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guidance, patience and support.

I thank my family for all their encouragement throughout my uni-

versity years.

Last but not least, I thank my friends (in alphabetical order)

Ivana, Marija, Marta and Željka.



Izranjajuća gravitacija

Sažetak

Opća teorija relativnosti opisuje gravitaciju kao zakrivljenost prostovremena, glatke

mnogostrukosti s Lorentzovom metrikom. Otkriće da crne rupe zadovoljavaju zakone

analogne zakonima termodinamike te da zrače termalnim spektrom bacilo je dru-

gačije svjetlo na opću teoriju relativnosti i utvrdilo vezu izmed̄u opće relativnosti, ter-

modinamike i kvantne teorije. Ozbiljno shvaćanje te veze dovelo je do pokušaja da se

gravitacija opiše kao izranjajući fenomen, rezultat kolektivnog gibanja nekih trenutno

nepoznatih mikroskopskih stupnjeva slobode, a paradigma je dobila ime “izranjajuća

gravitacija". U ovom radu dan je pregled različitih modela izranjajuće gravitacije, kao

i ograničenja koje takva teorija mora zadovoljavati kako bi uspješno reproducirala

opću teoriju relativnosti na makroskopskoj skali. U radu razmatramo različite pris-

tupe paradigmi izranjajuće gravitacije na primjeru kauzalne teorije skupova gdje se

prostorvrijeme uzima kao izveden koncept koje je rezultat uprosječivanja diskretnog

skupa točaka izmed̄u kojih postoje kauzalne relacije, Weinberg-Wittenovog teorema

koji postavlja ograničenja na ideju da je graviton, medijator gravitacijske interakcije,

"izranjajuć" i ulogu termodinamike u općoj teoriji relativnosti u sklopu crnih rupa, ali

i horizonata općenito.

Ključne riječi: opća teorija relativnosti, kauzalna teorija skupova, Weinberg-Wittenov

teorem, termodinamika crnih rupa, termodinamika prostorvremena



Emergent Gravitation

Abstract

The general theory of relativity describes gravitation as a curvature of spacetime,

smooth manifold with Lorentzian metric. A different light was shed on the theory

with the discovery that black holes behave as thermodynamic objects, satisfying laws

analogous to the one of thermodynamics and radiating with a thermal spectrum,

confirming that gravitation, thermodynamics, and quantum theory are intimately

related. Taking this connection seriously led to attempts, united under the name

“Emergent Gravitation", to describe gravitation as an emergent phenomenon, a result

of collective motion of some yet unknown microscopic degrees of freedom. In this

work, we give an overview of various models of Emergent Gravitation, as well as

the constraints such models should satisfy to reproduce General Relativity at a larger

scale. We consider different lines of thinking in the Emergent Gravitation approach

by studying Causal Set Theory as a representative of Emergent Gravitation models

where spacetime is considered as a derived notion, resulting from coarse-graining of

a discrete set of points with causal relations between them, Weinberg-Witten theorem

as a constraint on an idea that graviton, a mediator of gravitational interaction is

emergent, and the role of thermodynamics in General Relativity in the scope of black

holes and their horizons, but also horizons in general.

Keywords: general relativity, emergence, causal set theory, Weinberg-Witten theo-

rem, black hole thermodynamics, spacetime thermodynamics
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7.4.3 Noetherin teorem i zakoni očuvanja . . . . . . . . . . . . . . . 181

7.4.4 QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4.5 Gravitacija . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.6 Dokaz Weinberg-Wittenovog teorema . . . . . . . . . . . . . . . 188

7.4.7 Lorentz kovarijantnost i baždarne transformacije . . . . . . . . 191

7.5 Termodinamika i opća teorija relativnosti . . . . . . . . . . . . . . . . . 192
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1 Introduction

Emergent gravitation (EG) is an idea that General Relativity (GR) is an effective the-

ory, similar to hydrodynamic or thermodynamic description, underlined by a novel,

more fundamental, yet unknown microstructure. It is novelty in particular that dis-

tinguishes EG viewpoint from various approaches trying to quantize gravity.

The reason why one would change the perspective on GR in the first place is a

number of obstacles faced from both observational and theoretical standpoint. On

the one side, although GR is a very successful theory capable of explaining a great

number of gravitational phenomena, there is an increasing number of observations

GR fails to capably address, such as accelerated expansion of the universe unless

large quantity of some non-Standard Model type of matter and energy is considered.

On the other side, GR seems to fail to be quantized in any standard way. Motivated

by these issues, there are many possible alterations and extensions of GR, and EG

approach may be considered as one of them.

The paradigm of EG is motivated by the fact that some properties of gravitation

resemble the behaviour of thermodynamic systems. One of the first such indications,

appearing in 1970s, is the similarity between the laws describing black holes, called

the four laws of black hole mechanics and the four laws of thermodynamics. It was

first shown by Hawking that area of the event horizon of a black hole can never

decrease. This is analogous to the second law of thermodynamics stating that the

entropy can never decrease. Soon after, Bardeen, Carter and Hawking introduced

the zeroth, the first and the third law. They showed a certain quantity called surface

gravity is constant for stationary black holes, similarly to how temperature is constant

in equilibrium in thermodynamics. Moreover, the first law describing how parameters

of the black hole change bears resemblance to the first law of thermodynamics, a

version of conservation law. The third law states that the surface gravity cannot be

reduced to zero by any finite number sequence of operations. However, the four laws

were seen to be only formally analogous to thermodynamics, since black hole, as

perfect absorber, can only have a temperature of absolute zero. This changed after

Hawking showed that black holes radiate with a black body temperature, solidifying

the analogy to equivalence.

Further property suggestive of emergent nature is the universality of gravity. It
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attracts all bodies carrying energy with the same strength, i.e., irrespectively of other

properties the bodies might have. This reminds of the situation in molecular physics

where all molecules attract one another due to dipole moments induced by fluctua-

tions of charge distribution in the molecules. Hence, the idea is that attractive nature

of gravity is caused by similar fluctuations in something.

Another reason is that GR is perturbatively non-renormalizable. The situation

is similar to the case of Fermi interactions explaining beta decay, which was later

replaced by a theory of weak interactions. In addition, a common result obtained

by linearizing classical scalar field theory around some non-trivial background is

emergence of "effective Lorentzian geometry" of a curved spacetime, which is in the

premise of “analog models" of general relativity. In a similar manner, as showed

by Sakharov, one-loop effective action of quantized matter fields propagating on

Lorentzian manifold considered as background contains a term proportional to

Einstein-Hilbert action. Simply put, dynamics of general relativity emerges from

quantum field theory. Thus, there is wide variety of indications hinting towards grav-

ity as emergent phenomenon.

That being said, theories of EG are concerned with the way the fundamental

degrees of freedom interact to produce GR. The models can be sorted into two large

groups based on whether or not this micro-constituents live in some ambient space or

not. Models also differ depending on which aspects of GR are emergent — spacetime,

metric, or dynamics of spacetime, although the latter kind is commonly not classified

as emergent theory. The classification is not very sharp since the constituents might

have some properties of the macroscopic structure one is trying to reproduce.

On that account, it should be pointed out that emergence is not a new concept,

nor it is tight solely to physics. As highlighted by Anderson’s 1971 paper “More is

different", there are new emergent laws governing dynamics of the basic constituents

and new modes of interaction at every level of structure. The idea originated in

biology and is prevalent in condensed matter physics. Consequently, ideas in EG are

largely influenced by the concepts from this area of research. This is the rough idea

behind EG viewpoint.

This paper provides an overview of different EG models, but it does not focus

on their methods and ideas in much detail. Instead, certain specific results and

constraints will be considered, as representations of different lines of thinking in EG.
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Particularly, we will discuss the Causal Set Theory as a good example of EG model

in which spacetime is considered emergent. Next, we will look at Weinberg-Witten

theorem as a constraint of the kind of particles can live on flat spacetime. Finally, we

will rederive some of the important results relating GR and thermodynamics.

The paper is organized as follows. In Section 2 we review foundations of Gen-

eral Relativity by following Ehlers-Pirani-Schild formalism, physically motivating the

mathematical structures of General Relativity by considering the behaviour of light

and matter. The emphasis is on the implications the choices that have been made to

construct the theory may have on some of the shortcomings of General Relativity, sig-

naling the need for a new approach. This is where the Emergent Gravity paradigm

comes into play. We clarify what emergence is (not) using various examples from

condensed state physics and put forward the hints that point towards emergent na-

ture of gravity. At the end of the section we give an overview of EG models and

explain the constraints they should satisfy to have a chance in reproducing GR.

Section 3 describes Causal Set Theory (CST) approach without much detail. CST

is based on hypothesis that the structure of spacetime is discrete. As the claim cannot

be verified at this point we first provide theoretical arguments why this should be

so. Then the main premise of CST is put forward. Namely, that the causal order

is fundamental and spacetime consists of points among which exist causal relations.

The smooth structure called spacetime is just coarse-grained version of causal set.

Lastly, we also very briefly discuss the dynamics of causal set

Section 4 is dedicated to Weinberg-Witten theorem. It constraints spin of particles

based on symmetry considerations. We first review the important concepts needed

to prove the theorem and discuss its implications on graviton, hypothetical mediator

of gravitational interaction. The consequence of the theorem is that graviton on flat

spacetime cannot be an emergent particle in a sense that it cannot be a composite

particle of other matter fields.

The goal of section 5 is to explain the relationship between thermodynamics and

General Relativity. We derive the four laws of black hole thermodynamics and give

an overview of the many versions of the derivation showing that the theory is con-

sistent and the four laws are not just accidental. We also derive Hawking radiation

using WKB approximation and Hawking temperature of black holes using path inte-

3



gral formulation. Next, we discuss how well the analogy between black holes and

thermodynamics is established. More precisely, we discuss if one can really view the

laws of black hole mechanics as extension of thermodynamics to black holes. Finally,

following Jacobson, we show that thermodynamics is not constrained only to black

holes. The Einstein’s field equations can be obtained from geometrical considerations

of the geodesics, the second law of thermodynamics and its relationship to the area

of the horizon, and Clausius’ relation.

The final section contains summary of the obtained result and outlook.
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2 Emergent nature of gravitation

In this section the goal is to explain what is understood under the term “emergent

gravitation", providing context for topics that will be discussed in detail below. The

discussion follows [1] and [2]. First, we briefly review the foundations of general

relativity, current description of gravitation, mentioning along the way some prob-

lems from both theoretical and experimental standpoints, which signal possible need

for modifications of current theory. One of such alternative approaches is given by

theories which can be grouped under the name “emergent gravitation". We will clar-

ify what it means for gravitation to be emergent and the properties which suggest

that this may be the case. Finally, we give an overview of models which classify as

emergent.

General Relativity is a description of spacetime, a four dimensional manifold with

a Lorentzian metric on top describing gravitational field [3]. We start by explaining

observations which lead to portrayal of gravitation as metric theory. This will be

done by presenting the results of [4], referred to as EPS (based on the names of the

authors of the article) in the text, a typical constructive approach to the subject.

EPS take light rays and freely falling objects described classically as fundamental

entities. Light rays are treated as small packets of electromagnetic waves, and objects

refer to any body whose dimension and structure can be neglected in normal circum-

stances. When referring to “particle" in the text, we mean a worldline of a freely

falling object as explained above. Light rays and particles propagate in otherwise

empty region of spacetime. One starts from the following axioms,

• Set of eventsM with set of worldlines of light rays L and particles P is consid-

ered as given.

• The wordlines define differential topology onM. Topology is defined because

the observed light and particle worldlines are continuous, i.e., light rays and

particles don’t disappear at one point and appear at the other, but move along

continuous trajectories. Next, light ray messages between particles P and Q

are assumed as smooth and can be used as “radar soundings", assigning four

coordinates to each event. Once the radar coordinates are defined one may use

any compatible chart, providing differential structure to the topological space.

5



Thus, light rays and particles naturally provide topology and smooth atlas, making

the set of eventsM into smooth manifold by definition. Furthermore, the light rays

determine the causal structure, light cones i.e., which events can influence each other

as well as relations measured by clocks, rods and lengths of four-vectors.

• Propagation of light determines quadric cone, which we call a light cone, in

tangent space of each point of M. Such manifold, where at each point there

is a light cone singled out is said to have a conformal structure, an equivalence

class of metrics proportional to one another, so they determine the same light

cones. The conformal structure is assumed to be of Lorentzian signature. The

local causality established by light rays is observed as local Lorentz invariance.

• As a result of conformal structure one may distingush between curves and vec-

tors that are timelike, lightlike and spacelike at a point. This classification

comes from the way light rays at an event separate vectors into different classes,

i.e., from topology. It can then be proved that each class of vectors have the

norm one would expect. Furthermore, it follows that tangent vector of a light

ray is a null vector, and accordingly, the light rays are null curves. What’s more,

it is proved that null curves are null geodesics of any representative of the con-

formal structure.

The results so far uniquely determine differential and causal structure of set of events.

To describe matter one needs additional structure.

• Out of all possible conformal classes, particles belong to singled out family of

worldlines, to family of timelike curves. In other words, particles will always

move along timelike trajectories, and not any other. What one should recognize

is that no restrictions are imposed on the particle in the previous statement, i.e.,

particle carrying electric charge for example, moves along a timelike curve in

the presence or absence of electromagnetic field.

• There is a class of particles, uncharged under any “non-geometrical" field,

whose family of curves behaves in the second-order infinitesimal neighbour-

hood of each point of M like the straight line1 of an ordinary projective

1To be more precise, what is understood here is that for each event e inM there exists a coordinate
system xµ defined in the neighbourhood of e such that any particle P through e, d

2xµ

dλ2 |e = 0, where λ
is parameter of the curve. Such coordinate system is said to be projective at e

6



four-space. In other words, trajectories of freely falling objects are autopar-

allels2, defining a projective structure of connections — an equivalence class

of connections which refer to the same worldline. Each representative of the

class parametrizes the same autoparallel differently (and there is no preferred

parametrization). The postulate is called (weak) equivalence principle.

We now have a projective structure imposed by autoparallel curves fixing the free-fall

of objects, and conformal structure required by light rays, defining a family of null

geodesics determining a causal structure and measurement.

Next, motivated by the fact that a massive particle, although slower then light,

can chase a photon arbitrarily close, or in other words, trajectories of particles fill up

the light cone, EPS demands that conformal and projective structure are compatible,

meaning that Lorentzian metric underlies both conformal and projective structure.

• The compatibility requirement implies that autoparallels of projective equiva-

lence class of connections and family of null geodesics of the conformal equiv-

alence class of metrics are related, i.e., null geodesics must be autoparallels of

the connection.

Space endowed with compatible conformal and projective structure is a Weyl space.

From these data — the fact that null geodesics determined by conformal structure

belong to the class of geodesics determined by projective structure — it is possible to

derive existence and uniqueness of affine connection, such that its geodesics coincide

with geodesics of projective structure and the properties of vectors which are null

with respect to conformal structure are conserved under parallel transport defined

by affine structure. Consequently, one may look at conformal structure and affine

connections instead of projective structure, but it is important to point out that in

order to get to affine connections, one uses both conformal and projective structure.

Affine structure differs from projective structure in that the geodesics carry affine

parameters, defined up to a linear transformation.

Finally, to obtain Lorentzian spacetime from Weyl spacetime, EPS impose one final

condition by requiring that time runs equally fast along all paths. This is exclusion of

the so-called second-clock effect.
2In [4], the curves are called geodesics, but here, we will refer to geodesics as both the straightest

and the shortest lines, while autoparallels are the straightest lines, so one does not need a metric to
define them.
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• To rule out second clock effect one imposes a condition that magnitude of a

vector under parallel transport is path independent.

There are also equivalent conditions of ruling out the second clock effect using Ein-

stein simultaneity [5].

It is observed that “speed" of time is independent of the path. That is, the time

interval depends only on the taken path. The absence of second clock effect implies

that there exist a single Lorentzian metric3, unique up to a constant positive fac-

tor, compatible with conformal and affine structure — Levi-Civita connection (also

called Christoffel’s symbols). In other words, Weyl’s spacetime reduced to Lorentzian

spacetime [4][6][7].

In summary, we have shown that structure of spacetime follows from properties

of massive particles (affine connections) and light rays (metric). Due to the compat-

ibility condition affine connections are Levi-Civita connections of metric. As a result,

metric alone determines the causal structure and free fall. With this setup, the metric

field is used to encode gravitational effects. This is only kinematical description. To

obtain dynamics of the metric field from kinematics given above one needs to provide

Hamiltonian or Lagrangian. One way to obtain it is by postulating diffeomorphism

invariance, eliminating the possibility of nondynamical objects.

Nevertheless, the requirement of diffeomorphism invariance does not exclude the

existence of additional dynamical fields, besides the metric field. We have shown

that the response of matter to gravitational field is through metric, but this does

not imply that the reverse is also true, i.e., that the response of gravitational field to

matter occurs only through metric. Thus, one should add another postulate requiring

that gravitational dynamics depends only on metric. As a result, Lagrangian density

of gravitation is given by Ricci scalar (to the lowest order), and varying the action

with respect to the metric yields Einstein’s field equations. Such theory reproduces

Newton’s law in weak-energy limit, Kepler’s laws related to the planetary motion,

and is consistent with the observations in the Solar System [8]. On the other hand,

there are number of problems that the theory fails to explain in a meaningful way.

Before addressing them, let’s reflect back and emphasize choices that were made.

This will make it easier to understand from where the discrepancy may be coming

3The proof consists of using the fact that affine structure determines curvature tensor, which is
Riemannian only if the second clock effect is ruled out.
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from.

One of the things that should not be overlooked is the choice of light rays as

probes, treated classically. Electromagnetic field is the only type of field found in

nature in classical field theory so there is not much to choose from in the first place.

What we probed was the background on which light propagates. From the formal

point of view, it is a structure of smooth manifold that underlines electromagnetism.

In other words, smooth manifold provides enough structure to put tensor fields, such

as electromagnetic four-potential on it, although one usually does not speak of it

when discussing electromagnetism. The role of the background is most prominent

in the covariant description of matter4 Lagrangian. Maxwell’s equations describing

dynamics of electromagnetism besides the four-potential and its derivatives contain

also metric coefficients, describing the structure of the background on which the

electromagnetism is formulated. Thus, another important point that was only im-

plied is that the probe (light) must couple to whatever we are trying to describe

(background). In essence, the behaviour of light depends on the choice of back-

ground. Furthermore, since the metric coefficients appear in the matter Lagrangian

one gives the background its own dynamics chosen so that it captures gravitational

effects in the curvature. Hence, the background itself carries a geometric structure,

only determined by matter chosen to probe it.

As a consequence, Lorentzian metric is a geometric structure in line with

Maxwell’s theory. Turning the argument the other way around, if one starts with

Lorentzian spacetime, the matter coupled to it will not show phenomena like bire-

fringence for example, where different polarization states of photon propagate dif-

ferently, since such behaviour would require a tensor field of rank four5[10][11].

These kind of effects are possible in some anisotropic materials, implying non-linear

electrodynamics, but also in quantum vacuum which acts as a dispersive medium

[9][12][13].

What’s more, as a consequence of the Lorentzian signature of the metric the ob-

served matter field dynamics coupling to it is predictive6, i.e., initial conditions are

4Matter refers to non-gravitational fields. In the classical picture that is only electromagnetism.
5It should be pointed out that birefrigence does not necessarily lead to change of the tensorial

structure. Moreover, in some cases it leads to bimetricity, where different photon polarization see
distinct metrics [9]

6Requirement of predictivity can be formulated as algebraic condition. Namely, that principal
polynomial obtained from matter action is hyperbolic. In case of metric this condition mandates
Lorentzian signature [14].

9



translated into later values of the field equations, as should be the case for any sen-

sible theory. For example, electromagnetism formulated on a manifold with Rieman-

nian metric would not be a predictable theory [15][14]. The point is, geometric

structure of spacetime is constrained by the matter that interacts with it and vice

versa.

Moreover, it was propagation of light that made us perceptive of metric, but it has

even more prominent role when it comes to massive particles. All known matter can

be divided into two large groups: bosons, described by tensorial fields and fermions,

described by spinor fields. The latter can only be defined with the help of metric7. In

summary, all type of matter we observe stems from the same geometric structure as

required by electromagnetic theory.

Further remark concerns the compatibility condition. It should be emphasized

that connection is a structure governing free fall, independent of causal structure

determined by metric. It is only after imposing compatibility condition, motivated

from the standpoint of physics, such that null geodesics have to be autoparallels of

the connection, that the metric connection specializes to Levi-Civita connection. A

priori, these structures are independent. Although we have physical motivations for

imposing compatibility, restrictions on structures should follow from the dynamics,

not being fixed in advance.

The next note is about the choice of dynamical variable. We have chosen only

metric as a dynamical variable, while connection which governs free fall was given

no dynamics. However, it was shown that in the case where metric is minimally

coupled to matter, and both connection and the metric are treated as dynamical

variables, the Levi-Civita connection is a result of the field equations. Thus, when

coupling is minimal, it does not matter whether we fix the metric and connection

a priori, or treat both as dynamical variables, although the latter is a more honest

approach. What’s more, although the metric is a dynamical variable it does not

mean it is a fundamental degree of freedom, only that it naturally emerges under the

circumstances explained above.

This concludes discussion about theoretical framework of General Relativity. We

now put forward some of the shortcomings of GR. It fails to capably address galactic,

7The fastest way to see this, and avoid too much technicality, is to remember that spin represen-
tation is given by representation of Clifford algebra, as for example Dirac (gamma) matrices γµ. To
generate the Clifford algebra they must satisfy {γµ, γν} = 2gµν .
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extra-galactic and cosmic dynamics, like the observed accelerated expansion of the

universe unless a huge quantity of some non-Standard Model type of matter-energy

and energy is considered, called “dark energy" [7]. To be precise, approximately 83%

of matter and 95% of total mass-energy in the universe is of the unknown type [16].

Further problems are related to the standard Big Bang cosmological model based on

GR and SM. Namely, the flatness problem, stating that the universe is flat, as con-

firmed by for example WMAP. The problem is that if universe started as not precisely

flat, the curvature would increase with time, making universe today strongly curved.

In other words, to obtain the observed flat universe one needs to extremely fine tune

the initial conditions in the standard big bang model, without physically motivated

explanation. Next is the Horizon problem, describing the fact that although the uni-

verse consists of causally disconnected regions, measurements of COBE and WMAP

show that temperature of black body radiation of these regions is finely tuned. To

restate, the universe is assumed to be homogeneous, yet it consists of regions that are

not in causal contact so it is not clear how homogeneity could be accomplished [17].

