 67.3%) indicate
solid overall performance, and MOTP value of ≈ 87% suggests that results on true
positives are non trivial, i.e. IOU overlap is on average significantly bigger than 50%.
Number of identity switches is very low when duration of confirmation phase is more
than 1 frame.

Furthermore, we conclude that tracking module is sensible, due to admirable per-
formance in conjunction with lidar-based detection method.

In order to highlight the main disadvantage of monocular detection performance
in comparison with lidar-based method, we show the important elements of confu-
sion matrix in table 4.2. The recall value, i.e. proportion of retrieved ground truth
objects, is much bigger for the lidar-based method. It missed 3212 targets (FN),
whereas monocular algorithms missed twice as many. Taking into account that both
methods achieve high precision (high TP to TP+FP ratio), we conclude that missing
targets is main relative drawback of the monocular method.

Best performing monocular setup according to MOTA and MT metrics is the one
with C = 1 - every observation, if unmatched with existing track, is used to initial-
ize a track. While this approach alleviates the problem of false negatives, we notice
that it has a high number of identity switches. Although MOTA metric somewhat
downplays the phenomenon of an identity switch (there are very few vehicle trajec-
tories in comparison with vehicle instances, thus false positives/negatives should not
be counted on an equal footing with identity switches in eq. (4.1)), in practice it is
unquestionably an inconvenient event. It obstructs fusion of the information inferred
from images with data from other sensors (e.g. radar). Furthermore, it impedes the
overall performance because every new track initialization generally requires multiple
frames.

In the end, we show some qualitative results as well in figure 4.3. The images are
spaced about 5 frames one from the other. While tracking in the example is mostly
sound, we can confirm aforementioned areas of improvement, such as losing the black
car on the edge of the field of view, and what seems to be an identity switch in later
frames.
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4.3. KITTI tracking benchmark

Figure 4.3: Output of the tracking algorithm. Time flows top to bottom.
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Sažetak

Neuralne mreže i duboko učenje su moćan i brzo rastući alat prilikom analize slika
prometa, čemu pomažu brojni javno dostupni resursi za treniranje i testiranje neuron-
skih mreža na velikim skupovima podataka kao što je KITTI. To je moguće iskoristiti
i povratne podatke iz CNN sistema za raspoznavanje objekata (kamera je montirana
na vozilu) poslati u odgovarajući algoritam za praćenje u realnom vremenu. Ovaj rad
koristi recentnu metodu ([9]) dobivanja detekcija vozila prisutnih na slici i Kalmanov
filter kao algoritam praćenja. Testiranje se provodi na KITTI benchmarku.

U prvom poglavlju navodimo neka bitna svojstva vǐsedimenzionalne normalne dis-
tribucije, s naglaskom na Bayesov teorem za normalnu razdiobu, koji se koristi u
izvodu Kalmanovog filtra.

U drugom poglavlju, nakon kratkog uvoda u podrućje algoritama za praćenje i
odgovarajuću terminologiju, koristimo bayesovski pristup kako bismo dobili općenito
rekurzivno rješenje za praćenje jednog objekta. Zatim diskutiramo i detaljno izvodimo
Kalmanov filter, a kraće komentiramo i njegove bitne ekstenzije, prošireni Kalmanov
filter i unscented Kalmanov filter.

U trećem poglavlju dajemo kratki osvrt na moderne metode raspoznavanja vozila
i njihovo praćenje, te prezentiramo našu metodu.

U četvrtom poglavlju navodimo neke implementacijske detalje i iznosimo rezultate na
KITTI podacima. Glavni problem sustava u odnosu na ekvivalent baziran na lidaru
je manji broj deketiranih objekata. Usprkos tome, rezultati su solidni.





Summary

Neural networks and deep learning are a powerful tool for detection of vehicles in
camera images, growing steadily due to advance in ideas and large-scale public bench-
marks such as KITTI. In principle, this can be exploited by using output of appro-
priate deep CNN system and feeding it as measurements input to the object tracking
algorithm. This work combines state of the art monocular detection system ([9]) with
the Kalman filter algorithm into multiple object tracking pipeline. The performance
is tested on public KITTI benchmark video sequences.

In the first chapter we review some important properties of multivariate normal
distribution, with the stress on the Bayes’ theorem for Gaussian densities, which
is empoyed in the derivation of the Kalman filter in the subsequent chapter.

In chapter 2, after giving some introduction to object tracking problem and terminol-
ogy, we first consider more general tracking setup employing Bayesian probabilistic
framework. Then we give detailed derivation of Kalman filter, and overview of its
notable variations, extended Kalman filter and unscented Kalman filter.

In chapter 3 we shortly review state of the art object detection and tracking sys-
tems, and present our method.

In chapter 4 we remark some implementation details and report results of our method
on the KITTI tracking benchmark. While it achieves solid performance, detector has
too many false negatives (missed target) to achieve state of the art results.
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