The third is the Monopole problem. The standard Big Bang model predicts a large

number of massive magnetic monopoles, which should be observed today. However,

this is not the case [18]. This leads to a conclusion that GR and Standard Model of

particles are unsatisfactory in describing the universe in extreme energy-curvature

regimes. The outcome may not be surprising, since GR was formulated by observing

matter inspired by classical electromagnetism, which brings us to our next point. GR

is a classical theory and currently, there is no successful theory describing gravitation

as a quantum theory. For one, the methods using which all other theories have been

successfully quantized failed when applied to gravity. One of the problems is that the

quantization of field theories requires a fixed background, while in GR spacetime it-

self is a dynamical variable, there is no fixed background. Although there are ways to

deal with such obstacles, they ultimately lead to a theory that is non-renormalizabile

at higher orders, implying that the theory is unkwnown at the Planck scale.

Motivated by the above issues, there are many possible alternations and exten-

sions of GR. On the one hand, one may be prompted to examine the geometric

structure of spacetime, since a tensor with more degrees of freedom then Lorentzian

metric may allow one to describe matter with different causal behaviour then elec-

tromagnetism. One may also add other dynamical variables, like the connection
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to Lagrangian, known as Palatini formalism. Then there are Extended Theories of

Gravity, modifying the field equations by coupling fields non-minimally, or adding

higher order derivatives of the metric. One could also add higher order curvature

terms, since there is no reason to restrict the gravitational Lagrangian only to linear

function of Ricci scalar, which is in the domain of f(R) theories, etc.

The focus of this study is to look at models of emergent gravitation, whose ap-

proach is to consider gravity as a macroscopic, coarse-grained theory such as ther-

modynamics or hydrodynamics. The basic premise is that the spacetime — which

includes all the structures, topology, differentiable structure and metric — is deriv-

able from some more fundamental theory, ultimately leading to new structures and

providing answers to current discrepancies as the one mentioned.

Emergence Emergence can be summed up as “more is different". As pointed out by

[19], the behaviour of large and complex systems of elementary particles cannot be

understood in terms of a simple extrapolation of the properties of a few particles, but

at each level of complexity, entirely new structures appear, unexpected by the under-

lying theory. As an example, consider QED which describes how electrons interact at

the most fundamental level. However, in 2D crystal where one has 1020 of pairs of

electrons, and interaction of each of these pairs is dictated by QED, one finds a new

phenomena, not predicted by QED in an obvious manner, Fractional Quantum Hall

Effect (FQHE), where excitations of collective state of electrons behave as quasipar-

ticles of fractional charge, and the reason for this is not because QED is lacking in

some way. Discovering FQHE did not introduce any amends into QED. What’s more,

if one starts from FQHE, a better understanding of quasiparticles is gained only after

electron is discovered. In other words, quasiparticles are not made of electrons, but

are rather collective motions of electrons.

A similar example is Euler’s equation, ∂2
t ρ − v2∂2

xρ = 0, describing small defor-

mations, such as waves, in a (zero temperature) liquid, where ρ is density of the

liquid. The underlying entity of liquid waves are atoms, described by Schrödinger

equation. Moreover, the dynamics of atoms depends on how they are organized in

the ground state. When they are organized into crystal, a solid instead of liquid,

their deformations are described by a different equation, namely, Navier’s equation

∂2
t u

i − T iklj ∂k∂lu
j = 0, where ui(x, t) describes the local displacement of the solid
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[20]. Thus, it is difficult to conclude what is the underlying structure and how it

behaves based on emergent phenomena.

The examples of emergence are not tied to condensate matter physics but also

appear in nuclear physics, chemistry, or biology [19]. In short, they can be charac-

terized as a collective behaviour not obvious from the fundamental laws.

In a similar manner to the examples above, emergent gravitation is a viewpoint

considering Einstein’s equations as non-fundamental, analogous to the Euler’s

equation for example, with different underlying degrees of freedom. We start by

giving some examples of the definition.

“...the basic picture is that gravity, and perhaps space, or spacetime themselves

are collective manifestations of very different underlying degrees of freedom.” [2]

“... space and time are emergent concepts, i.e., not present in the fundamental

formulation of the theory but appear as approximate semiclassical notions of

macroscopic world...” [21]

“...we will intend as emergence of a given theory as a reorganization of the

degrees of freedom of a certain underlying model in a way that leads to a regime

in which the relevant degrees of freedom are qualitatively different from the

microscopic ones.” [22]

“The alternative viewpoint is that General Relativity is a low energy effective

theory, and the metric and connection forms are the collective or hydrodynamic

variables of some unknown microscopic theory. These variables will lose their

meaning at shorter wavelengths and higher energies.” [23]

“...these approaches take gravity to be an intrinsically classical, large-scale phe-

nomenon arising from the collective action of the dynamics of more fundamental,

non-gravitational degrees of freedom.” [24]

The main takeaway of the examples from condensed state physics and the char-

acterizations of emergent gravitation provided above is that

13



• Emergence is related to underlying “microstructure", i.e., the emergent system

is composed of more fundamental degrees of freedom, obeying different laws.

• It is unlikely for emergent phenomena to be predicted before it is observed.

Even if the fundamental degrees of freedom are known, the emergent phenom-

ena is not likely to be “derived" from the properties of microtheory.

Consequently, [1] proposes the following definition of emergence,

We call a theory M1 underlying a theory T , type I microtheory to T if and only if it is

inspired from T (for instance through discretization, quantization or renormalization).

An underlying theory M2 to theory T is called a type II microtheory if and only if it is

not directly inspired or motivated from T .

The structure linked to a microtheory is called microstructure.

A theory is called emergent if and only if there exists an underlying type II microtheory

to it.

“Motivated from T" in the definition above, for the case of gravitation does not ask

whether or not the produced spacetime coincides with the general relativistic space-

time. That is, just because the theory T may be drastically different from General

Relativity, does not automatically make it emergent in the sense of type II theories.

It should also be emphasized that at in certain cases discretization, quantization

and renormalization may produce theories that classify as type II. We will explore

this further below.

Moreover, we note that for example [2] differentiates between models based on

the existence or lack of a medium in which the underlying degrees of freedom live,

focusing more on the question which structures emerge. The emphasise does not

seem to be on how and whether these degrees of freedom are fundamentally dif-

ferent or not. As a result, [2] takes into account some emergent models that are

ruled out by [1]. Although the approach of [1] seems to be more in the spirit of

what emergent theories of gravity try to convey, and as the authors point out, the

definition of emergent gravitation must not be too wide concept, because otherwise
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it is useless, our intention here is ultimately not to rule out some of the theories, but

provide overview and context important especially concerning the subjects that will

be explored in the following chapters. We will be mindful of the definition above,

but it will not be taken as constraint.

In the next section are given examples which show how the above definition is

applied.

2.1 Types of coarse-graining

In this section we will look at discretization, quantization and renormalization, as

a common examples of procedures which affect the degrees of freedom. We call

"coarse-graining" anything that takes us from what is considered as fundamental

description to some sort of "bigger" picture.

Discretization is most easily explained on an example. For this reason, consider

macroscopic object of some mass density which varies in space. One knows that this

is due to the number density of atoms varying in space (assuming that the object

is made of identical atoms). Thus, mass density is a continuous approximation of a

discrete quantity obtained by dividing object into regions and integrating over them.

Even more, mass density is not emergent since the notion of mass exists for the most

fundamental unit, i.e., every atom has mass.

In analogue way as mass density, one may try to discretise Lorentzian manifold.

One such approach is causal set theory [25], where the role of mass is played by vol-

ume of a region. The atoms of spacetime, simply called “elements", are structureless

objects organized in some way on the basis of causal relations among them, so that

continuous limit produces a Lorentzian manifold. We will explore this further in a

chapter below. For current discussion it is important to note that in causal set theory,

spacetime, although discrete, is “not a different substance" [25].

Another example of discretization is Loop Quantum Gravity (LQG) where phys-

ically existing structure should be a quantum superposition of spin networks, three

dimensional structures of intertwined loops with spin representation on the network’s

nodes and edges. Each spin representation quantifies so-called “quantum volume" if

it corresponds to a node, while discretely valued “quantum area" of the edge cor-

responds to the surface of the adjacency of the connected volumes. One should
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point out that is not yet understood how a topological structure like spacetime could

emerge from it [24].

In [1], both causal set theory and LQG are ruled out as emergent theories. It

seems to me that causal set theory fits into type I theory, but it is in the best scenario

not clear what is the case for LQG since the coarse-graining method that would yield

spacetime is not yet known. Spin-networks, to me, come across as uninspired from

continuum they should produce, and as such, I would put them into type II category.

Quantization It is considered that a fundamental description of any theory is of

quantum nature at atomic scale, so the same is expected to be true for space-

time. There are few difficulties when speaking about quantization and quantum

phenomenon. First of all, how to quantize, and whether that is a well defined pro-

cedure in the first place is a complicated question. So, to explain what we mean

under “quantization" we will say that in order to mathematically capture the ob-

served wave-particle duality leading to probabilistic nature of Quantum Mechanics,

the behaviour of particles, or more precisely wave-particles is given by wave func-

tions, while observables are promoted to operators. As a result, quantities which are

classically continuous take only certain values, as for example, angular momentum.

On the other hand, for energy this is true only in the case of a bound system, but we

still consider it as quantized. This is in fact important distinction between discretiza-

tion, which always leads to discrete quantities, and quantisation, which although

related, is a different concept.

Quantized theories are not emergent, because they are expected. In other words,

as stated by [19], emergence does not oppose reductionism, i.e., there will be new

fundamental laws and phenomena at an atomic scale, compared to macroscopic

scale. For theory to be considered emergent, the change must be more than quan-

tum behaviour explained above. What we mean is best understood on an example.

Let’s once again consider condensed matter physics. Quantizing vibrational modes

of an atomic crystal yields phonons, but if we “zoom in", we do not see smaller parts

of a phonon, but atoms that fill the entire space. The phonons are not formed by

those atoms, the phonons are simply collective motions the atoms [20][23]. Hence,

phonons can be considered as emergent, since the underlying degrees of freedom are

different.
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Consequently, we rule out theory of linearized gravity leading to GR as emer-

gent. It can be shown that metric field and its dynamics arise through self-coupling

of graviton, spin-2 particle that is a mediator of gravitational force, assuming the

graviton field possesses gauge symmetry [26]. We do not view spin-2 field as non-

gravitational, although extra steps are needed to relate it to GR.

Renormalization In quantum field theory, or any perturbative calculation, the ob-

servables quantities, like cross-sections, are obtained by summing over all possible

intermediate states. It turns out however that beyond the lowest order, the perturba-

tion expansion is ill-defined due to appearance of divergent quantities, originating as

a result of intermediate states carrying arbitrarily large momenta. The renormaliza-

tion takes care of these infinities. In the Wilsonian approach, one starts from “bare"

Lagrangian, such that the parameters do not represent physical quantites, and cuts-

off the high-energy states at momentum Λ, which makes divergent terms finite. The

value of cutoff Λ is chosen so that it is above the energy scale of interest, i.e., the

energy scale of experiment probing the system ΛR, but below the “ultimate" high-

energy scale. The goal is to obtain the same physics at ΛR as at Λ. That is, we wish

to obtain theory that is independent of chosen Λ, and without the divergences. This

is done by decreasing the cutoff on momenta to Λ − δΛ, called “integrating out a

momentum shell" and then compensating the effect of those momenta by adjusting

the parameters in Lagrangian, so that they now depend on Λ, and adding new inter-

actions. The dependance of the parameters on the cut-off is characterized by a beta

function, and called renormalization group (RG) flow, as each iteration, i.e., each

procedure of integrating out a momentum shell, is a point in parameter space, gen-

erating a trajectory. Ultimately, it is expected that a theory reaches a fixed point in

UV region (at large energies), related to zeroes of the beta-function, where the the-

ory behaves either as a free theory if the fixed point is trivial, or, if the fixed point is

non-trivial, obtains a conformal group as a symmetry group, so it becomes indepen-

dent of the scale. Such theories are renormalizable. [27]. Gravity is (perturbatively)

non-renormalizable, but, there are theories, such as asymptotic safety, not based on

perturbative approach, with idea that non-trivial UV fixed point exists even for non-

renormalizable theories. Some techniques that search for asymptotic safety in gravity

are Causal Dynamical Triangulation [28], and Regge calculus [29][30][31].
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In short, the Wilsonian renormalization gives low-energy approximation to high-

energy dynamics by integrating out high-energy modes. Although this results in the

change of the parameters and Lagrangian with scale, it is expected that the theory

eventually reaches a fixed point, such that the Lagrangian and values of parameters

remain unchanged.

Consequently, concerning the question whether such procedure produces emer-

gent theory — since the high-energy modes are integrated out, the degrees of

freedom of effective Lagrangian are just low-energy degrees of freedom of the

original Lagrangian. Thus, it makes sense not to consider them as fundamentally

different. On the other hand, according to [32], elimination of degrees of freedom

produces novelty if the effective Lagrangian is dynamically distinct from the original

Lagrangian. An example is the Lagrangian of superfluid Helium 3-A. Non-relativistic

Lagrangian of Helium-3 atoms is after a phase transition to superfluid phase

described by effective Lagrangian describing hydrodynamical sound waves. Fur-

thermore, as the temperature is lowered, the hydrodynamical Lagrangian becomes

formally identical to the Lagrangian density for massless (3 + 1) dimensional

electrodynamics. Consequently, [32] concludes that “Dynamical distinctness entails

a failure of law-like deducibility from Lagrangian of the properties described by

effective Lagrangian, and a difference in field variables suggests the properties and

entities described by effective Lagrangian and Lagrangian are ontologically distinct.”

Hence, there is no unique answer, whether a procedure can or cannot result in

fundamental change in degrees of freedom. The criteria for emergent theories is not

very sharp and depends on what kind of differences one focuses on. Hopefully, the

given examples still provided a notion of what can be regarded as emergence.

2.2 Indications of emergence

In this section we put forward some arguments implying that gravitation is emer-

gent phenomenon. We will look at universality of gravity, it’s perturbative non-

renormalizability and black hole thermodynamics, which will be explored in more

details in subsequent chapters.

18



2.2.1 Universality

There are two aspects of universality concerning gravitation. The first is universality

of free fall, also called weak equivalence principle (WEP). It was first formulated

in the scope of Newton’s law of gravity as equivalence of inertial and gravitational

mass, which suggests that it is impossible to locally distinguish between the effects of

gravitational field from those of uniformly accelerated frames using the observation

of the free fall of massive objects. Then, to be in accordance with Special Relativity,

WEP is generalized so that mass is replaced with energy, since according to special

relativity principle, mass is a manifestation of energy and momentum. As a result,

it is impossible to distinguish between a gravitational field and uniform acceleration

based on any experiment. Thus, the usual statement of WEP is that the trajectory of a

freely falling object is independent of both its mass and internal structure, accounting

for the fact that energy also gravitates. It depends only on starting position and

velocity. The second aspect is universal strength of gravitation.

These universal aspects perhaps have the best explanation if gravitation is viewed

as emergent, since similar universal notions are present in some coarse-grained pro-

cesses and hydrodynamics [33].

It is noted in [34] that universal law of attraction reminds of London forces, a

type of Van der Waals forces, in molecular physics. In system, consisting of (neutral)

molecules any pair interacts with potential r−6. This is due to the fact that electron

distribution within a molecule fluctuates, so it may happen at an instant of time that

electrons in a molecule are asymmetrically distributed, producing temporary dipole,

which, in turn, induces a dipole moment in adjacent molecules. The force between

such induced dipoles is attractive8, and is equally strong, i.e., it is independent of the

substance. Condensate of any type of matter will manifest the same behaviour. In

the same manner, one could expect gravitation to be a manifestation of similar fluc-

tuation of unknown substance similar to charge. In fact, it has been shown in [35]

and further in [36], that gravity could be understood as force induced by fluctuations

of the virtual particles of quantum vacuum. That is, starting from one-loop contribu-

tion to the effective action of quantum field theory on a Lorentzian manifold, where

8As the molecules come further together the force changes sign and becomes repulsive, since Pauli
exclusion principle comes into play. As a result, the interaction between molecules is given by so-called
Lennard Jones potential.
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geometry is treated as classical background, by extremizing the action one obtains

terms proportional to cosmological constant, Einstein-Hilbert action and curvature

squared. In other words, dynamics of gravity will automatically emerge at one-loop

level, which unlike the zero-loop level, takes quantum fluctuations into account [37].

Furthermore, in hydrodynamics of uncharged fluids the trajectory of every test

body is the same, i.e., the trajectory does not depend of internal composition of the

body, analogous to WEP. Since hydrodynamical laws are the result of coarse-graining,

giving the same description of different underlying microstructure, one could expect

the same is true for gravitation. On the other hand, since gravitation relates to the

general framework of spacetime, universality of may be just a natural consequence

[1].

2.2.2 Pertubative non-renormalizability

QFT approach to gravitation is to treat metric as a fundamental dynamical field,

and quantize it like any other field. Before explaining the implications of

(non)renormalizability, it is worth to emphasize that first of all, this kind of treat-

ment of metric is based on formal analogy. Einstein’s equations are second order

differential equations obtained by varying metric, just as Maxwell’s equations are

for four-potential Aµ. Thus, it seems natural to promote metric to quantum field in

QFT. Then, since quantization procedure requires a background on which the fields

propagates, the metric is expanded around the flat metric (or any other metric is the

background is not flat), gµν = ηµν +hµν , so that only hµν field is treated as dynamical.

In other words, one chooses a background metric and linearizes fluctuations around

it. The particle associated with hµν is spin- 2 graviton. However, one should bear in

mind that assuming that metric is a dynamical field equivalent to external fields prop-

agating on spacetime is a nontrivial step [38][39]. The question of fundamentality

and role of metric is a complicated question, which we will graze a little bit in the

further discussion. Nevertheless, this is the context in which we discuss perturbative

non-renormalizability.

As already mentioned, in all field theories divergences appear at high-energy lev-

els. However, we don’t consider these divergences to be “true" divergences. Rather,

they are the manifestation of new degrees of freedom belonging to some new theory.

If this were not the case, no procedure could eliminate them.
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In the traditional approach to renormalization — counterterm renormalization,

the divergencies are taken care of by introducing a cutoff by some method of regu-

larization, which respects the symmetry of the initial Lagrangian. The final result is

independent of the cutoff, since these terms are cancelled by counterterms of renor-

malized Lagrangian, order by order. Such theories are called renormalizable. All the

divergences can be removed by absorbing them into finite number of parameters,

whose value is determined by experiment. For non-renormalizable theories on the

other hand, infinite number of parameters would have to be measured to remove the

divergencies, so such theories have no predictive power.

It turns out, gravitation is in the category of non-renormalizable theories. This can

be seen from the criteria of superficial divergences, which gives correct predictions

in the most cases [27]. In reality, non-renormalizability has been established up to

second loop order [40].

The reason non-renormalizability has to do with possible emergence of gravity

comes from the view that if the theory is fundamental, it must be renormalizable. The

argument comes from requirement that the aim of physics is to formulate theories

able to make prediction, and such theories are only possible if the theory contains

only finite number of parameters to be determined by measurement. An example

which further solidifies this position is the fact that Fermi theory of four-fermion di-

rect interaction, non-renormalizable theory, proposed to describe weak interactions,

was eventually replaced by a theory of weak interactions with a vector boson as

mediator, which is renormalizable [41][42].

However, it should be pointed out that even non-renormalizable theory is able to

make predictions. In today’s approach to renormalization, i.e., Wilsonian approach,

any theory is viewed as effective theory. By previously explained procedure, effective

field theory makes prediction at energy scale that is of interest by implementing the

effect of high-energy modes that have been integrated out in the form of additional

terms in Lagrangian, which may be non-renormalizable and through the values of the

coupling constants. Such interactions imitating high energy modes are local, they are

polynomial in the fields and their derivatives, with the same symmetry as underlying

theory. Furthermore, as Lagrangian has (energy) dimension four, so is the case for

the interaction terms. As a consequence, interaction term of energy dimension n+ 4

must have coefficient of O(Λ−n). Thus, term of dimension n + 4 only affects results
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in order (p/Λ)n or less. Since in reality we are interested in physics at a certain scale,

one can determine the order which is required to achieve the desired accuracy and

use the explained powercounting to identify which terms in the effective Lagrangian

give the main contribution. At any fixed order only finite number of terms in effec-

tive Lagrangian can contribute, since the number of possible terms is limited, as it

must respect the symmetry on underlying Lagrangian [43][44]. The point is, non-

renormalizability does not obstruct predictivness, as long as the calculations are done

at sufficiently low energy scale. There, the dominant contribution comes only from

finite number of terms. The predictivity only fails when p ∝ Λ, which is for gravity

expected to be around the Planck energy scale, MP ∝ 1019mp, where mp is mass of

the proton.

In summary, in perturbative approach gravitation is non-renormalizable theory,

and as such is not predictive at high-energy scales since to determine it’s dynamics,

i.e., Lagrangian, requires measuring infinite number of parameters. This implies,

analogous to Fermi theory, that gravitation should be replaced by a more fundamen-

tal theory which would be renormalizable, and as such posses the predictive power

at every energy scale.

2.2.3 Black hole thermodynamics

In the 1970s, a group of laws similar to the laws of thermodynamics were derived,

describing behaviour of black holes, a region of spacetime nothing can escape from.

The laws, and their respective thermodynamic analogue are stated below [45].

• The zeroth law:

– Surface gravity κ is constant on the horizon of a stationary black hole.

– Body in equilibrium has constant temperature.

• The first law:

– δM = κ
8π
δA+ ΩHδJ + ΦHδQ,

– δU = TδS − pδV + µdN .

• The second law:

– δA ≥ 0,
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– δS ≥ 0.

• The third law:

– No physical process can reduce the surface gravity of a black hole to zero

by a finite number of operations.

– No physical process can reduce the temperature of a system to zero by a

finite number of operations.

The analogy is clear. Equilibrium corresponds to stationarity, temperature to surface

gravity, and area to entropy. Moreover, black holes are generically described only

by a small number of parameters, similarly to how systems in thermodynamics, con-

taining large number of degrees of freedom can be described with a few macroscopic

parameters. The analogy was further solidified with the discovery of Hawking radia-

tion — black holes radiate with a black body spectrum of temperature TH = κ/2π. As

the Hawking radiation is of the order of mikrokelvin for generic black holes, the re-

sult is out of scope for experimental verification. For comparison, Cosmic Microwave

Background radiation is 2.73 K. However, as it will be shown below, the laws are

not just a coincidence, in a sense that they can be derived on many different ways,

showing that the theory is consistent.

If the laws of black hole mechanics truly are extension of thermodynamics to GR,

one is lead to conclude that there must exist more fundamental description of black

holes, some new law underlying Einstein’s equations, since thermal properties of the

system reflect the statistical mechanics of underlying microstates.

Hence, the question is, how seriously should one take this analogy. For one,

there is more to thermodynamics then the four laws. Moreover, entropy is extensive,

scaling as volume, while black hole entropy scales an area. Another objection is that

Hawking radiation is not black body radiation in the full sense. A black body, such

as a lump of hot coal, radiates due to dynamics of microscopic degrees of freedom,

while Hawking radiation is produced by quanta living nearby black hole horizon, not

by microscopic constituents of black hole itself [46][47].

These issues are more thoroughly investigated in the chapters below. In summary,

one can say that there certainly is a correspondence between thermodynamics and

GR, but how far the resemblance goes is an open question.
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2.3 Overview of emergent gravitation approaches

Emergent gravitation models are usually classified in one of two ways. The first one is

by differentiating between top-down and bottom-up approaches as for example [23]

and [1], where top-down refers to energies of the theories, i.e., microtheory corre-

sponds to higher energies or vice versa. The second way is based on nature of the

underlying microstructure. For example in [2] and [32], one distinguishes between

emergent theories where degrees of freedom live in some setting (type I9), and the

one where space and spacetime themselves are emergent (type II). The classifica-

tion is not very sharp, as there are theories for which it is not evident into which

group they belong, for example causal set theory, where continuum — spacetime, is

emergent, but the microstructure contains some of its elements. Here, we will follow

[2] and categorize models based on whether or not they live in some setting. We will

add a category of type III models where dynamics is emergent, although they do

not satisfy either the emergence criteria of [1] or [2].

• Type I — fundamental degrees of freedom live in an “environment"

– Analog models such as [48][49], where, as the names suggests, one probes

aspects of gravity by developing analogies, usually based on condensed

matter physics.

∗ The most well-known of these analogies is the use of sound waves

in a moving fluid as analogy for light waves in curved spacetime. As

pointed out by [1], such models do not establish gravity as emergent,

but rather hint to its emergent nature.

∗ Similarly, in [23], spacetime physics is considered as low tempera-

ture hydrodynamics, and the metric or connections are hydrodynam-

ics variables. Macroscopic gravitational phenomena can be explained

as collective modes, while spacetime itself is considered a condensate,

a collective quantum state of many atoms with macroscopic quantum

coherence.

– Models inspired by condensed state physics
9These types do not indicate the type of microtheory from the definition of emergent theories.
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∗ Excitations near Fermi point, for example [50]. The idea is that degen-

erate state of some condensed matter system may imitate the prop-

erties of quantum vacuum, and excitations of such state may possess

some gravity-like properties. Since particle physics deals with interact-

ing Fermi (spinors) and Bose (bosons) quantum fields, the condensed

matter system ought to be fermionic — metals, superconductors, nor-

mal or superfluid He-3, since only they can capture both fermionic and

bosonic nature. Fermionic degrees of freedom come from fermions,

electrons or helium atoms respectively, while Bose fields appear as

low energy collective modes. Furthermore, one differentiates be-

tween fermionic systems based on topology of the energy spectrum

of fermionic quasiparticles. The most familiar is gapless system with

a Fermi surface, in which category belongs non-interacting fermionic

gas, whose Fermi surface is a sphere. In the case of gravity, however,

we are interested in gapless systems with topologically stable point

nodes instead of surfaces, called Fermi points. Gauge and gravita-

tional fields are then collective bosonic modes of such systems [51].

∗ Boundary excitations of quantum Hall effect [52], where elementary

particles, for example photons and gravitons, are modeled as collec-

tive boundary excitations of four dimensional quantum Hall effect.

The system consists of fermions moving on four dimensional sphere,

with three dimensional boundary introduced by applying a confining

potential. Then, one can construct local bosonic operators for creat-

ing collective excitations at the boundary. The time evolution of these

operators, given by Heisenberg equation, i.e., by the commutator of

Hamiltonian and bosonic operator satisfies relativistic wave equations,

which for helicities j = 1 and j = 2 coincide with free Maxwell and

linearized Einstein equations respectively.

∗ Defects in crystal, such as [53] or [54], where universe is viewed as a

crystal with defect tensor playing the role of Einstein curvature tensor,

since curvature and torsion induced by elastic deformations and topo-

logical defects can be formulated in the scope of differential geometry.

– Spin system on a lattice, as given by [55], where fundamental degrees of
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freedom are qubits, used in the current implementation of quantum com-

puters. In this model, qubit is a fundamental degree of freedom, where

vacuum corresponds to the ground state of qubits, while collective mo-

tions of qubits organized in a certain way can be described by Maxwell

of Einstein equation. Different organizations lead to different collective

excitations.

• Type II — spacetime is emergent

– Graph-based models, where graph refers to mathematical structures used to

model pairwise relations between objects. In this context, a graph is made

of vertices, which are connected by so-called edges. Examples include

Loop quantum gravity, causal set theory, quantum graphity [56] [57], Dis-

crete Unitary Causal Theory (DUCT) [58] etc.,

– Group field theory approach to quantum gravity [59], whose approach is

similar to the familiar field theories, with one of the main differences being

that it is background independent. The fundamental building blocks are

atoms of space, combined so to give rise to geometry and topology of

space, while spacetime is discrete history of creation and annihilation of

these atoms. All spacetime information is reconstructed from information

carried by the atoms.

– AdS/CFT correspondence [60] in versions where CFT is considered primary

and bulk spacetime emergent. The statement of AdS/CFT correspondence

is that string theory, which is a gravity theory, in asymptotically Anti de-

Sitter spacetime is equivalent to quantum field theory in flat spacetime on

its boundary.

• Type III — only dynamics of gravity is emergent

– Induced gravity models [36][36], where Einstein-Hilbert action appears

from by extremizing one-loop effective matter action minimally coupled

to metric,

– Spontaneous symmetry breaking models, given in [61][62][63][64], based

on analogy of how electromagnetic and weak interactions were unified
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after realizing that the intermediate boson is massive, which is captured

with spontaneous symmetry breaking,

– Thermodynamical approach, such as [65], [33] or [66], where metric is

determined by thermodynamics.

Constraints of emergent models Although emergent models are currently beyond

experimental verification, there are certain experimental constraints that hold even

on the scales where spacetime is expected to be discrete and potentially described by

some emergent gravitation model.

• Local Lorentz Invariance — terrestrial experiments, as well as astrophysical ob-

servations severely limit possibility of LLI violation. Current bounds suggest

that it would be very difficult to violate Lorentz invariance at the Planck scale

up to the sixth order of field theory [67]. The point is, there is currently no ob-

servational evidence of LLI violation so we expect that emergent model theories

should not break LLI.

From theoretical aspect, to obtain Lorentz transformations, one starts from two

principles — relativity principle, according to which the laws of physics are ir-

respective of the reference frame, and the principle that states the speed of light

is independent of the velocity of the source. However, it was shown that one

does not need the second principle, if one assumes isotropy and homogeneity

of space. This implies that two observers must agree on their relative veloci-

ties, or equivalently the transformations and their inverse are linear. In such

approach Lorentz transformations contain limiting speed, which needs further

assumptions to identify it with the speed of light, like for example, invariance

of electrodynamics under Lorentz transformations [68]. In summary, results

depends on what assumptions are taken as fundamental.

In the context of emergent gravitation models, we will take the latter, as it is

more general and makes it easier to see what kind of model will satisfy Lorentz

invariance.

– Type I: the background environment usually violates either relativity prin-

ciple or isotropy. This will be most clear in an example of causal set theory,

which succeeds in making the background Lorentz invariance. Moreover,
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a generic result of linearizing field theory around non-trivial background

results in emergence of curved spacetime with effective Lorentzian geom-

etry. In this category are for example analog models [49]. However, unless

the field theory contains only scalar field, one ends up with bi-metricity,

multi-metricity, or even Finsler instead of Lorentz geometry. This can be

“mended" by adding certain constraints, but they don’t have poor, if any

physical motivation, other then producing a single Lorentzian metric.

– Type II: LLI is a lesser challenge, but the problem usually arises if LLI is

attainable by averaging over Lorentz non-invariant configurations because

the Lorentz group is non-compact, so integral over boosts diverges.

• Universal coupling — meaning that all forms of matter couple to a single grav-

itational field with equal strength, i.e., with strength independent of position

or velocity of matter. According to Weinberg’s soft-graviton theorem, a single

metric together with LLI ensures that the coupling of matter to gravitational

field is always with equal strength.

– type I models usually deal with one of the two problems. In models of

gravity as fluctuation around a background many gravitons, i.e., spin-2

fields exist. Similarly, in models where gravitons are composite particles

there are multiple potential metrics. The first problem may be solved by

imposing invariance of effective action under diffeomorphisms and Local

Lorentz transformations, resulting in only one massless spin-2 field. The is-

sue is that massive spin-2 fields then in most cases contain negative energy

Boulware-Deser ghosts.

– Type II models are in most cases not yet able to describe coupling of

matter to gravity. Nevertheless, since such models should reproduce a

dynamical spacetime from the fundamental degrees of freedom, a metric

would be a natural way to describe its dynamics. Universal coupling could

once again be obtained from LLI and Weinberg’s soft graviton theorem.

• Diffeomorphism invariance — which we will define as absence of non-

dynamical background. If we are looking for a complete theory, then no a

priori fixed background fields should exist. In other words, fixed background
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leads to a question why i.e., what fixes this background structure. One should

have a reason why a background structure is not dynamical. Furthermore, dif-

feomorphisms can be understood as gauge transformations of general relativity,

important for projecting out additional degrees of freedom of graviton field in

a Lorentz covariant manner.

– Type I models are mostly formulated on the fixed background so the only

way to obtain diffeomorphism invariance is if the background can decou-

ple from observable quantities

– Type II models must first be able to reproduce smooth manifold before

one can talk about diffeomorphism invariance. A possible complication

regarding diffeomorphism invariance is that these models contain a time

parameter describing evolution of underlying degrees of freedom, which

poses a question about relationship of time in which fundamental degrees

of freedom evolve and emergent notion of time. Once again, fundamental

and emergent time must decouple, not to define a preferred time, breaking

diffeomorphism invariance in the process.

In one of the following chapters we will look at result which further restricts emer-

gent models of type I, Weinberg−Witten’s theorem.

3 Causal set theory

The causal set theory (CST) is based on hypothesis that the structure of spacetime is

discrete. There are no experimental evidence yet to support this claim as the scale

at which the spacetime is expected to breakdown is the Planck length lp =
√

8πG~,

where c = 1, which is of the order 10−35 m , or about 10−20 times the diameter of

a proton. Such scale is beyond any experiment. However, there exist theoretical

reasons why it is expected that spacetime is discrete, which we will review in this

section. Next, it will be explained how the causal structure of continuous Lorentzian

spacetime, i.e. relationships which specify which events can influence which, points

to a discrete structure made of causal set — elements with causal order between

them, which up to conformal factor of the metric determines geometry of spacetime.

Finally, we give a brief outline of dynamics of causal set.
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Motivation Theoretical arguments which point toward discrete spacetime, are

what [69] refers to as three of four infinities. They are

• Divergences in QFT which, as it was already explained, can be taken care of

through the process of renormalization. However, since such theories are ex-

pected to become trivial at some energy scale, i.e., they reach a fixed point in

order to make sense, it is best to treat them as effective, valid only up to cutoff,

until it is proved that fixed point indeed exist

• Singularities in GR, such as BH or Big Bang, since the known physical laws all

break at such points,

• Non-renormalizability of naively quantized gravity, i.e., perturbative canonical

quantization leads to non-renormalizable theory, which, unless understood as

effective theory with a cut-off, is not predictive,

• Infinite value of BH entropy when no cutoff is present10.

All these problems indicate that spacetime may be discrete [70]. The main challenge

is then the following. If the spacetime is indeed reduced to some discrete structure,

what would that structure be in order to reproduce topology, differentiable struc-

ture and metric which one observes at a larger scale. To answer this question, one

must first presume that there is some sort of connection between the underlying mi-

crostructure and spacetime, otherwise it is hard to draw conclusions. As CST argues,

that is the causal order. In EPS approach causality was determined by metric. CST,

on the other hand, takes causal order as fundamental and derives all other structures,

except the conformal factor, from it.

Formally, in the standard approach to GR one chooses the most minimal topol-

ogy, just so to provide enough structure to capture continuity of curves. In order

to also speak about velocities, one adds differentiable structure compatible with the

topology in a sense that continuous and differential structure are in compliance with

each other. Finally, one can define a metric field from which it is possible to de-

rive causal order. CST “weakens" compatibility between topology and differentiable

structure by imposing a different topology, called Alexandrov topology, determined

by a causal structure. It is defined as the smallest topology in which chronological

10This last point is an open question, this is why this is a question of three or four infinities.
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future and past11 of some set are open. As a result, it is coarser (smaller) then mani-

fold topology. Thus, the differentiable structure is kept, but the topology is changed

[72]. Moreover, since the light cones can be defined in causal terms in (continuous)

Lorentizan spacetime — event p ∈ J+(q)(p ∈ J−(q)) is said to be in causal future

(past) of q if there is a future (past) directed causal curve (timelike or null) from p to

q [71], then it is also possible to recover metric.

To sum up, the “standard" approach is to impose enough structure on a set to be

able to speak about tensor fields, one of which is a metric field which provides causal

structure. The shift from standard to CST point of view is that causal relations are

considered as primary. Causal structure exists without the metric field [73].

Now that we understand the motivation, let’s turn to formalizing this idea, start-

ing from kinematics.

Kinematics Causal set (or causet for short) (C,≺) is locally finite partially ordered

set (poset). In other words, it is defined as set C with a binary relation ≺ called

“precedes", i.e., “is in the past of", with the following properties

1. Transitivity — if x ≺ y and y ≺ z, ∀x, y, z ∈ C

2. Non-circularity — if x ≺ y and y ≺ x then x = y ∈ C

3. Local finitness — (∀x, z ∈ C) (card{y ∈ C|x ≺ y ≺ z} <∞)

where “card" stands for cardinality of the set, number of it’s elements. That is, ev-

ery order-interval has finite cardinality. Local finitness is a formal way of saying

that a causet is discrete, while partial order implies that not every pair of elements

are related. Sometimes, instead of non-circularity one requires irreflexivity, x ⊀ x,

meaning that no element precedes itself, which together with transitivity implies non-

circularity, i.e., there are no cycles x0 ≺ x1 ≺ ... ≺ xn = x0. The relationship x ≺ y is

described by saying “x precedes y", or x is an ancestor of y, and y is descendant of x.

Similarly, it is said that x lies in the past of y, or y in the future of x. The structure of a

causet as represented on so-called Hasse diagram, Fig. 3.1, where elements of C are

represented as vertices, while relationships are represented as edges. If the elements

are related, they are connected with a line. If there are no elements between p and

11Chronological future (past) of event p ∈M , I+(p)(I−(p)) is defined as the set of point which can
be connected to p by future (past) directed timelike curve [71].
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q, and p ≺ q, we say there is a link between p and q. It should be pointed out that

link is just an order of relation and has no length. Usually, not all relationships are

drawn, only those not implied by transitivity. Another way of thinking about causets

is as a family tree, which is clear from the jargon used.

Figure 3.1: The Hasse diagram of a causet generated by sprinkling into 1 + 1 dimen-
sional Minkowski spacetime. The elements are black dots, while the blue edges are
links, the nearest neighbour relations [69]

As already explained, the causal structure is almost enough to provide all the ge-

ometrical structure, since light cones, which determine the metric up to conformal

transformation, can be defined in the causal terms, i.e., J+. What is missing is the

scale which fixes the conformal factor, i.e., volume. One cannot obtain the volume

from the causal order, but one can postulate that a finite volume of spacetime con-

tains a large but finite number of elements that measure the volume
√
−gd4x of a

region in spacetime. That is, number of points in some region is equal to volume of

that region N = V . This is true only is the proportionality factor is set to unity, so

in general N = νV , and we must determine the proportionality factor, i.e., the value

of the unit volume. One way is to consider BH entropy given by S = A
4G~ = 2π A

κ~ ,

κ = 8πG. According to this relationship, one bit of entropy belonging to fragments

of horizon of roughly the size lp = κ~, reflecting underlying discreteness, so ν = l−4
p .

In short, order and volume provide geometry [74].

To sum up, underlying structure of spacetime consists of causet, with volume as a

number of elements in a region and macroscopic causality as reflection of order of the

causet. An important remark is that since causal order plays such an important role,
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for a smooth manifold to be a realization of causal set, the macroscopic metric field

ought to allow one to distinguish between past and future. This rules out Riemannian

metric for example.

The next goal is to relate the picture of causal set to a manifold with metric, if

such exists.

We begin from causet C with a large number of elements. A faithful embedding

f : C → M of causal set into manifold M with a time oriented Lorentzian metric

g without null or timelike closed curves is defined if the following conditions are

satisfied:

1. f(x) ∈ J−(f(y)) iff x ≺ y, where J−(p) is the set of points of M of the causal

past of p,

2. Embedded points are distributed uniformly with unit density, where uniform

means that the points are realized by the Poisson process — the probability of

finding a point in the region of finite volume depends only on the volume of

the region, ensuring that the manifold contains a number of points of C equal

to its volume,

3. Characteristic length over which the continuous geometry varies is everywhere

much greater than the mean spacing between embedded points.

The first condition makes sure that causal relations induced by embedding agree

with those of C. In the second condition, points are embedded with unit density if∫ √
−gd4x counts the elements of C. What’s more, the reason the points are real-

ized by Poisson process is to preserve Lorentz invariance. Were the causal set in Fig.

3.1 displayed in a different frame, the elements would have different positions but

the distribution would still be uniform with respect to the volume, which is Lorentz

invariant, along with the causal order of points. To explain why this is so, consider

the case where the spacetime is flat. Here, the volume element is equal to Euclidean

volume element d4x. Lorentz invariance of is a consequence of the fact on the one

hand, Lorentz transformations preserve the volume, and on the other hand, the Pois-

son process is invariant under volume preserving map in Rn. This would not be the

case were the points “sprinkled" in a shape of cubic lattice for example. The boosted

frames would view different distribution of elements. The third condition is needed
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so that setting of the conformal factor to unity does not introduce unreasonably large

curvature or similar small characteristic lengths, where small means the size of unity

or smaller.

It should be pointed out that (M, g) in which one can embed C faithfully needs not

exit, but if it does, one expects it is unique. This is referred to as Hauptvermutung,

meaning conjecure. It is the idea that if two continua are good approximations of

the same discretum, they should be close to each other, M1 ≈ C and M2 ≈ C,

then M1 ≈ M2, where the last relation means that M1 and M2 are “approximately

isometric". The quotation marks indicate that it is hard to give a rigorous meaning to

what this means [74][25].

The explained process of embedding is called “sprinkling", since from the point of

view of M , causal set C looks like it is obtained by sprinkling in points until Planckian

density is reached [75].

As kinematics is not complete without dynamics, we now give some account of

dynamics of causal set.

Dynamics Usually, dynamical law is specified by a Hamiltonian, since it is a gener-

ator of the time evolution. Because this presumes the existence of continuous time,

thinking in terms of Hamiltonian is not a good start. However, in the broader sense,

what we are looking for when speaking of dynamics is to prescribe the evolution. In

the case of causal set, evolution is considered as stohastic growth of the causal set,

described by probabilities in classical sense [70].

Dynamics of causal sets is called sequential growth — an element of causal set

comes into being as “offspring" of a definite set of existing elements — defined by

giving transition probability for each element of a causet, from it to each of its pos-

sible children. The growth of the causet is the passage of time. This also implies

that there is no meaningful order of birth of the elements other than that implied by

≺. However, the elements are treated as if they happened in a definite order with

respect to some fictitious “external time", represented by labeling of the elements by

integers. The labels are considered not to carry any physical significance so calls this

“discrete general covariance", as it is analogue to independence of Einstein−Hilbert

action of the choice of coordinates. Moreover, as a consequence of discrete general

covariance, the growth process is Markovian — the future of the growth process is
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independent of the past, and transition probabilities obey the Markov sum rule — the

sum of transition probabilities emerging from a given causet is equal to unity. One

further restriction, without which the possibilities of laws of growth would be infinite

is Bell causality, which captures the intuition that a birth taking place in one region

cannot be influenced by the other births occurring in regions that are spacelike to

the first. With these requirements on the dynamics one can obtain a probability for

transition C → C ′ [70][74].

To relate to the previous discussion about how causality determines matter, it is

worth to mention that a certain form of Ising-like state emerges in indirect way from

the dynamical laws, showing once again that matter and gravitation are intimately

related [76].

In summary, considering causal order of elements of a set as fundamental, with

number of elements in any region of spacetime corresponding to volume, one can

obtain obtain geometric structure of Lorentzian spacetime, providing a discrete view

of spacetime, which is a step toward quantum nature. Although there are some

attempts, the theory needs to be further develop to see whether it can solve the

problems from the beginning of the chapter.

4 Weinberg-Witten theorem

Weinberg−Witten (WW) theorem [77] constrains the spin12 j of (composite or ele-

mentary) massless particles, charged under conserved Lorentz covariant four-vector

currents13. As formulated by Weinberg and Witten, it consists of two parts and states

that

(a) A theory that allows construction of conserved Lorentz covariant four-vector current

Jµ cannot contain massless particles of spin j > 1
2

with nonvanishing values of

conserved charge Q ≡
∫
J0d3x,

(b) A theory that allows construction of conserved Lorentz covariant energy-momentum
12To be precise, when speaking of massless particles spin refers to helicity, projection of spin onto

direction of momentum.
13It should be pointed out that objects carrying indices will be referred to as vectors, or tensor,

irrespective of their transformation law under general coordinate transformations, contrary to the
usual definition. Hence, one should not assume anything about transformation properties of an object
solely based on the name.
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tensor T µν for which P ν ≡
∫
T 0νd3x is the conserved energy-momentum four-vector

cannot contain massless particles of spin j > 1.

The goal of the next few sections is to unpack the key elements of the theorem —

• Definition of spin and massless particles,

• Conserved currents and respective charges,

• Lorentz covariance of the conserved currents,

and ultimately prove it. It will also be shown how the constraints of the theorem

apply to Standard Model, currently most accurate theory describing known parti-

cles and interactions between them, and to gravitation, i.e., graviton, mediator of

gravitational force, which is at present hypothetical particle.

4.1 Mass and spin

In this section we show that elementary relativistic particles described as physical

states characterized by mass and spin arise from irreducible representation of isom-

etry group of flat spacetime — Poincaré group. First, it is explained how isometries

relate to quantities describing physical system. Next, it is shown that mass and spin

are properties associated with Poincaré group by considering its algebra.

What one has in mind when speaking of describing a system is finding solutions

of the field equations which determine its dynamics. However, instead of solving the

equations directly, the solutions can be obtained by finding the group of spacetime

transformations that transform the equations so that their functional form stays the

same, i.e. covariantly. Since the transformation didn’t change the equations the solu-

tion of the old and the new equation belong to the same equation. In other words,

the elements of the group generate new solutions from the old ones. Finally, in cer-

tain cases, the group narrows down to symmetry group of spacetime on which the

theory is formulated. This will become clear in the next chapter which is dedicated to

symmetries. To give some explanation on how this happens, with details in the next

chapter, the special case mentioned in the text refers to theories in which metric field

is held fixed, i.e., it’s dynamics is considered as given. Subsequently, any spacetime

transformation changing the field equations covariantly must also be an element of
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isometry, group that leaves the metric field invariant. For the case when flat metric is

fixed the isometries are elements of Poincaré group.

Furthermore, it should be pointed out that by studying symmetry group we are

dealing with all field equations with a certain symmetry, since any theory on the

corresponding fixed background will have the same symmetry group. Distinguishing

between solutions belonging to a certain equation is possible with the help of invari-

ants of the group, as all solutions generated by the symmetry group share the value

of property corresponding to the invariants. In fact, it makes more sense to turn

the argument around. Existence of invariants implies one can differentiate between

different types of solutions, where each type describes a different entity, with its own

field equations whose solutions are generated by the symmetry group. In short, one

can use the invariants to classify different types of solutions. What’s more, it is the

elements of the symmetry group, or more precisely, its generators that correspond to

measurable quantities using which we can characterize the solutions. We now show

how the discussion applies to quantum systems.

For quantum systems, such as relativistic particles, solutions are fields, operator

valued-spacetime functions. They don’t have a direct physical interpretation but they

can be mapped to space of physical states, so a solution is represented by a state in

the state space. Thus, finding the solutions consists of determining all states in which

the particle can be found, i.e., its space of physical states. As already mentioned, on

flat spacetime the space is generated by Poincaré group. As it will be shown below,

invariants of the group are mass and spin. As a result, there are different types of

relativistic particles living on flat spacetime, distinguished by mass and spin.

Before we show this below, as a final remark note that even though the fields don’t

have a physical interpretation, they are very useful. Relationship between fields and

particles, i.e., their states, will be given at the end of the chapter as it is important in

the following discussion.

To start, states of a quantum system span a Hilbert space, with each state rep-

resented as state vector. According to the previous discussion it is generated by the

symmetry group G, or more precisely its representation U ,

g ∈ G U−→ U(g) , (4.1)
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since group acting on vector space are defined to be given by representation, a map-

ping U , where every element of the group is represented by U(g), an operator on the

state space14. For finite n dimensional representations it can realized as n× n matrix

D(g)

U(g)|ψi〉 = D(g)ji |ψj〉 , (4.2)

where {|ψi〉} form a basis of the state space. One can choose any basis, but as it will

be shown below, there is a basis naturally related to measurable quantities which

uniquely determine the state.

Next, physical states transform under unitary operators, as shown by Wigner,

making sure the normalization of states is preserved under transformations. To un-

derstand what unitarity condition entails, let |ψ〉 and |ψ′〉 be two possible states such

that |ψ′〉 = U(g)|ψ〉. The unitarity makes sure that

|〈ψ|ψ〉|2 = 1 =⇒ |〈ψ′|ψ′〉|2 = 1 . (4.3)

As it is known, absolute square of scalar product of two states is called transition

probability. Scalar product of the state with itself will gives the probability that the

state exists at all. So, starting in state |ψ〉, we require that the state obtained by a

symmetry transformation U(g), also exists15 which translates to |ψ′〉 being obtained

from |ψ〉 by a unitary operator U(g). Moreover, Poincaré group is a Lie group so ev-

ery representation of the group is also a representation of the algebra and vice versa.

Consequently, for the most part we deal with generators of the algebra which are

hermitian if the representation is unitary. This has important consequences. First,

eigenvectors of hermitian operators constitute a basis of state space. Second, eigen-

values of hermitian operators are real and represent measurable quantities, which

makes such basis naturally suited for describing space of states.

What’s more, there may exist operators, constructed out of generators, that com-

mute with all the generators of the group. We refer to them as Casimir operators.

14The vector space on which representation acts on is called representation space. We will use the
terms state space and representation space interchangeably, as the representation space in the current
context is the state space.

15In relativistic mechanics the particle can decay. Thus, we are assuming that one is dealing with a
free particle, there is no interaction.

38



They are the invariants of the group, because the fact they commute with all the

generators entails the properties they describe don’t change under the action of the

group. Each set of states sharing the same Casimir eigenvalue represents one type of

solutions. As a result, the state space is partitioned into blocks, i.e., subspaces invari-

ant under Casimir operators, where invariant means that all state vectors belonging

to a block transform under action of the group only among themselves, transform-

ing the space into itself, i.e., the space is invariant. What’s more, as a consequence

of Schur’s lemma, each such subspace is minimal invariant subspace, i.e., it con-

tains no further invariant subspaces besides the trivial ones. Representation on such

space is referred to as irreducible and serves as a building block, with eigenvalues

of Casimir operators used to label it. Even more, states belonging to minimal in-

variant subspace are associated with elementary particles, stemming from the notion

that a fundamental entity should be “indivisible"16. Accordingly, its states belong to

the smallest, indivisible subspace of state space of relativistic particles. Composite

particles are then associated with representations built from irreducible ones.

In summary, state space of free, elementary relativistic particles is generated by

action of group elements represented as unitary operators. The invariants of the

group, Casimir operators, organize the state space into minimal invariant subspaces,

such that in each subspace operators U(g) form an irreducible representation of the

symmetry group17 [78][79][80].

Reminders of important properties of Poincaré group and Poincaré algebra are

given in App. B and App. C respectively. We now turn our attention to showing how

the basis of state space is generated using the method of induced representation.

4.1.1 Irreducible unitary representation of Poincaré group

In this chapter we find a basis spanning minimal invariant subspace of representation

space of Poincaré group and the matrix elements of the unitary representation. As the

group is non-compact its irreducible representations are infinite dimensional. This

is because unitarity of representations for compact Lie groups follows from finite

dimensionality. However, one can, at least partly, avoid working with infinitesimal
16What is considered fundamental, i.e., indivisible can depends on energy scale. For example,

proton or neutron are often treated as point particles, although they consist of quarks. Elementary
particles are considered to be as fundamental as it gets.

17It should be pointed out that the term irreducible representation often refers to its representation
space rather then the map.
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representation. As it will be shown, since Poincaré group has an Abelian invariant

subgroup – the group of translations, entire representation of the Poincaré group can

be constructed from little group of appropriately, i.e., easy to work with, momentum

eigenvector. Little group consists of elements which leave the momentum eigenvalue

invariant. Furthermore, it turns out to be compact, so it is finite dimensional. Entire

irreducible representation, labeled by Casimir operators C.15, can be obtained by

application of the rest of the generators. The procedure is known as the method of

induced representation [81].

Since we know translation subgroup is Abelian from C.11, let’s show it is also

invariant subgroup. According to definition, we must check that (Λ, b)(1, a)(Λ, b)

produces another element of translation subgroup. This can in fact be seen from

C.5, but we deal with it now in more general terms. To begin with, note that as

a consequence of multiplication rule B.2, general element of Poincaré group can be

written as Lorentz transformation followed by translation,

(Λ, a) = (1, a)(Λ, 0) . (4.4)

As a result,

(Λ, b)(1, a)(Λ, b)−1 = (1, b)(Λ, 0)(1, a)(Λ, b)−1(1, b)−1

= (1, b)(1,Λa)(1, b)−1

= (1,Λa) ,

(4.5)

This completes the proof. As representation is a homomorphism by definition, the

group structure remains preserved.

Next, we choose as basis vectors of state space the eigenvectors of momentum.

This is possible because all components of momentum mutually commute. Further,

due to existence of Casimir operators, the action of generators is partitioned into

minimal invariant subspaces, which amounts to studying irreducible representations.

As a result, domain of the eigenvector is also restricted. To explain this, let’s study

one such subspace invariant under the Casimir operators, starting with C1. It must

be true that

C1(p) = C1(Λp) , (4.6)

40



since for an operator to commute with translation generator it must be a function of

momentum. Then, for it to also commute with generator of Lorentz transformation

is must be of the form of the Lorentz invariant product, which leads to C.15, and in

turn to 4.6. Then, since Casimir operators are multiples of the unity for irreducible

representations we have

C1|p, ζ〉 = m2|p, ζ〉 , (4.7)

where m2 is some constant and ζ refers to possible additional labels. Conditions 4.6

and 4.7 can be met only if |p, ζ〉 is different from zero only for momenta p which can

be obtained from each other by Lorentz transformations p′ = Λp. The goal is to show

that each such irreducible representation can be obtained from a single momentum

eigenvector. However, one should note that there are different classes of standard

momentum, which categorizes irreducible representations into four classes,

• P 2 > 0,

• P 2 = 0, P = 0

• P 2 = 0, P 6= 0

• P 2 < 0.

Thus, to be precise, all irreducible representations of a certain class can be obtained

from one standard vector. Null vector, P 2 = 0 with P = 0 is a separate case because

such states are invariant under all Poincaré transformations, which is not true for

states of any other class. Consequently, representation of the second class cannot be

obtained in any other class.

Moreover, in unitary representation generators are hermitian operators. Since

C1 = P 2 is constructed out of hermitian operators, C1 itself is hermitian. As a con-

sequence its eigenvalue m2 must be real. Due to relativistic energy-momentum rela-

tion m2 is interpreted as mass. Finally, as there is an infinite number of pµ satisfying

p2 = m2 for each m2, irreducible representations are infinite dimensional. Casimir

operator C2 = W 2 is more complicated, so it will be discussed later and we will fo-

cus only on this classification for now. Lastly, states with m2 > 0, corresponding to

massive particles, belong to different representation from massless m2 = 0 particles.

41



We will consider only these classes as only they are physical. We now return to the

question of the basis vectors.

Mutually commuting operators share the eigenspace. As a result, according to

commutator relation C.16-C.18, one of the components of Pauli-Lubanski pseudovec-

tor can be chosen as label which determines state vector uniquely. It remains to de-

termine the meaning of Pauli-Lubanski pseudovector and show how the irreducible

representation is generated from standard vector. Taking into consideration the dis-

cussion above, let’s start with massive representations m2 > 0.

We choose the standard momentum as the one with eigenvalue p = (m, 0, 0, 0),

describing particle in its rest frame. Dimension of space belonging to the rest frame

momentum is determined by existence of generators which leave the rest momentum

invariant, i.e., its little group. Here, the Pauli-Lubanski components reduce to

W 0 = P · J = 0 , (4.8)

W = −P 0J + P ×K = −P 0J = mJ , (4.9)

Thus, in the rest frame Pauli-Lubanski pseudovector has only spatial components,

proportional to angular momentum. As a consequence,

[Wµ,Wν ] = iεµνρW
ρ , (4.10)

from which one may recognize that the little group is SO(3). This is true for all

massive representations. It should be noted that angular momentum in rest frame

can only come from spin. What’s more, Casimir operator C2 is in the rest frame equal

to

C2 = W 2 = −m2J2 , (4.11)

Thus, eigenvalues of C2 represent spin, and Wi is its projection. Moreover, since C2

is Poincaré invariant it can be evaluated in any frame. The value of spin of mas-

sive particles is the same in any state within the representation. In conclusion, this

shows that mass and spin are concepts related to symmetry of flat spacetime given

by Poincaré group.

Finally, the basis vectors of the subspace corresponding to p = (m, 0, 0, 0) are
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determined as

P µ|m, j; 0, j3〉 = pµ|m, j; 0, j3〉

W3|m, j; 0, j3〉 = −mj3|m, j; 0, j3〉
(4.12)

where component of Pauli-Lubanski pseudovector we have chosen is W3, projection

of spin onto z axis, as it is common in quantum mechanics. From there we also know

that the rest of basis vectors of the little group is obtained by acting with raising and

lowering operators J±. In addition, dimension of subspace belonging to momentum

eigenvector is 2j + 1. The first two labels refer to the representation and are usually

left out.

Elements of little group mix only the states with the same value of momentum. To

generate entire irreducible invariant space one must act with transformations which

produce new eigenvalue of momentum. Let’s start by considering pure Lorentz boost

defined as

U(L(p)) ≡ [R−1(p)]′′Lz′(p)R(p) , (4.13)

where R(p) rotates z axis, projection axis of spin, of the rest frame into direction of

p. The new frame obtained by such rotation is denoted by primes. The z′ axis is

then boosted in direction of p. Finally, inverse rotation [R−1(p)]′′, i.e., rotation in the

opposite direction of R(p) but by the same amount, maps z′ to z′′, which is parallel

to z. Hence, the action on standard state vector results in

U(L(p))|m, j; 0, j3〉 = |m, j;p, j3〉 . (4.14)

Pure Lorentz boosts transform the particle into state with arbitrary momentum but

same projection of spin onto z axis, i.e., the boosted frame has the same orientation

as the initial one.

In summary, one can generate basis vectors of representation space by acting with

J± and U(L(p)) on |m, j; 0, j3〉. It is left to prove that vectors obtained in such way

span irreducible invariant subspace of the Poincaré group. To start, note that the

vector space spanned by {|m, j;p, j3〉} must be irreducible as it’s generated from one

single vector by above explained procedure. To show that the space is invariant one
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must show that vectors {|m, j;p, j3〉} for fixed value ofm and j transform only among

themselves under Poincaré transformations. Due to 4.4 we can consider translations

and Lorentz transformations separately.

Starting with translations, the first step is to show that |m, j;p, j3〉 is an eigenstate

of P µ,

P µ|m, j;p, j3〉 = P µU(L(p))|m, j; 0, j3〉

= U(L(p))U(L(p))−1P µU(L(p))|m, j; 0, j3〉

= U(L(p))U(L(p))µνP
ν |m, j; 0, j3〉

= U(L(p))|m, j; 0, j3〉L(p)µνp
ν

= pµ|m, j;p, j3〉 .

(4.15)

The first equality follows from 4.14, the second by inserting 1 = U(L(p))U(L(p))−1,

and the third from C.5. Note that C.5 follows from 4.5, so it is true because the

translation subgroup is invariant subgroup. Thus, matrix element of irreducible rep-

resentation is

e−iaP |m, j;p, j3〉 = e−iap|m, j;p, j3〉 . (4.16)

This follows directly from 4.15. Since we are dealing with abstract Hilbert space

we cannot write down the explicit expression for the momentum generator, but it is

hermitian so that the representation is unitary. As expected, because the translation

subgroup is Abelian, its irreducible representation is one-dimensional. What’s more,

under translations, states are invariant up to a phase, i.e., under translations the basis

vectors are mapped into themselves.

Next, we turn to Lorentz group. Consider

U(Λ)|m, j;p, j3〉 =
∑
j′3

D(j)

j′3j3
(RW )L(Λp)|m, j; 0, j′3〉

=
∑
j′3

D(j)

j′3j3
(RW ) |m, j;p′, j′3〉 ,

(4.17)
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with p′µ = Λµ
νp

ν . This stems from

U(Λ)|m, j;p, j3〉 = U(Λ)L(p)|m, j; 0, j3〉

= U(ΛL(p))|m, j; 0, j3〉

= U(L(Λp) L−1(Λp)ΛL(p)︸ ︷︷ ︸
≡RW

)|m, j; 0, j3〉 .
(4.18)

The first line is obtained using 4.14. The second line follows from the composition

rules and the third by inserting identity L(Λp)L−1(Λp) = 1. Wigner rotation RW is an

element of little group since it transforms the momentum so that p̊ → p → Λp → p̊,

where p̊ is the rest momentum. As a result Dj(RW ) is unitary representation matrix

of SO(3) group corresponding to eigenvalue j, called Wigner D-matrix. Thus, we

have shown that under Lorentz transformations state vectors {|m, j;p, j3〉} transform

only among themselves.

In summary, space of states belonging to particle of mass m and spin j is obtained

from unitary irreducible representation of Poincaré group. The space is infinite di-

mensional as there are infinitely many pµ obeying p2 = m2, with elements of Poincaré

group permuting them along the mass shell. To reflect on the discussion from the be-

ginning, equation that is transformed under elements of the Poincaré group yields a

state that is either rotated, boosted or translated with respect to the old state. All

these states share the same value of mass and spin, i.e., describe the same particle in

different state.

We now turn to massless particles. The consideration follows the same steps, with

the only difference being the little group. As standard vector we choose the one with

eigenvalue

p0 = (E, 0, 0, E) . (4.19)

One can immediately expect that the little group contains SO(2) group. To determine

it, notice that for 4.19

WµP
µ =

1

2
εµρσνM

ρσP νP µ . (4.20)

Right-hand side is zero because Levi-Civita is antisymmetric, while the product of
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momentum is symmetric. Expanding the left-hand side,

EW 0 − EW 3 = 0 =⇒ W 0 = W 3 = EJ3 (4.21)

The rest of components are

W1 = E(K2 − J1) ,

W2 = −E(K1 + J2) .
(4.22)

The algebra of the little group is

[W1,W2] = 0 ,

[W2, J3] = iW1 ,

[W1, J3] = −iW2 .

(4.23)

These are commutation relations of algebra of Euclidean group in two dimensions E2

consisting of rotation specified by angle θ and translations specified by parameters δ

and η. General element g ∈ E2 can be written as

g(δ, η, θ) = T (δ, η)R(θ) , (4.24)

where T (δ, η) ≡ g(δ, η, 0) refers to translations and R(θ) ≡ g(0, 0, θ) to rotations. For

four-vector one can express the transformations as

R(θ) =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 (4.25)

and

T (δ, η) =


1 + ζ δ η −ζ

δ 1 0 −δ

η 0 1 −η

ζ δ η 1− ζ

 (4.26)
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with ζ = (δ2 + η2) /2. In fact, one can conclude from 4.23 that W1 and W2 are

generators of translations as their commutation relations are the same as those of

momentum C.11, while J3 is generator of rotations. Furthermore, the multiplication

rule is

g(δ, η, θ)g(δ′, η′, θ′) = g(R(θ)δ + δ′, R(θ)η + η′, θ + θ′) , (4.27)

so the inverse is g(−R(−θ)δ,−R(−θ)η,−θ). One more property we will need in

the following derivation is the fact that group of translations is invariant Abelian

subgroup of E2,

g(δ, η, θ)T (δ′, η′)g(δ, η, θ)−1 = T (δ, η)R(θ)T (δ′, η′)R(−θ)T (−δ,−η)

= T (δ, η)T (R(θ)δ′, R(θ)η′)T (−δ,−η)

= T [R(θ)δ′, R(θ)η′] .

(4.28)

Returning now to the little group, note that besides momentum, one can also label

the states with eigenvalues of W1 and W2 since they mutually commute according to

4.23. Hence, the states are defined as

P µ|p0, w1, w2〉 = pµ0 |p0, w1, w2〉 ,

W1|p0, w1, w2〉 = w1|p0, w1, w2〉 ,

W2|p0, w1, w2〉 = w2|p0, w1, w2〉 .

(4.29)

It remains to determine the meaning of W1 and W2. Let’s begin with the eigen-

values. Because translation subgroup is an invariant subgroup according to 4.28,

U(R)|p, w1, w2〉 is also an eigenstate of Wi. So, we start by determining what

U(R(θ))−1WiU(R(θ)) is equal to. One can follow the same procedure as when de-

riving Poincaré algebra in C.5, but there is a shortcut. As it can be seen from the

multiplication rule, rotation group is additive. Furthermore, as the group only has

one generator, the group is Abelian. So, just as we derived for momentum, we have

for rotations

U(R(θ)) = e−iθJ3 . (4.30)

The representation is unitary because J3 is hermitian. Thus, U(R(θ)−1WiU(R(θ)) is
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equal to

f(θ) ≡ e−iθJ3W1e
iθj3 , (4.31)

g(θ) ≡ e−iθJ3W2e
iθj3 , (4.32)

where we defined f(θ) and g(θ), operator valued functions. Taking derivative with

respect to θ and using the commutator relations 4.23, one obtains

df

dθ
= −g(θ) , (4.33)

dg

dθ
= f(θ) , (4.34)

which can be solved by differentiating one of the equations and inserting it into the

other, with initial conditions f(θ = 0) = W1 and g(θ = 0) = W2, to be in accordance

with 4.29. The result is

f(θ) = W1cosθ −W2sinθ , (4.35)

g(θ) = W1sinθ +W2cosθ . (4.36)

Thus, eigenvalues of U(R(θ))|p0, w1, w2〉 are

W1U(R(θ))|p, w1, w2〉 = U(R(θ))U(R(θ))−1W1U(R(θ))|p0, w1, w2〉

= (w1cosθ − w2sinθ)U(R(θ))|p0, w1, w2〉

W2U(R(θ))|p0, w1, w2〉 = U(R(θ))U(R(θ))−1W2U(R(θ))|p0, w1, w2〉

= (w1sinθ + w2cosθ)U(R(θ))|p0, w1, w2〉

(4.37)

Spectrum of W1 and W2 is continuous, as there is an eigenvalue for each value of θ.

This was expected as they generate translations. It turns out however, that particles

do not have properties corresponding to such continuous degrees of freedom. For

example, photon is massless particle of spin-1, with two possible polarizations, i.e.,

only discrete eigenvalues. This is why we limit physical states by requiring W1 =

W2 = 0. Thus, the little group is reduced to only one generator, J3 = 1
E
W3 and the

group is SO(2). To determine eigenvalues of W3 note that,

C2 = (W 0)2 − (W 3)2 = 0 . (4.38)
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From the fact that Pauli-Lubanski pseudovector has only zeroth and third component,

which are equal, and because W 2 = C2 = 0, the Pauli-Lubanski pseudovector must

be proportional to 4.19, i.e.,

W µ = λP µ =⇒ λ =
JP

P 0
, (4.39)

where the last line follows from 4.9. One may recognize λ as helicity, projection of

spin onto momentum of massless particle. Unlike spin, one can show that helicity

commutes with generators of Poincaré group, i.e., it is Poincaré invariant. This is

because massless particles always travels at the speed of light, so one cannot boost to

the frame where direction of momentum would be reversed. Furthermore, helicity

can have only two values, depending on whether spin is parallel or antiparallel to

direction of motion. As a result, eigenvalues of W3 are λ = ±j. Finally, basis vectors

of little group are labeled as

P µ|m = 0, j = 0;p0,±j〉 = pµ|m = 0, j = 0;p0,±j〉 (4.40)

W3|m = 0, j = 0;p0,±j〉 = ±j|m = 0, j = 0;p0,±j〉 (4.41)

As label, one may choose the projection with positive or negative sign. Starting from

any of them will generate the basis of irreducible invariant subspace of massless

particles, related by parity transformation. We now generate the rest of the basis

vectors. As rotation group in two dimensions is Abelian, the subspace belonging to

4.19 is one-dimensional, while general momentum can be obtained by applying

|m = 0, j = 0;p,±j〉 = R(φ, θ, 0)U(L0(p))|m = 0, j = 0;p0,±j〉 , (4.42)

where L0(p) boost the momentum to value |p| = etanh−1(β)E without changing its

direction. Although massless particle always travels with the speed of light, it’s en-

ergy depends on frequency. As a result, energy is an observer dependent quantity, so

U(L0(p)) changes the value of reference momentum, and the rotation R(φ) brings it

to arbitrary direction specified by angles φ and θ.

Finally, following the same procedure as for massive case, one can show that

{|p,±j〉} spans irreducible, invariant subspace of representation labeled by m = 0

and j = 0, so the derivation will not be repeated. The matrix elements of the repre-
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sentation are

U(1, a)|p,±j〉 = e−iap|p,±j〉 , (4.43)

U(Λ, 0)|p,±j〉 = e±jiθ(Λ,p)|Λp,±j〉 . (4.44)

We have left out the labels of representation, C1 and C2 since they vanish. Angle

θ(Λ, p) can be determined from

e±iθ(Λ,p) = 〈p0,±j|L0(Λp)−1ΛL0(p)|p0,±j〉 . (4.45)

As mentioned, helicity is Poincaré invariant quantity, so Lorentz transformation can

only change the state up to phase [81][80][82].

To sum up, physical states of mass and spin labelled by momentum and spin or

helicity arise from irreducible representations of Poincaré group, the symmetry group

of flat spacetime.

4.2 Fields and particles

As it was explained, objects living on flat spacetime arise from some representation of

Poincaré group. The particle states are physical states and as such must be associated

with unitary representation. This however, is not the case for fields. They are oper-

ator valued spacetime functions that are not physical observables. As result, there is

no reason to demand unitarity, so the field transform under finite dimensional rep-

resentation. Thus, we briefly discuss how the finite dimensional representations of

Lorentz group are characterized.

One can show that Lie algebra in basis consisting of Mi and Ni defined as

Mi =
Ji + iKi

2
,

Ni =
Ji − iKi

2
,

(4.46)

50



reduces to direct product of two subalgebras,

[Mi,Mj] = iεijkM
k ,

[Ni, Nj] = iεijkN
k ,

[Ni,Mj] = 0 .

(4.47)

One may recognize that this algebras belong to SU(2) ∼= SO(3). Hence, the is alge-

bra of Lorentz group is equivalent to SU(2) × SU(2). Also, one can see from 4.46

that such generators will not result in unitary representation, since both Mi and Ni

cannot simultaneously be hermitian. As a consequence, such representation can-

not correspond to physical states. Moving on, the Casimir operators of the group

in such basis are M2 and N2, whose eigenvalues are u(u + 1) and v(v + 1) respec-

tively. So, one can label representation by (u, v), and the basis vectors are direct

product of |k, l〉, k = −u, ..., u, and |v, l〉, l = −v, ..., v. With these vectors one can

form a new basis |j,m〉 where j(j + 1) is eigenvalue of J2, and m is eigenvalue of J3,

with |u − v| ≥ j ≥ u + v, so that we no longer have to distinguish between the two

subgroups SU(2).

As fields and physical states are in different representations, there is no automatic

relation between them. Instead, the correspondence between field and particle is

established by connecting the field with a particle state it creates or destroys. The

goal is to show that a field transforming according to 4.48 describes a state of definite

mass and spin.

U(Λ)Ψ(x)aU(Λ−1) = D(Λ−1)abΨ
b(Λx) , (4.48)

where U(Λ) is non-unitary representation of Lorentz group on Hilbert space where

Ψ lives, and D(Λ) is n×n matrix representation of Lorentz group. What’s more, field

is by definition a function of spacetime. As a result, translation generators act as18

PµΨa = −i∂µΨa(x) . (4.49)

Thus, the translations are already taken into account, so we focus our attention to

18In the previous chapter we have worked in an “abstract" Hilbert space, i.e., we haven’t stated what
the vectors of Hilbert space are, which is also why we couldn’t write down the explicit form of the
generators. Here, we chose Hilbert space of position base of square integrable functions.
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the Lorentz group.

The starting point in relating unitary irreducible representations of Poincaré group

with solutions of the field equations Ψ is the field equation which Ψ satisfies. Since,

as we have seen, fields transform under finite dimensional Lorentz representation

(u, v), fields for both u and v both different from zero have multiple spin content.

Then, to ensure fields correspond to particle states of some irreducible representa-

tion (which has only single spin) the differential equation should act as a projection

matrix selecting out desired components of spin from Ψ. In short, field equation must

impose enough Poincaré invariant conditions onto fields, without over constraining

the solution space. By solving the field equations as usual, by Fourier transform, one

can show that the solution space is equivalent to particle of spin-j propagating on

flat spacetime.

Hence, to ensure the representation is irreducible, one should impose

(∂2 −m2)Ψ = 0 . (4.50)

The differential equation, when converted into algebraic form using Fourier trans-

form, converts to relativistic energy-momentum relationship,

Ψa(x) =

∫
d4p

(2π)3
Φa(p)eipx , =⇒ (p2 −m2)Φ(p) = 0 . (4.51)

With this condition we fix P 2. Next, to account for spin degrees of freedom, the equa-

tion should impose transversality ∂aΨa = 0, tracelessness ηabΨab = 0, symmetricity

Ψab = Ψba etc. These conditions make sure we are dealing with simplest finite, irre-

ducible representations of Lorentz group, i.e., that the fields have the same degrees

of freedom as the particles. We will come back to this later.

The solutions of the equation are referred to as positive and negative energy

solutions,

E = ±(p2 +m2)
1
2 . (4.52)

Finally, if εa(p, λ) are elementary solutions of the field equation, defined as

εa(p, λ) = D(L(p))abε
b(0, λ) , (4.53)

52



the general solution is obtained by separating positive and negative types of solutions

as a linear combination of the elementary solutions,

Ψ(x) =
∑
λ

∫
d3p

(2π)3
√

2E

(
a(p, λ)εa(p, λ)eipx + a†(p, λ)ε∗a(p, λ)e−ipx

)
, (4.54)

where a(p, λ) are operator valued functions. We use λ to label helicity in the massless

case and projection of spin in massive case. The Poincaré states we defined in the

previous section can be written as

|p, λ〉 = a†(p, λ)|0〉 , (4.55)

where |0〉 is a vacuum state. To shorten the notation we leave out the labels of the

representation. From previous discussion, we know how the states should transform

under infinite dimensional unitary representation of the Lorentz group. As a result,

the creation operators should transform as

U(Λ)a†(p, λ)U(Λ−1) = D(j)(R(Λ, p))λ
′

λ a
†(Λp, λ′) , (4.56)

U(Λ)a(p, λ)U(Λ−1) = D(j)(R(Λ, p)−1)λ
′

λ a(Λp, λ′) . (4.57)

From 4.54 one concludes that complex wave function εa(p, λ)eipx are the coefficient

functions connecting the set of operators a(p, λ), transforming as irreducible unitary

representation (m, j) of the Poincaré group, to set of field operators Ψa(x) trans-

forming as finite dimensional non-unitary representation of Lorentz group. Their

transformation law can be obtained by comparing the left-hand side of 4.48,

U(Λ)Ψ(x)aU(Λ−1) = D(Λ−1)abΨ
b(Λx) (4.58)

= D(Λ−1)aa′
∑
λ

∫
d3q

(2π)3
√

2E

(
a(q, λ)εa

′
(q, λ)eiqΛx + c.c.

)
(4.59)

= D(Λ−1)aa′
∑
λ

∫
d3p

(2π)3
√

2E

(
a(Λp, λ)εa

′
(Λp, λ)eipx + c.c.

)
,

(4.60)

where the last equality is obtained by substituting p = Λ−1q, and the right-hand side
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which is equal to

∑
λ,λ′

∫
d3p

(2π)32E
D(j)(R(Λ, p)−1)λ

′

λ a(Λp, λ)εa(p, λ′)eipx + c.c. . (4.61)

As a result,

D(Λ−1)aa′ε
a′(Λp, λ) = D(j)(R(Λ, p)−1)λ

′

λ ε
a(p, λ′) , (4.62)

or equivalently,

D(Λ)aa′ε
a′(p, λ) = D(j)(R(Λ, p))λλ′ε

a(Λp, λ′) . (4.63)

Expression 4.63 is necessary and sufficient condition for field to transform according

to 4.48. Let’s now explicitly calculate how fields corresponding to massless particles

transform under Lorentz transformation. First, condition 4.63 turns to

D(Λ)aa′ε
a′(p, λ) = e±j,θ(Λp)εa(Λp, λ′) , (4.64)

with the help of 4.44. As explained, to satisfy 4.63 it is enough to consider little

group of the standard vector and boosts using which one reaches all the other basis

vectors. Hence, consider Λ = L(p0)

D(L(p0))aa′ε
a′(p0, λ) = εa(p, λ′) , (4.65)

since e±jθ(L(p0),p) = 1. Next, under the action of elements of little group we have

D(RW )aa′ε
a′(p0, λ) = e±jθ(W,p0)εa(p0, λ

′) . (4.66)

One can treat the rotations and translations separately, so

D(R(θ))aa′ε
a′(p0, λ) = e±jθεa(p0, λ

′) ,

D(T (η, δ))aa′ε
a′(p0, λ) = εa(p0, λ

′) ,
(4.67)

Let’s now narrow down the consideration even further to massless particles of he-

licity ±1. Such states correspond to fields in finite representation called four-vector
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representation, labeled by (u = 1
2
, v = 1

2
), as they are the simplest objects that can

account for spin content, since it follows that 0 ≤ j ≤ 1. In four-vector representation

D(Λ) = Λ . (4.68)

As a result, from 4.65 and 4.67 we have

L(p0)µνε
ν(p0,±1) = εµ(p,±1) ,

R(θ)µνε
ν(p0,±1) = e±iθεµ(p,±1) ,

T (η, δ)µνε
ν(p0,±1) = εµ(p,±1) ,

(4.69)

where the rotation is given by 4.25 and translation by 4.26.

One can satisfy the rotation requirement with

εµ(p0,±1) =
1√
2

(1, 0, 0,±i) , (4.70)

but then, as a result of action of the little group we get

Dµ
ν (RW (θ, η, δ))εν(p0,±1) = T µρ (η, δ)Rρ

ν(θ)ε
ν(p0,±1) (4.71)

= e±θ
(
εµ(p0,±1) + pµ0

η ± iδ√
2|p0|

)
. (4.72)

For a general momentum this reduces to

εµ(Λp,±1)ε±iθ(p,Λ) = Λµ
νε

ν(p,±1) + pµΩ±(p,Λ) . (4.73)

We are not interested in the explicit form of Ω±. Finally, the field of massless spin-1

particle is Aµ(x)

Aµ(x) =
∑
λ

∫
d3p

(2π)3
√

2E

(
a(p, λ)εa(p, λ)eipx + a†(p, λ)ε∗a(p, λ)e−ipx

)
, (4.74)

which, according to 4.73, transforms as

U(Λ)Aµ(x)U−1(Λ) = Λν
µAν(Λx) + ∂µΩ(x,Λ) . (4.75)

Hence, the field related to massless particle does not transform covariantly under
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Lorentz transformations. The second term, which ruins the covariance, is a conse-

quence of the fact that the little group of massless states contains translations. As we

have seen, these transformations do not correspond to observable quantities. Instead,

they are called gauge transformations and we interpret them as relating different de-

scriptions of the same physical state.

This concludes the discussion of Poincaré group. We now turn to studying con-

served quantities, which is just a continuation of discussion about symmetries.

4.3 Noether’s theorem and conservation laws

The goal of this section is to find conserved currents and charges of a theory described

by action S[ψi], given by 4.76.

S[ψi] =

∫
d4xL(ψi, ∂µψi) , i = 1, ..., N . (4.76)

We will refer to Lagrangian density L as Lagrangian. It is a function ofN fields ψi(x)19

and their derivatives20 ∂µψi(x). Fields are functions of points labeled by coordinates

xµ.

As it is known, conservation of a quantity is a consequence of some symmetry

transformation of the action. But, before we define what kind of transformations are

considered to be symmetry transformations, let’s discuss transformations of action

in general. First, transformation under which the action transforms acts on fields,

since action is a functional. Secondly, transformations may be continuous or dis-

crete, both resulting in conserved quantity if they represent symmetry. However,

Weinberg−Witten theorem applies only to charges derived from conserved currents

and they can result only from continuous symmetry, as only such transformations

allow one to define currents and densities, quantities varying continuously in space.

As an example of discrete symmetry transformation consider parity transformation

in non-weak interactions. Conserved charge, a consequence of this symmetry, is in-

ternal parity, which exists only as a global notion — one cannot define density of

internal parity. Consequently, since the current would describe the flow of quantity

19Field ψi is not necessary a scalar field. Indices are suppressed to simplify the notation.
20The Lagrangian may in general be a function of higher order derivatives and coordinates, but

as we are interested in Standard Model theories it is enough to limit the Lagrangian to form 4.76.
Lagrangian describing gravity does contain derivatives of the field of the second order, but as it will
be shown below, it is enough to consider 4.76.
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as density changes, there can be no current. From this point on, transformations will

refer only to continuous one.

Formally, continuous transformations form a Lie group, introduced in the previous

section. We will distinguish between global Lie groups containing n finite (or count-

ably infinite) number of independent, constant parameters ωa = const., and local

Lie groups with continuously infinite number of parameters, i.e. parameters that are

arbitrary functions of coordinates ωa = ωa(x). Accordingly, one refers to elements of

infinite dimensional Lie group, which act independently at different points, as local

transformations, and to elements of finite dimensional Lie group as global transfor-

mations, since they transform the field by the same value at each point. What’s more,

since Lie group can be obtained from its generators, it is enough to study how the

fields transform under infinitesimal transformations. The change of the field under

infinitesimal transformation is called variation δψi,

ψi(x)→ ψ′i(x) = ψi(x) + δψi(x)

=⇒ δψi(x) = ψ′i(x)− ψi(x) .
(4.77)

It contains terms of the lowest power of the parameters and (in the case of local

transformation) their derivatives,

δψi(x) = αi(ψi, ∂ψi)ω + βµi (ψi, ∂ψi)∂µω , (4.78)

where αi and βi are some functions, whose explicit form depends on the form of

transformation. Furthermore, one can divide the transformation between those that

act on spacetime points, called spacetime transformations, and all others referred to

as internal transformations. Hence, let’s determine the variations of fields, starting

with spacetime transformations.

One begins by defining how points transform under spacetime transformation.

Consider vector field ξ. At any given point it generates a unique local integral flow

Φξ. Using the flow, one can move a point a parameter distance ε ∈ I ⊆ R as defined

by map Φξ
ε ,

Φξ
ε : U →M

P 7→ Φξ
ε(P ) = Q .

(4.79)
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By “flowing" for the amount ε starting from each point P ∈ U , along integral curve

through P , the point is moved to a new position denoted as Q. If the vector field

is complete, I = R, one has U = M , so the flow is defined on an entire manifold,

and it is called global flow. Concerning integral curves, this means that they don’t

have an end point. In such case, the map Φξ
ε is called diffeomorphism, and the family

{Φξ
ε}ε∈R is called one-parameter group21 of ξ. It is a Lie group, with vector field

ξ as the generator. In a chart induced basis ξ = ξµ∂µ, where ξµ is parameter of

the group. As explained, if ξµ = ξµ(x) the group has continuously infinite number of

parameters, i.e., it is local Lie group. Sometimes we will refer to it as group of general

diffeomorphisms. For infinitesimal transformations we will write ξµ(x)ε = εµ(x),

where ε is infinitesimal. Hence, infinitesimal spacetime transformation is in a chart

xµ described as

x(P ) = xµ → x(Q) = xµ + ε(x)ξµ = xµ + εµ(x) , (4.80)

Since we’re dealing with infinitesimal transformations, one does not move very far

away under the flow and only one chart can be used. Thus, under infinitesimal trans-

formation, point P with coordinates xµ is moved along the flow to a new position Q

with coordinates xµ + εµ.

Let’s now see what happens to scalar field φ(x), belonging to (u = 0, v = 0)

representation, when dragged along the flow Ψξ
ε . We say that the transformation

generates a new field φ′(x), called pushed-forward of φ(x), such that

φ′(x(Q)) = φ(x(P ))

φ′(x+ ε) = φ(x) .
(4.81)

The spacetime transformation 4.80 mapped φ into new field φ′, which has the same

value at Q as the original field at P , i.e., φ′ describes a new configuration of points.

This is why the new field is called the pushed-forward field. The relationship 4.81

21The group can be defined only for complete vector fields because otherwise the composition of
Φξs ◦ Φξt may not be defined, as one may exist the domain of integral curve.
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from the point of view of the new field is obtained by

φ′(x′) = φ(x′ − ε(x′))

= φ(x′)− εµ(x′)∂µφ(x′) ,
(4.82)

since, according to 4.80, x(x′) = x′−ε. Usually, in the last step we relabel coordinates

x′ ↔ x,

φ′(x) = φ(x)− εξµ(x)∂µφ(x)

= φ(x)− Lξφ .
(4.83)

Infinitesimal change of field under diffeomorphism is described by Lie derivative L.

Spacetime transformation generates a new field φ′ by pushing field φ in the direction

of vector field ξ by amount (−ε). We get the minus sign because 4.83 is from point

of view of the new field22.

Let’s now see how to deal with fields of higher tensor rank. Unlike for the scalar

field, we must take into account that the components change. Consider vector field

V µ
(x)(x) and pushed-forward vector field V ′µ(x)(x). The subscript denotes the chart in

which coordinates are evaluated. The relationship between the vector fields is

V ′µ(x)(x(Q)) = V µ
(y)(y(P )) , (4.84)

where y is a chart such that23

yµ = xµ + εµ . (4.85)

22Let’s say that scalar field φ describes temperature field, which is generated by an oven, and that
the temperature field has as extremum at point P , the position of the oven. If the oven is moved to
new point Q, then this is the point of extremum and the new distribution of temperature is described
by field φ′. One can see that the old field had the same value at P as the new field has at Q, which is
expression 4.81. Furthermore, φ′(Q) = φ((Φξλ)−1Q), as P = (Φξλ)−1Q. The last equality describes φ
from the point of view of the new field.

23It is easiest to explain 4.84 on an example. Consider vector field in three dimensions that one
rotates by a right angle about z axis. After the transformation the vectors point into different direction
and their base point changed if it was not on rotation axis. Consider a vector VP whose base point
is x(P ) = (1, 0, 0), so that it’s not on rotation axis. After the transformation, the base point is at
x(Q) = (0, 1, 0). Furthermore, let’s say the components of VP prior to the rotation are V(x)(x(P )) =
(a, 0, 0). After the transformation the new configuration is described by a vector field V ′. As a result
V(x)P = (a, 0, 0), and V ′(x)Q = (0, a, 0). To find relationship between the new and the old components
in the sense of 4.81 we use the freedom of using any (compatible) chart. Hence, in y chart given by
4.85 one can see that V(y)(y(P )) = (0, a, 0) = V ′(x)Q.
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However, one can only see how the field actually changed when both are written

in the same chart. To transform V(y) back to x chart we use the rule for vector

components transformation,

V(y)(y(P ))µ =
∂yµ

∂xν
V ν

(x)(x(P )) . (4.86)

Inserting 4.86 into right-hand side of 4.84 leads to

V ′µ(x)(x(Q)) =
∂yµ

∂xν
V ν

(x)(x(P ))

V ′µ(x)(x+ ε) =
∂yµ

∂xν
V ν

(x)(x)

=
(
δµν + ∂νε

µ(x)
)
V ν

(x)(x) .

(4.87)

As both sides of 4.87 are in the same chart we will drop the subscript. As before, we

wish to express relationship 4.87 from the point of view of the new field, so

V ′µ(x′) =
(
δµν + ∂νε

µ(x′)
)
V ν(x′ − ε(x′))

=
(
δµν + ∂νε

µ(x′)
)(
V ν(x′)− ερ(x′)∂ρV ν(x′)

)
V ′µ(x) = V µ(x)−

(
εν(x)∂νV

µ(x)− V ν(x)∂νε
µ(x)

)
= V µ(x)− LξV

µ .

(4.88)

Note that ε(x) = ε(x′) + O(ε2). In the last step we just relabeled the coordinates.

The first term in 4.88 in the curly brackets is the same as in 4.83. It corresponds to

shifting of the field, or more precisely, the base points. The second term corresponds

to transformation of components. The above procedure is analogous for tensors of

different rank.

In summary, variation of the field caused by infinitesimal spacetime transforma-

tion δε is given by Lie derivative.

ψi(x)→ ψi(x)− Lξψi , =⇒ δεψi = −Lξψi . (4.89)

One can check, by transforming the coordinates that Lie derivative is a tensorial

quantity, independent of chosen chart.

Aside from spacetime transformations, there are symmetries related to internal

degrees of freedom important for the first part of the theorem. In case of Standard
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Model they are elements of SU(N) group, whose generators Xa of the underlying

algebra satisfy

[Xa, Xb] = ifabcXc , (4.90)

where fabc are structure constants. In such case, one usually works with fields in

either fundamental or adjoint representation. In the fundamental representation the

generators are represented as traceless, hermitian N×N matrices that act on column

vectors with N elements,

ψfund
i → Uψfund

i =⇒ δ0ψ
fund
i = iωaX

aψfund
i = iωψfund

i , (4.91)

where U = eiωaX
a is en element of global group. Infinitesimal change of the field

under SU(N) group is denoted by δ0. On the other hand, in the adjoint represen-

tation generators are represented on vector space of the algebra. As a consequence,

elements of the algebra A transforms by conjugation

A→ UAU−1 , (4.92)

and the variation is obtained by looking at infinitesimal transformation U = 1+iωaX
a

leading to

δ0A = ωafabcA
bXc . (4.93)

Expressions 4.91 and 4.92 continue to hold for local case where ω = ω(x), except for

gauge field A which in such case transform as

A→ UxAU
−1
x + iUx∂µU

−1
x =⇒ δ0A = Xa∂µωa + ωafabcA

b , (4.94)

The subscript x on U denotes the fact that we are dealing with local Lie groups. Com-

paring the above expressions to 4.78, one can see that gauge field will for example

have both α and β coefficients non-zero, while for fields in fundamental represen-

tation have only α as nonvanishing coefficient. Further, variation of action S[ψi]
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defined in 4.76 is

δS =

∫
d4x

δS

δψi
δψi , (4.95)

where δS
δψi

is the functional derivative of S, whereas the effect of any infinitesimal

transformation, symmetry or not, on Lagrangian is

L → L+ δL ,

δL ≡ ∂L
∂ψi

δψi +
∂L

∂ (∂µψi)
δ (∂µψi)

=

[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
δψi + ∂µ

(
∂L

∂ (∂µψi)
δψi

)
.

(4.96)

To obtain the second line one uses the fact that partial and variational derivative

commute,

δ(∂µψi) = ∂µψ
′
i − ∂µψi = ∂µ(ψ′i − ψi) = ∂µ(δψi) , (4.97)

and then partially integrates the second term in the first line of 4.96. The term in

square brackets are the left-hand side of Euler-Lagrange equations, also referred to

as equations of motion, or field equations. The second term is the boundary term.

Finally, we define symmetry group of the theory as the one that changes the action

at most by a total derivative.

δsL = ∂µK
µ =⇒ δsS = S[ψi + δsψi]− S[ψi] =

∫
d4x ∂µK

µ , (4.98)

where Kµ is some function. When we allow that Lagrangian changes up to boundary

term it is assumed that this new term vanishes under the same boundary conditions

which result in field equations in the first place. Symmetry variation is denoted by

index s. Thus, variation of the field δψi satisfying condition 4.98 is a symmetry

transformation. In other words, 4.98 is an equation for δsψi, and as such is true for
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any field, on-shell or off-shell24. As a result of 4.98 and 4.96, one has

∫
d4x∂µK

µ =

∫
d4x

{[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
δsψi + ∂µ

(
∂L

∂ (∂µψi)
δsψi

)}

0 =

∫
d4x

{[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
δsψi + ∂µj

µ

}
,

(4.99)

with jµ, defined as

jµ ≡ ∂L
∂ (∂µψi)

δsψi −Kµ . (4.100)

To simplify notation, let

[
δL
δψi

]
EL

≡
[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
. (4.101)

Thus, the symmetry transformations leads to the following integral-free relationship

[
δL
δψi

]
EL

δsψi = −∂µjµ . (4.102)

In general, the symmetry variation of the fields is of the form given by 4.78. Inserting

the expression into the left-hand side of 4.102 yields[
δL
δψi

]
EL

δsψi =

[
δL
δψi

]
EL

[αiω + βi∂µω]

=

{[
δL
δψi

]
EL

αi − ∂µ

(
βi

[
δL
δψi

]
EL

)}
ω + ∂µb

µ ,

(4.103)

where ∂µbµ = ∂µ

(
βi

[
δL
δψi

]
EL
ω
)

. Hence, 4.102 turns into

{[
δL
δψi

]
EL

αi − ∂µ

(
βi

[
δL
δψi

]
EL

)}
ω = −∂µ(jµ + bµ) . (4.104)

To draw some further conclusions we will get rid of the right-hand side25. Note that

ωa and it’s derivatives are arbitrary functions. Thus, we integrate over 4.104, and

choose the functions that vanish at the boundary. As a consequence, the right-hand

24Field is on shell if it satisfies equations of motion.
25Although there are some additional relationships one can obtain from 4.104 [83], they are not

important for our purposes.
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side vanishes since it is an integral over divergence. It then follows, for every ωa in

the interior,

[
δL
δψi

]
EL

αi − ∂µ

([
δL
δψi

]
EL

βi

)
= 0 . (4.105)

What one can conclude from 4.105 is that when symmetry group of the theory is

local,

• Field equations and their derivatives are not independent. Since 4.105 is true

for any field configuration it is an identity,

• Relationship 4.105 can be viewed as condition on the form of Lagrangian for

the variation of action to vanish under local transformations,

• If all fields satisfy field equations the result is tautology,

• If there are two set of fields, one such that the variations depends only on ω,

but not on it’s derivatives ∂ω and vice versa, and either of the sets (but not both

at the same time) satisfy field equations, one obtains conservation law.

Some application is shown further below, but one may recognize that 4.105 is the ori-

gin of what is known as covariant conservation laws. Expression 4.104, or sometimes

4.105, is known as the second Noether’s theorem.

We now turn to the case where the action is invariant under global Lie groups,

i.e., the situation where parameters are constant. We right away consider variation of

fields under diffeomorphism and SU(N) group (which doesn’t impose any restriction

on generality of the discussion),

δψi = δ0ψi − Lξψi

= αiωaX
a − ξµ∂µψi .

(4.106)

Because parameter is constant Lie derivative in 4.106 reduces to partial derivative.

Next, only diffeomorphisms change Lagrangian26. It transforms as a scalar density,

so

LξL = ∂µ(Lξµ) =⇒ Kµ = Lξµ . (4.107)

26If there are no background fields. This will be discussed below.
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Returning to 4.102, and after inserting 4.106 into 4.100 the right-hand side looks

like

jµ =
∂L

∂ (∂µψi)
δ0ψi −

[
∂L

∂ (∂µψi)
(ξν∂νψi)− δµνLξν

]
=

∂L
∂ (∂µψi)

αiω
aXa −

[
∂L

∂ (∂µψi)
(∂νψi)− δµνL

]
ξν

≡ Jµαω
α − T µν ξν .

(4.108)

We defined Jµα as

Jµα ≡
∂L

∂ (∂µψi)
αiXa , (4.109)

and the term in square brackets as T µν ,

T µν ≡
∂L

∂ (∂µψi)
(∂νψi)− δµνL , (4.110)

As a result, the expression 4.102 reduces to[
δL
δψi

]
EL

(αiω
aXa − ξµ∂µψi) = −∂µjµ =⇒[

δL
δψi

]
EL

αi,a = −∂µJµα ,[
δL
δψi

]
EL

∂µψi = −∂µT µν .

(4.111)

If the symmetry group of the theory is global, divergence of jµ is proportional to the

left-hand side of equations of motion. What’s more, if all fields are on-shell, i.e.,

fields satisfy Euler-Lagrange equations, 4.111 leads to conservation laws,

∂µj
µ = 0 . (4.112)

Furthermore, as ω and ε are independent,

∂µJ
µ
α = ∂µ

[
∂L

∂ (∂µψi)
αa,i

]
= 0 , (4.113)

∂µT
µ
ν = ∂µ

[
∂L

∂ (∂µψi)
(∂νψi)− δµνL

]
= 0 . (4.114)

These are local conservation laws, existing for each parameter of the group. Note

65



that on-shell equations of motion follow from Hamilton’s principle which fixes varia-

tion at the boundary, otherwise functional derivative is not defined, i.e., variation of

Lagrangian is not in the form 4.95.

This is the Noether’s first theorem, or just Noether’s theorem — symmetries of

action associated with global Lie groups result in conserved currents when the equa-

tions of motion are on-shell for all fields on which Lagrangian depends on. We will

refer to conserved quantities Jµα and T µν as Noether’s currents27, or canonical currents.

Furthermore, T µν is called energy-momentum tensor28 (EMT), because under space-

time translations the additional index ν transforms under Lorentz transformations,

so the resulting Noether current is a tensor of rank two.

It is left to derive the conserved charges, i.e., globally conserved quantities. Con-

sider 4.113 for example. One can write

∂µJ
µ
α = ∂0J

0
a + ∂iJ

i
α . (4.115)

We then define charge Qα as

Qα(t) ≡
∫
d3xJ0

a , (4.116)

The zeroth component of current is local density of charge Qa. Assuming all fields

vanish at spatial infinity, one may integrate 4.115 to obtain,

0 =

∫
d3x

[
∂0J

0
α(x, t) + ∂iJ

i
α(x, t)

]
=

∫
d3x∂0J

0
α(x, t)

= ∂0Qα(t) ,

(4.117)

where the second line follows from the mentioned boundary conditions. Hence,

charge is conserved in time as a consequence of local conservation, and the converse

is also true. Similarly, for EMT one defines the charge P µ

P µ ≡
∫
d3xT 0µ , (4.118)

27More precisely, Jµ = Jµαω
α and Tµν ξ

ν are currents, but we usually leave out the parameters since
they’ re constant.

28The name is misleading as EMT obtained by Noether’s procedure does not always transform as
second rank tensor under general coordinate transformations. We will come back to this point later.
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where P µ is total energy-momentum of the fields. Specifically, P 0 agrees with canoni-

cal HamiltonianH, so the zeroth component of EMT T 0µ is energy density. Moreover,

P µ is a Lorentz vector. This result is not obvious and it is known as von Laue’s the-

orem. Proof of it is based on assumption that T µν vanishes sufficiently fast at the

boundary [84].

Conserved charges resulting from Noether’s laws are called Noether’s charges. We

refer to them as global conservation laws as they state that the amount of charge is

constant in time. This on the other hand is not true for density. Since J0
a = J0

a(x),

even though charge is conserved, density is not. It can increase at some point, which

means that it decreased at another and as a result, there is a current, J ia, flowing

from one point to the other.

These two theorems determine conservation laws of a theory. It can be proved

that the converse of the theorems is also true. If there is a dependency between field

equations and its derivatives the symmetry group of the action is local. Furthermore,

if field equations can be written as divergences the symmetry group of the theory

is global. Moreover, if a symmetry group of a theory consists of local transforma-

tions that contain a non-trivial subgroup of global transformations then the second

Noether’s theorem applies to local transformations, resulting in identities 4.105, and

the first one to global, resulting in conserved quantities 4.112. However, since the

second theorem considers all possible parameters, it includes also the case when

parameters are constant. In other words, conservation laws arising from global sub-

group are just a consequence of 4.105. This means that divergent term in 4.111 is a

linear combination of field equations and it’s derivatives 29. The point is that in such

case, there will be no conservation law. To reformulate, to obtain the conservation

law one should be sure that the global symmetry group is not a subgroup of a bigger

group of local transformations [83][85][86][87][88][71][89].

Some further subtleties concerning the Noether’s theorems are in App A. We’ll

now apply the theorems to current theories describing charged massless particles —

QCD, describing spin-1 particles and gravity which describes spin-2 particles.

29The combination is linear because field equations occur linearly in both 4.111 and 4.104. Thus,
in general, the right-hand side of 4.102 is linear combination of field equations, their derivatives and
functions whose divergence vanishes.
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4.3.1 QCD

Gluon action describes massless spin-1 particles charged under SU(3) group. Thus,

the theory is in the scope of the first part of Weinberg−Witten theorem, with La-

grangian Lg given by 4.119.

Lg(Ga
µ) = −1

4
F a
µν(x)F µν

a (x) ,

F a
µν(x) = ∂µG

a
ν(x)− ∂νGa

µ(x) + fabcG
b
µ(x)Gc

ν(x)

= DµG
a
ν(x)−DνG

a
µ(x) + fabcG

b
µ(x)Gc

ν(x) .

(4.119)

Field Ga
µ is gluon gauge field and Dµ is gauge covariant derivative defined as

Dµψ = ∂µψ + iGµψ . (4.120)

To see if there is a conservation law we must determine the symmetry group. First,

the theory does not contain the background fields. Next, note that F µν
a is in the ad-

joint representation, so it transforms under elements of SU(3) group U = exp−iωa(x)Ta

as

Fµν → UFµνU
−1 , (4.121)

by definition. We have used Fµν = F a
µνTa. Since 4.119 can be written as

Lg(Ga
µ) = −1

2
Tr (FµνF

µν) , (4.122)

using the cyclic properties of trace one can easily see that Lagrangian is invariant

under local transformations. Even though the local group contains a global subgroup

which is also a symmetry of the theory, according to the second Noether’s theorem

we do not expect to obtain a conservation law, but an identity. Nevertheless, let’s see

what kind of identity one obtains. Starting from variation of the gluon field,

δ0Gµ,a = fabcG
c
µω

b + ∂µωa , (4.123)
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and comparing 4.123 to 4.78, we see that

αµ,a = fabcG
c
µ ,

βν,bµ,a = δνµδ
b
a .

(4.124)

Then, by varying 4.119,

∂Lg
∂(∂µGa

ν)
=

∂Lg
∂(DµGa

ν)
= −F µν

a ,

∂Lg
∂Ga

ν

= −fbacF νρ,bGc
ρ .

(4.125)

Finally, using 4.101 one obtains the left-hand side of Euler-Lagrange equations,

DµF
µν
a = ∂µF

µν
a − fbacF νρ,bGc

ρ . (4.126)

Inserting obtained expressions into the second Noether’s theorem 4.105, results in

(DµF
µν
a ) fabcG

c
ν = ∂ν(DµF

µν
a ) . (4.127)

Now, for the case of global transformation, coefficient β in 4.123 vanishes. Hence,

(DµF
µν
a ) fabcG

c
ν = 0 . (4.128)

The expression coincides with 4.111. Since structure constants and gluon field are

nonvanishing (otherwise, one would have F µν = 0, which leads to vanishing of the

Lagrangian 4.119), expression 4.128 implies that gluons satisfy

DµF
µν
a = 0 . (4.129)

The second Noether’s theorem for global transformations reduces to condition equiv-

alent to field equations. What’s more, this is so-called covariant conservation law.

One can expand the covariant derivative using 4.126, which leads to

∂µF
µν
a = fbacF

νρ,bGc
ρ . (4.130)
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This is a continuity equation, with the term on the right-hand side acting as a source.

In other words, covariant conservation law describes exchange of color charge among

the gluons. However, one may obtain a conservation law because tensor F µν
a is anti-

symmetric, which one may see from 4.119. Due to antisymmetricity,

∂ν∂µF
µν
a = ∂ν

(
fbacF

νρ,bGc
ρ

)
= 0 . (4.131)

Thus, current J ν
a , defined as

J ν
a = ∂µF

µν
a = fbacF

νρ,bGc
ρ =⇒ ∂µJ µ

a = 0 . (4.132)

is conserved, and the charges are given by

Qa =

∫
d3x∂µF

µ0
a =

∫
d3xF µ0,bGc

µfabc . (4.133)

We obtained conserved current Ja due to antisymmetric properties of F µν . What

remains to explain is the meaning of covariant conservation law and it’s reduction

to “ordinary" conservation law. Local symmetry is a way to implement interaction.

In 4.119 there is only one field, but the Lagrangian is non-linear, which means there

is self-interaction — gluons exchange the conserved charge among themselves, de-

scribed by covariant conservation law 4.129. What the conservation law 4.132 states

is that the system of gluons is closed, i.e., there are no other fields, besides the gluons

themselves, with whom the gluons can exchange the charge. Simply put, there are

no other fields that could act as a source. By adding interaction with quark field to

4.119 for example, we would obtain

∂ν
(
fbacF

νρ,bGc
ρ

)
= −∂µ(ψ̄γµT aψ) . (4.134)

As a result, the current would no longer be conserved. One could define conserved

current by moving everything to the left-hand side, but that would be a sort of an

empty statement. In such case, we could view the left-hand side as describing one

big field, whose current is conserved because there is nothing else in the universe the

field can exchange the charge with. Such current would also be charged under both

gluons and quarks, so it is not of interest, as quarks are massive particles [27][88].
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4.3.2 Gravitation

In quantum field theory, particle describing gravitation, considered to be excitation

of the metric field, is called graviton. The properties we are interested in with re-

gard to Weinberg−Witten theorem, are mass and spin. As it was shown, they can

be defined only on flat background, but let’s first deal with what kind of properties

one expects of graviton at all. First, the graviton should be massless, to account

for the fact that gravitation is a long-range force decreasing with distance30. Next,

the spin decides whether the force is attractive or repulsive, or more precisely, the

polarization sum does [41]. It turns out particles of even spin meditate attractive

force between particles of like charge, while particles with odd spin meditate repul-

sive force. Since gravitation is always attractive, only particles of even spin can be

its mediators. What’s more, graviton couples to anything carrying energy31, charge

of gravitational action, which includes itself and matter. As it was discussed above,

local energy (and momentum) distribution of a system is represented by its energy-

momentum tensor T µν . The only way for scalar field to couple to EMT is in the

form φT µµ , but for the electromagnetic field for example, the trace of EMT vanishes.

This would mean gravity doesn’t couple to electromagnetic field, which we know is

false, as gravity bends light. As a result, the gravitational force must be mediated by

spin-2 field32, and is as such related to field hµν transforming in symmetric, traceless

(u = 1, v = 1) representation.

In summary, graviton, particle meditating gravitational force should be massless,

spin-2 particle, corresponding to symmetric, traceless field hµν . Since the graviton as

massless particles has energy, it is charged. Thus, it is in the scope of the second part

of Weinberg−Witten theorem. What we are looking for is energy-momentum tensor

T µν whose T 0ν components are related to energy-momentum four-vector, which, as

it is known results from translation invariance.

As for the gluon case, to find conserved currents, we should start from action

30Although gluons are massless, strong force is not a long range force due to asymptotic freedom
— interaction between colour charged particles becomes weaker at higher energies. i.e., shorter dis-
tances, and because of colour confinement — only colour singlet particles can exist as free. As a result,
separating quarks results in production of quark-antiquark pair, and gluons end up confined within
hadrons. Hence, it is mesons, massive particles, which meditate force between hadrons. Furheremore,
it is hypothesized that by separating gluons, so called glueballs form, which are yet to be detected.
Glueballs should be massive, even though they are made of massless gluons. This is part of so called
mass-gap problem.

31Mass and energy are equivalent, according to the special equivalence principle.
32Theories with massless higher spin particles are over-constrained [90].
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describing gravitation. However, it turns out there are quite a few approaches, so

instead, we start from left-hand side of field equations, resulting from extremizing

the action.

Gµν ≡ Rµν −
1

2
Rgµν . (4.135)

Tensor Gµν is Einstein’s tensor, and Rµν is Ricci tensor constructed by contraction of

Riemann curvature tensor, while R is Ricci or curvature scalar,

R = gµν(Γσµσ,ν − Γσµν,σ)− gµν(ΓσµνΓρσρ − ΓρµσΓσνρ) , (4.136)

with Christoffel symbols Γ defined as

Γρµν =
1

2
gρσ (∂νgσµ + ∂µgσν − ∂σgµν) , (4.137)

dependent on metric and it’s first derivative. Although it isn’t obvious from the com-

pact notation, field equations are of the second order. If the right-hand side is zero

the equations describe free gravitational field. If there is a source term on the right-

hand side then there is interaction between gravity and matter. Because we wish to

find energy and momentum of graviton, we are not interested in source terms.

Let’s start the most standard way, from Einstein−Hilbert action

SEH [gµν ] =

∫
d4x
√
−gR , (4.138)

by varying the metric,

δSEH =

∫
d4xδ

(
gµνRµν

√
−g
)

=

∫
d4x
√
−g
(
(δgµν)Rµν

√
−g + (δRµν)g

µν
√
−g + (δ

√
−g)R

)
=

∫
d4x
√
−g (Gµνδg

µν + gµνδRµν) .

(4.139)

As for any scalar, symmetry group of the theory described by 4.138 is general diffeo-

morphism group, so any global sub-group is just a special case of the second Noether’s

theorem, leading to identity. However, as with the gluon case, we proceed with the
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calculation. The left-hand side of 4.139 is under general diffeomorphisms equal to

LξSEH =

∫
d4xLξ

(√
−gR

)
=

∫
d4x∂µ(R

√
−gξµ)

=

∫
d3Σµ

√
−gRξµ .

(4.140)

The second line follows from the fact that Lagrangian is a scalar density. The first

term on the right hand side of 4.139 is

δgµν = Lξg
µν = 2∇µξν , (4.141)

while variation of Ricci tensor gets us the Palatini identity,

δRµν = ∇ρ

(
δΓρνµ

)
−∇ν

(
δΓρρµ

)
, (4.142)

so the second term in 4.139 is

gµνδRµν = ∇ρ

(
gµνδΓρνµ − gµρδΓααµ

)
= ∇ρA

ρ

=
1√
−g

∂ρ
(√
−gAρ

)
,

(4.143)

where Aρ is defined as

Aρ ≡ gµνδΓρνµ − gµρδΓααµ . (4.144)

As a result, integral free identity is

√
−gGµν(2∇µξν) = −∂µ

(√
−gAµ −

√
−gRξµ

)
. (4.145)

Expression 4.145 is analogous to 4.102, which is a step prior to obtaining the second

Noether’s theorem. To continue, we must find suitable boundary conditions which

leave us only with the interior contribution. What’s more, appropriate boundary con-

ditions are needed so that field equations can be obtained by extremizing the action.

It follows from 4.140 that for variations that vanish at the boundary the contribution
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of ∂µ(
√
−gξµ) vanishes, unlike the term ∂µ(

√
−gAµ). We solve this problem by adding

Gibbons-Hawking-York (GHY) boundary term to Einstein−Hilbert action,

SG[gµν ] = SEH + SGHY =

∫
M

d4x
√
−gR + 2

∫
∂M

d3yε
√
hK , (4.146)

where y are coordinates on the boundary of the manifold, hab is metric induced on

the boundary, ε is equal to +1 if the normal to ∂M is timelike and −1 if it’s spacelike.

Scalar K is extrinsic curvature defined as

K = hαβ∇βnα , α, β = 1, 2, 3 , (4.147)

As a consequence, variation of 4.146 results in

δSG =

∫
d4x
√
−gGµνδgµν . (4.148)

Finally, under general diffeomorphisms such that variations vanish at the boundary,

0 =

∫
d4x
√
−gGµν2∇µξν

=

∫
d4x
√
−gGµν

(
2∂µξµ − 2ξλΓ

λ
νµ

)
.

(4.149)

We can now apply the second Noether’s theorem. Comparing 4.149 to 4.103, it

follows that

αλνµ = −2Γλνµ ,

βµν = 2δµν .
(4.150)

The second Noether’s theorem for gravitation results in

−2Γλνµ(
√
−gGµν)− ∂µ

(
2
√
−gGµλ

)
= 0

1√
−g

∂µ
(√
−gGµλ

)
+ ΓλνµG

µν = 0

∇µG
µν = 0 .

(4.151)

As expected, we obtained a covariant conservation law, known as (twice) contracted

Bianchi identity. The expression is analogous to 4.129 in QCD, but valid in general,
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not just for global subgroup. For global subgroup ξµ(x) = const., 4.151 reduces to

√
−gΓλνµG

µν = 0 =⇒ Gµν = 0 . (4.152)

Determinant of the metric and Christoffel symbols are non-zero, otherwise the action

identically vanishes. The result is the same as for QCD. The identity 4.151 in the

case of global transformations reduces to condition requiring that field equations

are satisfied. However, it was explained that ξµ(x) = const. as condition for global

subgroup is not general, but applies only to translations. Instead one should start

from

√
−gGµνLξg

µν = ∂µ(
√
−gT µν ξν) ≡ ∂µ(

√
−gJµ) . (4.153)

and integrate it with boundary conditions such that variations vanish at the boundary,

resulting in

√
−gGµνLξg

µν = 0 . (4.154)

General manifold does not have Killing vectors, which means that for global subgroup

we obtain 4.152. The result is the same since ξµ(x) = const. is just a special case

belonging to global subgroup.

Now, if Einstein’s tensor was antisymmetric instead of symmetric one could pro-

ceed as before, defining a conserved current as partial derivative of antisymmetric

part of field equations. This is not possible due to symmetric property, but we can

learn one more thing from 4.130 — the conserved current is equal to non-linear part

of field equations and they result from non-linear terms in action. Thus, we start by

75



separating Einstein-Hilbert action into linear and non-linear terms,

R
√
−g =

√
−ggµν(Γσµσ,ν − Γσµν,σ)−

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ)

= ∂ν(
√
−ggµνΓσµσ)− ∂σ(

√
−ggµνΓσµν)− ∂ν(

√
−ggµν)Γσµσ + ∂σ(

√
−ggµν)Γσµν−

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ)

= ∂ν(
√
−ggµνΓσµσ)− ∂σ(

√
−ggµνΓσµν) + gvβΓµβvΓ

σ
µσ

√
−g+(

−2gνβΓµβσ + gµνΓβσβ

)
Γσµν −

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ)

= ∂ν(
√
−ggµνΓσµσ)− ∂σ(

√
−ggµνΓσµν) +

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ) .

(4.155)

The second line is obtained by partial integration of the first term. The third line

follows from identities

∂σ(
√
−ggµν) =

√
−g(−gνβΓµβσ − g

µαΓνασ + gµνΓβσβ) , (4.156)

∂ν(
√
−ggµν) = −

√
−ggνβΓµβν . (4.157)

The first two terms of 4.155 are boundary terms, and they are linear in derivatives

of metric, while the last term is non-linear. As field equations are derived by extrem-

izing the action with boundary terms vanishing under appropriate boundary condi-

tions, the first two terms will not contribute to field equations. In other words, one

can derive the same field equations using only non-linear terms of the action. What’s

more, non-linear part contains only metric and it’s first derivatives, so all the expres-

sion obtained by deriving the Noether’s theorems can be directly applied. Hence,

action consisting of only non-linear parts is

S ′G =

∫
d4x
√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ) . (4.158)

It is invariant under global transformations,

δgαβ = ξµ∂µgαβ . (4.159)

What’s more, the action 4.158 does not have a larger local symmetry group, i.e., it is

not invariant under general diffeomorphisms. This happened because we left out the

boundary terms. Although they are not important for field equations, their role is to
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make sure the action transforms as a scalar under general diffeomorphisms. Anyhow,

the conserved current obtained by Noether’s first theorem is

τ νµ
√
−g =

(
∂L′G

∂(∂νgαβ)

)
∂µgαβ − δνµL′G , (4.160)

where L′G =
√
−ggλτ (ΓσλτΓρσρ − ΓρλσΓστρ). Calculating the derivatives leads to

τ νµ
√
−g =

[ (
Γναβ − δνβΓσασ

)
∂µ
(
gαβ
√
−g
)
− δνµ
√
−ggλτ (ΓσλτΓρσρ − ΓρλσΓστρ)

]
. (4.161)

Note that energy-momentum pseudotensor consists only of metric and its first deriva-

tives. This is in accordance with equivalence principle which states that locally, in a

point, it is possible to choose a frame such that the laws of physics are the same as

in special relativity, i.e., gravitational field cannot be detected at a point. Moreover,

since the Christoffel symbols and partial derivatives of tensors don’t transform as

tensors,

Γαβγ
y(x)−−→ ∂xµ

∂yβ
∂xν

∂yγ
Γσµν

∂yα

∂xσ
+
∂yα

∂xσ
∂2yσ

∂xβ∂xγ
, (4.162)

and

∂µg
αβ y(x)−−→ ∂xρ

∂yµ
∂yα

∂xσ
∂yβ

∂xτ
∂ρg

στ +
∂xρ

∂yµ
∂2yβ

∂xρxτ
∂yα

∂xσ
gστ +

∂xρ

∂yµ
∂2yα

∂xρxσ
∂yβ

∂xτ
gστ , (4.163)

the expression does not transform covariantly under general coordinate transfor-

mations, unless the transformation is linear. Thus, we have found a gravitational

energy-momentum tensor that transforms covariantly under Lorentz transformations

as Weinberg−Witten theorem requires. One can check that it is indeed conserved,

∂ν(
√
−gτ νµ ) =

[
∂L′G
∂gαβ

− ∂ρ
(

∂L′G
∂(∂ρgαβ)

)]
∂µgαβ

= Gαβ∂µgαβ .

(4.164)

If field equations are satisfied, one obtains conserved energy-momentum tensor.

The explicit calculation is skipped as the variation is straightforward. The four-

77



momentum is then defined as integral of the zeroth components of the pseudotensor.

P µ =

∫
d3xτ 0µ . (4.165)

One should note that it is not possible to obtain an expression for energy and mo-

mentum of gravitational field satisfying at the same time claims that

• When gravitational energy is added to other forms of energy the total energy is

conserved

• Energy and momentum within a three-dimensional region at some point in time

are independent of coordinate system.

What’s more, because we are dealing with pseudo-tensor instead of tensor, it has

no meaning to speak about localization of gravitational energy in space, since by

performing non-linear transformations one may obtain the value of τ different from

zero in flat spacetime.

As a final remark, there are various attempts to find local energy-momentum

density for gravitation. They all give non-covariant pseudo-tensors. Some examples

include Landau and Lifshitz [91] and Weinberg [89]. We opted for this procedure

because it is consistent with the following step.

The next goal is to find an expression for τ in terms of gravitational field propa-

gating on flat background. This is done by considering

gµν = ηµν + hµν , |hµν | << 1 , (4.166)

where is dynamical field hµν , representing graviton, and flat background is consid-

ered consider as, i.e., hµν is small perturbation on fixed background. The actual

metric field is then given by gµν in 4.166. By plugging 4.166 into 4.161 one obtains

gravitational energy-momentum tensor in terms of field hµν . What’s more, it can be

shown that starting from 4.166 one may obtain the action 4.158 [26][34].

Next, notice that, as it was shown for four-vector field related to massless particles

4.75, field hµν under Lorentz transformations transforms as

hµν(x)→ Λα
µΛβ

νhαβ + ∂µΩν + ∂νΩµ . (4.167)
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Lorentz transformations change the gauge of hµν [41][92][34][93].

We have obtained conserved currents for both QCD and gravitation. This finishes

the discussion about conserved quantities. Before we explain how these theories

avoid the Weinberg−Witten theorem, consider the proof.

4.4 Proof of Weinberg−Witten theorem

The proof consists of looking at the following matrix elements

〈p′,±j|Jµ|p,±j〉 , (4.168)

〈p′,±j|T µν |p,±j〉 , (4.169)

where |p,±j〉 and |p′,±j〉 are massless, one-particle states, carrying a non-zero con-

served charge, labeled by four-momentum and helicity, which is the same for both

states. The motivation for these matrix elements is that charges, energies and mo-

menta are experimentally determined by looking at nearly forward scattering caused

by exchange of spacelike, but nearly lightlike massless gauge boson, corresponding

to (p′ − p)→ 0, i.e. p′ → p.

lim
p′→p
〈p′,±j|J0|p,±j〉 ∝ q , (4.170)

lim
p′→p
〈p′,±j|P µ|p,±j〉 ∝ pµ , (4.171)

where charges q and p are defined by measurement process. By defining it as the

limit, we do not require continuity of the matrix elements at p′ = p. This is impor-

tant because there are examples of currents with discontinuity at p′ = p caused by

the change in the sign of the polarization when momentum transfer changes from

spacelike to null-like.

To start with the proof, note that due to assumption that particles carry charges

Q =
∫
d3xJ0 and P µ =

∫
d3xT 0µ, it is true that

Q|p,±j〉 = q|p,±j〉 , (4.172)

P µ|p,±j〉 = pµ|p,±j〉 , (4.173)
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which leads to

〈p′,±j|Q|p,±j〉 = q〈p′ ± j|p,±j〉 , (4.174)

〈p′,±j|P µ|p,±j〉 = pµ〈p′ ± j|p,±j〉 . (4.175)

One should be careful when evaluating the right-hand side. The states are usually

normalised by 〈p′± j|p,±j〉 = δ(3)(p′−p), i.e., momentum is sharply defined. But we

know that in reality, physical one-particle states are smeared. As a result physically

correct normalization is

〈p′,±j|p,±j〉 = δ(3)
a (p′ − p) , (4.176)

where δa is an approximate delta function, such that

lim
a→0

δ(3)
a (p′ − p) = δ(3)(p′ − p) . (4.177)

The parameter a is determined by level of sharpness in the experiment. What’s more,

although physical states consist of superposition of pure momentum states, we will

identify them with eigenvalue pµ, where they have a sharp peak. From this moment

on, all one-particle states will refer to physical states normalized by 4.176. Hence,

4.175 reduces to

〈p′,±j|Q|p,±j〉 = qδ(3)
a (p′ − p) , (4.178)

〈p′,±j|P µ|p,±j〉 = pµδ(3)
a (p′ − p) . (4.179)

By integrating 4.179 using the definition of charge as integral of time-components of

conserved current, one obtains

〈p′,±j|Q|p,±j〉 =

∫
Va

d3x
〈
p′,±j

∣∣J0(t,x)
∣∣ p,±j〉

=

∫
Va

d3x
〈
p′,±j

∣∣eiP ·xJ0(t, 0)e−iP ·x
∣∣ p,±j〉

=

∫
Va

d3xei(p
′−p)x

〈
p′,±j

∣∣J0(t, 0)
∣∣ p,±j〉

= (2π)3δ3
a (p′ − p)

〈
p′,±j

∣∣J0(t, 0)
∣∣ p,±j〉 .

(4.180)
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And completely analogous,

〈p′,±j|P µ|p,±j〉 =

∫
Va

d3x
〈
p′,±j

∣∣T 0µ(t,x)
∣∣ p,±j〉

=

∫
Va

d3x
〈
p′,±j

∣∣eiP ·xT 0µ(t, 0)e−iP ·x
∣∣ p,±j〉

=

∫
Va

d3xei(p
′−p)x

〈
p′,±j

∣∣T 0µ(t, 0)
∣∣ p,±j〉

= (2π)3δ3
a (p′ − p)

〈
p′,±j

∣∣T 0µ(t, 0)
∣∣ p,±j〉 .

(4.181)

Integral is evaluated over a large but finite volume. Comparing 4.178 with 4.180,

and 4.179 with 4.181, one is lead to conclusion that

lim
p′→p

〈
p′,±j

∣∣J0(t, 0)
∣∣ p,±j〉 =

q

(2π)3
, (4.182)

lim
p′→p

〈
p′,±j

∣∣T 0µ(t, 0)
∣∣ p,±j〉 =

pµ

(2π)3
. (4.183)

Hence, for general components of the currents,

lim
p′→p
〈p′,±j |Jµ(t, 0)| p,±j〉 =

qpµ

(2π)3E
, (4.184)

lim
p′→p
〈p′,±j |T µν(t, 0)| p,±j〉 =

pµpν

(2π)3E
. (4.185)

Let’s assume that the currents transform covariantly under Lorentz transformations.

As a consequence, then so should the right-hand side of 4.185. Finally, if we assume

that the currents are properly conserved the Lorentz covariant quantity that should

appear on the right-hand side is momentum p. Too see this, we multiply 4.184 and

4.185 by pµ, which results in

〈Jµ(t, 0)〉pµ = 0 , (4.186)

〈T µν(t, 0)〉pµ = 0 , (4.187)

where the right-hand side vanishes because particles are massless, pµpµ = 0, while

the left-hand side can be understood as Fourier-transform of ∂µJµ and ∂µT
µν . In

other words, writing the currents in terms of creation and annihilation operators

and acting with the differential operator lowers pµ from phase factor multiplying the

annihilation and creation operators. Hence, the form 4.184 and 4.185 is valid if
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the currents are Lorentz covariant and conserved. One more thing to notice is that,

if we would look to only sharply defined states, 4.184 and 4.185 would hold only

where the delta function does not vanish, for p′ = p. This completes the first part

which shows that if particle is charged under conserved, Lorentz covariant Noether

currents, the matrix elements do not vanish. Next, we show that this statement leads

to contradiction if helicity of the particle is j > 1
2

according to first part, and j > 1

according to second part of the theorem. Thus, consider light-like p and p′,

(p′ + p)2 = 2(p′p)

= 2 (|p′| |p| − p′ · p)

= 2 |p′| |p|(1− cosφ) ≤ 0 ,

(4.188)

where φ is an angle between p and p′. If φ 6= 0 the total momentum is timelike and

we can choose a frame such that the space component of total momentum vanishes,

p = (|p|,p), p′ = (|p|,−p) . (4.189)

Because we are only interested in the limit p′ → p, it is always true that φ 6= 0.

Further, in such frame consider rotation of the particles by an angle θ around axis in

direction of p,

|p,±j〉 → U(RW (θ))|p,±j〉 = e±iθj|p,±j〉 ,

|p′,±j〉 → U(RW (θ)) |p′,±j〉 = e∓iθj|p′,±j〉 ,
(4.190)

where the p′ state has opposite phase compared to p because rotation by θ in the

direction of p is the same as rotation around p′ in −θ direction, since their momenta

are antiparallel. On the other hand, instead of transforming the states, one can

transform the operators. As J and T are Lorentz covariant quantities by assumption

the right-hand side is

e±2iθj 〈p′,±j |Jµ(t, 0)| p,±j〉 = RW (θ)µν 〈p′,±j |Jν(t, 0)| p,±j〉 , (4.191)

e±2iθj 〈p′,±j |T µν(t, 0)| p,±j〉 = RW (θ)µρRW (θ)νσ 〈p′,±j |T ρσ(t, 0)| p,±j〉 , (4.192)

where RW (θ) is the proper rotation matrix in two dimensions in three dimensional

space. By explicit calculation, one can check that eigenvalues of rotation matrix are
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e±iθ and 1, so

e±2iθj 〈p′,±j |Jµ(t, 0)| p,±j〉 = e±iθ 〈p′,±j |Jµ(t, 0)| p,±j〉 , (4.193)

e±2iθj 〈p′,±j |T µν(t, 0)| p,±j〉 = e±2iθ 〈p′,±j |T µν(t, 0)| p,±j〉 , (4.194)

or,

e±2iθj 〈p′,±j |Jµ(t, 0)| p,±j〉 = 〈p′,±j |Jµ(t, 0)| p,±j〉 , (4.195)

e±2iθj 〈p′,±j |T µν(t, 0)| p,±j〉 = 〈p′,±j |T µν(t, 0)| p,±j〉 , (4.196)

From 5.119 and 4.195 one can see that j = {0, 1
2
}, while from 4.194 and 4.196

j = {0, 1
2
, 1}. This completes the proof. Under the assumptions of Lorentz covariance

and conservation of currents,

lim
p′→p
〈p′,±j |Jµ(t, 0)| p,±j〉 = 0 , j >

1

2
, (4.197)

lim
p′→p
〈p′,±j |T µν(t, 0)| p,±j〉 = 0 , j > 1 . (4.198)

According to the first part of the theorem, no elementary or composite massles,

charged particle with j > 1
2

exists. The second part states that elementary or com-

posite massless particle with spin j > 1 cannot carry energy or momentum. To

reformulate, the first part of the theorem allows the existence of uncharged massless

particles of spin j > 1
2
, while the second part, as it is stated, does not permit the

existence of massless particles of spin j > 1 even if they are uncharged with respect

to translation symmetry, i.e., even if they do not carry energy and momentum. First,

it seams that such particles can only correspond to vacuum, as they belong to a class

of irreducible representations invariant under entire Poincaré group. However, in

theories with non-minimal coupling, there appear so-called stealth fields, non-trivial

fields whose energy-momentum vanishes [94].

In the Standard Model (where the Lagrangian contains only minimal coupling),

out of particles proved to exist, only photons and gluons are massless and are both

spin-1 particles. Photons are not charged under electromagnetic current thus they are

in accordance with the Weinberg−Witten theorem, while gluons carry color charge.

Particle hypothesized to exist is graviton, massless spin-2 particle. Let’s explain how
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gluons and gravitons avoid the theorem.

4.5 Lorentz covariance and gauge transformations

It was shown that massless fields do not transform covariantly under Lorentz trans-

formations. As a result, nor the gluon current, nor the gravitational energy-

momentum pseudotensor transform covariantly.

The source of this behaviour is in the little group of massless particles. The field

transform under E2, since there is no reason to restrain the group to SO(2), as fields

aren’t physical states. Lorentz covariance is saved by proclaiming that the fields

related by transformations of the form

Aµ → Aµ + ∂µξ , (4.199)

or, for symmetric second rank field

hµν → hµν + ∂µξν + ∂νξµ , (4.200)

describe the same physical configuration, and are in this sense not relevant. Fur-

thermore, such fields appear in Lagrangian either as coupled to conserved currents

or used to construct Lorentz covariant tensors. In the first case, the theory remains

Lorentz invariant because

Aµj
µ → Aµj

µ + ∂µξj
µ = Aµj

µ + ∂µ(ξjµ)− ξ∂µjµ . (4.201)

By partial integration one obtains a boundary term, which is a symmetry transfor-

mation by definition, while the second term vanishes due to current conservation.

An example of the second case is the gluon Lagrangian itself, as F µν is generally

covariant tensor constructed out of derivatives of Aµ.

In short, gluons and gravitons evade the Weinberg−Witten theorem because the

conserved currents are not Lorentz covariant. The most important consequence is

the fact that graviton cannot be composed of gluons for example. Gluons are matter,

so they would contribute to conserved Lorentz covariant energy-momentum tensor

A.16. As a result, momentum of graviton composed of gluons would be described
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by P µ =
∫
T 0µd3x, i.e., charged under the conserved current. Consequently, theories

living on flat background cannot mimic the properties of gravity, so the graviton

cannot be a composite particle [95][96][97].

5 Thermodynamics and General Relativity

In this section the goal is to explain the connection between gravitation and thermo-

dynamics. First, we derive the four laws of black hole mechanics. We also discuss

their analogy with the four laws of thermodynamics. Next, Hawking derivation is

derived. Finally, we consider a possible thermodynamic behaviour of the spacetime

itself.

5.1 Classical black hole mechanics

In this section we briefly review the most important theorems and properties related

to black holes, starting with some mathematical preliminaries needed to understand

the definitions, after which we will discuss the four laws of black hole mechanics.

Throughout the text we will make comparison with thermodynamics to motivate the

choices and restriction we make, assuming the reader is familiar with the mentioned

concepts from thermodynamics.

5.1.1 Mathematical preliminaries

The goal of this section is to explain what is a hypersurface and focus on null hyper-

surfaces that are generated by Killing vector fields. We also derive Raychaudhuri’s

equation, describing how the neighbouring geodesics evolve as one moves along the

congruence.

Hypersurface Σ is defined as (n − 1)-dimensional manifold embedded into n-

dimensional manifold. To define a hypersurface one can restrict the spacetime coor-

dinates in some way, usually by imposing that some function of coordinates Φ(xµ) is
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constant or zero33,

Φ(xµ) = 0 . (5.1)

With such definition of hypersurface, one-form nµ is normal to Σ if

nµ ∝ ∂µΦ . (5.2)

If the normal is null vector, i.e., n2 = 0, the hypersurface is said to be null hypersur-

face. Furthermore, a vector l is tangent to Σ if l · n = 0. Since the null vectors satisfy

this by definition, in the null case, k is both normal and tangent to the hypersurface.

We will now consider a special case. Let χµ be a normal to null hypersurface

defined as Φ = χµχµ = 0, where χµ satisfies the Killing equation

∇µχν +∇νχµ = 0 . (5.3)

Because everywhere on the null hypersurface, Φ = χµχµ = 0, for any vector l tangent

to it, lµ∂µΦ = 0. Consequently, since χ is both normal and parallel to the hypersur-

face,

∂µΦ = −2κχµ , (5.4)

with the proportionality constant of 5.2 chosen as −2κ, where κ is a scalar that can

depend on coordinates. Moreover, as mentioned, one can associate integral curves

xµ(λ) to a vector field, such that tangent to the curve is equal to the vector field at

the same point,

χµ =
dxµ

dλ
, (5.5)

The null curves cover the hypersurface so they are referred to as generators of the

hypersurface.

Relation 5.4 is a statement of Frobenius theorem, according to which a congru-

33For example a two-sphere in three dimensional spacetime can be defined as
Φ(x, y, z) = x2 + y2 + z2 = R2, i.e., Φ(x, y, z) = x2 + y2 + z2 −R2 = 0.
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ence of curves whose tagnent vector is u is hypersurface orthogonal if

u[α∇βuγ] = 0 , (5.6)

This follows by direct calculation from uµ = −α(xµ)∂µΦ, for some scalar field α.

One can see that this is true for χ from 5.4. In other words, when tangent of the

curves is everywhere proportional to normal of the hypersurface, the congruence is

everywhere orthogonal to hypersurface. This will have important consequence of

behaviour of neighbouring curves.

It also follows immediately from 5.3 and 5.4 that χ satisfies non-affinely

parametrized geodesic equation,

∂ν(χ
µχµ) = 2χµ∇νχ

µ = −2χµ∇µχν =⇒ χµ∇µχν = κχν , (5.7)

where all the expressions are evaluated at the horizon. The first equality follows from

the fact that the action of partial derivative is the same as covariant derivative for a

scalar. The second equality is the result of 5.3. The implication follows from 5.4. The

parameter κ is called surface gravity for reasons that will be explained below.

To sum up, the congruence of null curves associated with a Killing vector field

satisfy non-affinely parametrized geodesic equation. Moreover, the congruence is

hypersurface orthogonal.

We will now describe with the behaviour of the neighbouring geodesics in the

congruence. To begin, we will set up a chart adapted to congruence generating the

null hypersurface. In other words, one can set a “natural" chart yµ covering a patch

of spacetime, with the help of integral curves, starting from the hypersurface. The

labels are then carried along the geodesics as we move along them.

Assume that each curve is parametrised by λ, running along the curve, and θA,

A = 2, 3, constant on each curve. Hence, y = (λ, θA), and the basis {eµa}, a = 1, 2, 3

induced by the chart is such that

eµ1 =

(
∂xµ

∂λ

)
θA

= χµ . (5.8)

Parameter λ is chosen so that the partial derivative with respect to it coincides with
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χµ. The remaining coordinates are chosen so that the respective vectors eµA are nor-

mal to χ, i.e., χµe
µ
A = 0,

eµA =

(
∂xµ

∂θA

)
λ

. (5.9)

To have a complete basis we need one more vector (tangent space is four dimen-

sional), which the previous conditions of χ being null and orthogonality specify

uniquely,

NµNµ = 0 , χµNµ = −1 , NµeAµ = 0 , (5.10)

Vector Nµ point in the other null direction and is called auxiliary null vector. Thus,

the basis consists of vectors {eµa , Nµ}.

Next, we introduce ξ, called a deviation vector. Since it is to describe how the

geodesics change relative to one another, it should point from some arbitrarily picked

geodesic in the congruence to the neighbouring one. This is achieved by introduc-

ing a set of auxiliary curves, “crossing" the congruence, parametrized by s, so that
∂xµ

∂s
= ξµ and

ξµχµ = 0 . (5.11)

This condition rules out component of ξ in the direction of N , confining the vector

onto the null hypersurface. In other words, ξµ = aχµ + bAeµA in the basis the congru-

ence induced on the null hypersurface. We are not interested in the deviation vector

itself, but the way it evolves as we move along the congruence, i.e.

χµ∇µξ
ν = Bν

µξ
µ , (5.12)

where the change in ξ is given by tensor Bµν
34. Thus, the goal is to determine Bµν ,

or more precisely, its transverse component. First of all, note that since ∂xµ

∂s
= ξµ and

34To motivate 5.12 picture a rubber sheet with displacement between two neighboring points
xP and xQ on the sheet as given by ξ = xQ − xP . Suppose the sheet evolves in some
way, for example, it is being stretched. The change in displacement is then given by
dξi

dt = vi(ξ + xP )− vi(xP ) ≈ ξj∂jvi(xP ) ≡ Bij(xP )ξj .
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∂xµ

∂λ
= χµ, it follows that

∂ξµ

∂λ
= ∂2xµ

∂λ∂s
= χν∇νξ

µ ,

∂χµ

∂s
= ∂2xµ

∂s∂λ
= ξν∇νχ

µ

 χν∇νξ
µ = ξν∇νχ

µ . (5.13)

Eq. 5.13 follows from Schwarz’s theorem — one can exchange the order of the

second partial derivatives. Hence, inserting 5.13 into 5.12 we can conclude that

Bµν = ∇νχµ . (5.14)

The transverse component of 5.14 can be obtained using only transverse part of the

metric hµν given by 5.15,

hµν = gµν + χµNν +Nµχν . (5.15)

As one can check by explicit calculation, hµνχν = 0 and hµνN
ν = 0. Consequently,

hµνξ
ν will give only the transverse component of ξ as we wanted. Likewise,

B̃µν = hρµh
τ
νBρτ

= Bµν + χµN
ρBρν + χνBµρN

ρ + χµkνBρτN
ρN τ ,

(5.16)

is only transverse part of Bµν . The second line follows from expanding hµν using 5.15.

It is also useful to decompose B̃µν into antisymmetric and symmetric part,

B̃µν =
1

2
θhµν + σµν + ωµν , (5.17)

where the symmetric part is further decomposed into trace θ = gµνB̃µν and symmet-

ric traceless part σµν = B̃µν − 1
2
θhµν . The antisymmetric part is ωµν = B̃[µν]. The trace

θ is referred to as the (fractional) expansion35 of the congruence, describing how the

volume or the area changes as we move along the congruence, while σµν and ωµν

describe the change in shape. The part σµν is called the shear describing “stretch-

35The expansion θ = ∇µχµ−κwhen explicitly evaluated. The second term follows from the congru-
ence being parametrized by non-affine parameter. One can recognize that expansion corresponds to
divergence of some vector fieldE, i.e., ∇E = ∂iE

i. Hence, expansion captures focusing or defocusing
of the geodesics.
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ing" or “compression" of the shape (without the change of area)36, and ωµν is twist37.

The names are suggestive of their role which is familiar from continuum mechanics

where one describes deformation of some medium. In general, the congruence will

evolve as a combination of expansion, shear and rotation. However, according to the

Frobenius theorem, when the congruence is hypersurface orthogonal the twist, anti-

symmetric part of B̃µν must vanish, ωµν = 0. This can be shown by direct calculation

if one applies 5.6 to 5.16.

Moreover, one can derive the equation describing how each of the terms in the

expansion change as we move along the congruence, that is χρ∇ρB̃µν . For what

follows, we are interested only in the evolution of the expansion θ, which is obtained

by taking the trace — gµνχρ∇ρB̃µν . Let’s start from

gµνB̃µν = gµνBµν +NρBρνχ
ν

= gµνBµν − κ .
(5.18)

The last line is the result of χ satisfying non-affinely parametrized geodesic equation

5.7 and the equation 5.10. Hence,

dθ

dλ
= χρ∇ρ(g

µνB̃µν)

= χρ∇ρg
µνBµν − χρ∇ρκ .

(5.19)

The first term can further be written as

χρ∇ρg
µνBµν = χρ∇ρ∇µχ

µ

= χρ∇µ∇ρχ
µ −Rρµχ

ρχµ

= ∇µ(χρ∇ρχ
µ)− (∇µχ

ρ)(∇ρχ
µ)−Rρµχ

ρχµ

= ∇µ(κχµ)−BρµBµρ −Rρµχ
ρχµ .

(5.20)

The second line follows from the definition of the Ricci tensor

−Rα
ναβχ

ν = ∇α∇βχ
α −∇β∇αχ

α, the third from the derivative rules and the

last one from recognizing the geodesic equation and definition of Bµν , 5.14.

36In continuum mechanics there is a (linear) strain tensor εij which combines the effects of expan-
sion and shear, εij = 1

2 (∂iuj + ∂jui), where ui is a component of displacement vector.
37As the name suggests, twist, or also referred to as rotation corresponds to curl i.e., ωµν =

εµνρτ B̃
ρτ . The curl of some vector field B is (∇×B)i = εijk∂

jBk.
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Inserting 5.20 into 5.19 results in

dθ

dλ
= ∇ρ(κχ

ρ)−BµνBµν −Rµνχ
µχν − χρ∇ρκ

= κθ −BµνBνµ −Rµνχ
µχν .

(5.21)

Next, by explicit calculation from 5.16, one can check that BµνBνµ = B̃µνB̃νµ. Then,

using 5.17,

BµνBνµ =

(
1

2
θhµν + σµν + ωµν

)(
1

2
θhνµ + σνµ + ωνµ

)
=

1

2
θ2 + σµνσνµ − ωνµωνµ .

(5.22)

The last line follows from hµνhνµ = 2, antisymmetry of ωµν and the fact that all terms

are normal to each other. Finally, the equation that describes evolution of expansion

θ along the congruence is

dθ

dλ
= κθ − 1

2
θ2 − σµνσνµ + ωνµωνµ −Rµνk

µkν , (5.23)

which is known as Raychaudhuri’s equation.

Let’s now consider the case in which the null hypersurface is generated by Killing

vector field. As mentioned, null hypersurface generated by Killing vector field is

hypersurface orthogonal, so the twist vanishes. Furthermore, as χ satisfies the Killing

equation 5.3, the symmetric part of Bµν has to vanish. Consequently, 5.23 reduces to

Rµνχ
µχν = 0 . (5.24)

In summary, we have shown that the expansion, shear and twist of the null congru-

ence associated with Killing vector field vanish. We now turn to discussing black

holes.

5.1.2 Black holes

Black hole (BH) is a region of spacetime where gravitation is so strong nothing can

escape. Anything that enters the black hole region will remain there. In other words,

to escape the black hole one would need to exceed the the speed of light, which,

according to special theory of relativity, no physical entity can. The boundary of BH

91



is called an event horizon. These notions are made precise by specifying where the

escape could happen to — usually, to infinity — capturing the idea that light cannot

propagate an arbitrary distance away from the BH. The exterior region can then

be thought of as being infinitely far away from black hole. That is, in the exterior

anything can at least in principle escape to infinity [98][99].

We will consider only asymptotically flat38 spacetime. Loosely speaking, for

asymptotically flat spacetime, the region of spacetime "near infinity" has the causal

structure like flat spacetime. Asymptotically flat spacetime represent gravitationally

isolated system. That is, a system we are considering is the only thing in spacetime,

so that far away from it the spacetime is flat [98]. As a consequence of asymptotic

flatness, we have a well defined notion of past and future null infinity J ±, so we can

now give a formal definition of black hole [71][98][100][101].

In asymptotically flat spacetime, black hole B is defined as the set of all events of space-

time (M, g) that are not part of the causal past J− of the future null infinity J +, an end

point of future directed null curves.

B = M − J−(J +) . (5.25)

The event horizon H is a null hypersurface defined as the boundary of B,

H = ∂B = ∂(J−(J +)) . (5.26)

As we are describing the region of spacetime, the definition is geometrical. Moreover,

it is the causal structure, as determined by light rays, which dictates what can escape

to infinity. Since the event horizon is a causal boundary, it is a null hypersurface.

Light rays generating the horizon are neither captured by the black hole, nor they can

escape to future null infinity. This can be nicely represented using Penrose diagram,

with example in Fig. 5.1. It is also worth to notice that the event horizon possesses

no local properties that would distinguish it from the rest of the spacetime. In other

words, the provided definition of event horizon is not “operational", since an observer

would not be able to conclude, based on local measurement, that he is passing the

horizon [98][46].
38More precisely, weakly asymptotically simple spacetime [100].
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Figure 5.1: Penrose diagram of spherically symmetric stellar collapse in asymptoti-
cally flat spacetime. Each point is 2-dimensional sphere. Light rays propagate along
45◦ diagonals. The star region is hatched. The black hole region B is in grey. The
future null infinity is denoted by J +. The event horizon H is the boundary of B. The
singularity is represented by a wavy line [102].

Black holes are unavoidable in some “normal" circumstances. They occur as a

result of stellar collapse, such as the one depicted in Fig. 5.1. A typical star during

its life burns nuclear fuel, supporting itself against gravity by thermal and radiation

pressure. When the fuel is spent the star starts imploding. It can be shown that if the

mass of the star M is larger then some limit mass ML ≈ 1.5MS, where MS is mass

of the Sun, nor electron nor neutron degeneracy pressure can stop the collapse. At

this stage the star must either eject sufficient matter so that its mass is reduced to

less than ML or it reaches a critical point where the event horizon is formed. At this

stage, nothing can prevent it from collapsing further and ultimately a singularity is

formed [103][71].

Singularity is tight to some kind of pathological behaviour and a black hole will

generically contain one. As proven by Penrose and Hawking in singularity theorems,

under suitable causality assumption, non-negative energy density condition and exis-

tence of trapped surfaces39 implying strong gravitational field, spacetime will admit a

singularity in a sense of geodesic incompleteness. Loosely speaking, this means that

particle following the worldline “runs out of world" in finite amount of time. It sig-

nalizes the existence of infinite curvature. Moreover, in the mentioned circumstances
39Outgoing light rays originating after the formation of event horizon converge and the area of

the wavefront decreases, reaching zero when the rays reach singularity. Such wavefront is called a
trapped surface, because it is captured by gravitational field [100].
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the singularities are either behind an event horizon or naked, causally “visible". The

latter case is problematic because such singularities might imply a breakdown of pre-

dictability [103][104]. Consequently, it is expected that in reality no naked singular-

ities form. This is yet to be proven and it is known as cosmic censorship conjecture. On

the other hand, singularity hidden beyond an event horizon poses no such problems,

since black hole region is causally disconnected from the exterior. On that account,

singularities are usually viewed as a breakdown of classical theory. In other words, it

is thought that the singular behaviour does not represent true behaviour in physical

world, but the end of classical description. Note that at some point of the collapse

the spacetime is bend on the scale of Planck’s length requiring quantum theory of

gravitation for proper treatment. So, taking into consideration the quantum effects is

supposed to lead to regular behaviour of spacetime40, since for one, energy-positivity

condition, assumed by the singularity theorems can be violated locally in quantum

field theory [99][106][107].

Further description of black holes will consider a stationary black hole. That is, the

collapse of the star during which the black hole forms is a dynamical process. How-

ever, one expects that the geometry and gravitational field eventually settle down

to a so-called stationary state, which we consider as an analogue of equilibrium in

thermodynamics. In rough terms, a system is in equilibrium when state of the system

does not change on the relevant time scale. In geometrical setting in GR, the nature

of equilibrium is that a system is independent of time with respect to an observer for

which the system is at rest. This is captured by the following definition [71].

If an asymptotically flat spacetime (M, g) contains a black hole B, then B is said to be

stationary if there exists a one-parameter isometry group φt : M → M on spacetime

(M, g) generated by a Killing vector tµ which is timelike at infinity.

In practice, this means that we can find coordinates such that metric components de-

scribing the exterior region of stationary black hole are independent of the coordinate

labeled as time. A stronger property is static black hole defined as

A black hole is said to be static if it is stationary and if, in addition, tµ is hypersurface

orthogonal41.
40Not everyone agree that this is the case [105].
41Hypersurface orthogonal vector field satisfies Frobenius’ theorem, which states that a vector field

u is hypersurface orthogonal if it satisfies the condition u[µ∇νuρ] = 0.
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Equivalently, one may demand that metric is invariant under reflections t → −t. In

other words, there exists an isometry which changes time orientation. Static black

hole is “motionless", while stationary black hole may exhibit a behaviour that does

not change in time. An example is rotation, but such that the angular velocity is

constant in time. The latter is a more realistic situation, since, as mentioned, black

holes are formed by a stellar collapse. As the star usually rotates, due to conservation

of angular momentum, the resulting black hole will continue to do so. In addition,

there are important theorems concerned with stationary black holes for which we

must also introduce axisymmetric black holes and Killing horizons.

A black hole is said to be axisymmetric if there exists a one-parameter group of

isometries generated by a Killing vector field φµ which correspond to rotations at

infinity, whose orbits are 2π periodic.

A stationary axisymmetric black hole is said to possess the “t − φ orthogonality prop-

erty" if the 2-planes spanned by tµ and the rotational Killing field φµ are orthogonal

to a family of 2-dimensional hypersurfaces. The t − φ orthogonality property holds

for all stationary-axisymmetric black hole solutions to the vacuum Einstein or Einstein-

Maxwell equations.

As before, the t−φ orthogonality manifests as t−φ reflection isometry of the metric.

Note that stationary-axisymmetric spacetime does not necessarily possesses t − φ

orthogonality property.

Besides the event horizons, there is a completely independent concept of Killing

horizons. As the name suggests, Killing horizon is also a null hypersurface. A defini-

tion is the following.

A null hypersurface K, whose null generators coincide with the orbits of a one-parameter

group of isometries (so there is a Killing field ξµ normal to K) is called a Killing horizon.

Moreover, we will also mention a special case of Killing horizon, called bifurcate

Killing horizon, depicted in Fig. 5.2.

A bifurcate Killing horizon is a pair of null hypersurfaces, KA and KB, which intersect

on a spacelike 2-surface B called the bifurcation surface, such that KA and KB are each

Killing horizons with respect to the same Killing field ξµ. The converse is also true.
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Figure 5.2: The bifurcate Killing horizon consisting of null hypersurfaces KA and KB,
intersecting on a spacelike hypersurface B called the bifurcation surface.

It follows from the definition of bifurcate Killing horizon that ξµ vanishes at the

bifurcation sphere. That is, Killing vector field has unique value at every point. This

can be satisfied only if Killing vector field vanishes at the bifurcation sphere.

Although Killing and event horizons are, in general, not related, there are cir-

cumstances under which the horizons coincide. They are given by two results, called

rigidity theorems. One was proved by Carter and states

For a static black hole, the Killing field tµ must be normal to the horizon.

For a stationary-axisymmetric black hole with the t − φ orthogonality property there

exists a Killing field χµ of the form

χµ = tµ + ΩHφ
µ , (5.27)

which is normal to the event horizon. The constant ΩH is called angular velocity of the

horizon.

This result does not rely on Einstein field equation. According to the theorem, Killing

horizon coincides with the event horizon if the black hole is either static, or stationary

axisymmetric with t − φ orthogonality property. As stated by Carter, Killing horizon

will not be an event horizon for any stationary black hole. The second result con-

cerning relationship between event and Killing horizons is called Hawking’s strong

rigidity theorem, according to which [108]

If the matter fields obey well behaved hyperbolic field equations and the energy-
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momentum tensor satisfies weak energy condition42, the event horizon of any stationary

black hole must be a Killing horizon.

According to Hawking’s theorem, for stationary black holes there is a Killing vector

field that is null at the event horizon. In other words, there exists some Killing

vector field generating a Killing horizon which coincides with the event horizon for

stationary black holes, under assumptions the matter is well behaved. This further

implies that if stationary Killing field tµ fails to be null at the horizon, there must

exist an additional Killing field which is. It was then shown that stationary spacetime

(under the assumptions of the theorem), is also axisymmetric (without necessarily

the t − φ orthogonality property). That is, a stationary spacetime possesses two

Killing vector fields tµ and φµ. Since linear combination of Killing vector fields is also

a Killing vector field, it is their combination

χµ = tµ + ΩHφ
µ , (5.28)

that is null at the event horizon. As before, ΩH is angular velocity of the horizon. Sim-

ply put, if a black hole is stationary it is either static or axially symmetric [101][98].

Moreover, the strong rigidity theorem is important when discussing uniqueness of

black hole solutions. In the case of (electro)vacuum, the most general solution, given

by Kerr-Newman metric, describes gravitational field exterior of electrically charged,

rotating black hole. The presence of electric charge is solely due to charged matter

collapsing to the black hole. The solution is unique and depends only on three param-

eters — mass M , angular momentum J and charge Q. The case where Q = J = 0 is

described by Schwarzschild solution. This result is surprising because the initial stars

are very complex objects, differing in internal structure, shape, pressure, density, etc.

After the collapse, none of these details matter, and the resulting black holes may dif-

fer only in the above parameters. It is also worth mentioning that charged black holes

are only of theoretical interest. Any charged object that is not in vacuum will attract

opposite charge and neutralize. The mentioned uniqueness theorems are the premise

of so-called ‘no-hair’ theorems, according to which all asymptotically flat, stationary

42Weak energy condition states that the matter density ρ observed by an observer traveling with
velocity uµ, where uµ is timelike vector field (by definition of an observer) is always non-negative,
ρ = Tµνu

µuν ≥ 0.
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black hole spacetimes are characterized only by those parameters43. Thereof, the

properties of a black hole being independent of the details of the collapsing matter

is the first indication that black holes could be a thermodynamics limit of underlying

degrees of freedom. As it is known, in thermodynamics, a system has a large number

of degrees of freedom, but its state is described by a small number of macroscopic

parameters, like energy, entropy, volume, etc., not all necessarily independent [110].

We will now derive the laws describing the behavior of black holes in stationary,

asymptotically flat spacetime. As mentioned, asymptotically flat spacetime is anal-

ogous to isolated systems, while stationary black holes are analogue of a system in

equilibrium. To discuss the zeroth law, we must first explain what is surface gravity.

5.1.3 Surface gravity

As it was shown, generators of Killing horizon — null hypersurface whose normal

satisfies the Killing equation — satisfy non-affinely parametrized geodesic equation

5.7. Hence, one interpretation of κ is that it is a measure of extent to which the

geodesics fail to be affinely parametrized. Consequently, the value of surface gravity

is in principle arbitrary, as one can always scale a Killing vector by a real constant,

or equivalently, reparametrize the integral curve λ → λ′, so that dλ/dλ′ = const.

and obtain a different value of surface gravity. The choice is fixed by setting the

renormalization, usually by requiring that χ2 → −1 at infinity.

Equivalent relation for κ, which will help us to interpret it as surface gravity, is

obtained from Frobenius’ theorem 5.6 with the help of Killing equation, implying

that

χµ∇νχρ + χν∇ρχµ + χρ∇µχν = 0 . (5.29)

Contracting with ∇νχρ gives

χµ∇νχρ∇νχρ = −2κ2χµ , (5.30)

43There are exceptions, for example when Einstein’s equations are coupled to Yang-Mills fields
[109][108].
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where we used 5.7 and Killing equation. Thus one obtains

κ2 = −1

2
∇µχν∇µχν , (5.31)

evaluated at the horizon. The surface gravity is the norm of the divergence of Killing

vector field at the horizon. Moreover, using the Killing equation and starting from

3(χ[µ∇νχρ])(χ[µ∇νχρ]) = χµχµ(∇νχρ)(∇νχρ)− 2χµ(∇νχρ)χν(∇µχρ) , (5.32)

it follows from l’Hospital’s rule that

lim
3(χ[µ∇νχρ])(χ[µ∇νχρ])

χµχµ
→ 0 , (5.33)

in the limit where one approaches horizon. The gradient of the numerator is zero

because χ satisfies Frobenius’ theorem at the horizon, while the gradient of denomi-

nator is different from zero if κ 6= 0. Hence, using 5.31 we obtain

κ2 = lim
−(χν∇νχρ)(χµ∇µχρ)

χµχµ
. (5.34)

Next, one may recognize the acceleration aρ = χν∇νχρ/(−χµχµ), and define the

norm of Killing vector field V =
√−χµχµ, leading to another expression for surface

gravity,

κ = lim(V a) , (5.35)

where a =
√
aρaρ. The obtained expression can be interpreted as follows. Let’s first

consider static, asymptotically flat spacetime. As in such case ΩH = 0, so χµ = tµ.

Suppose a particle of unit mass is at rest near horizon, which means that it follows

the orbit of tµ. The orbit of Killing vector that generates the horizon in stationary

spacetime are geodesics only on the horizon. Thus, the particle must be accelerating

to remain at rest, which requires a force. The proper acceleration of the particle is

a, and it diverges if the particle is near the horizon, since the norm of the Killing

vector field goes to zero. Then, by introducing the factor V , which goes to zero

as one approaches the horizon the product of the quantities in 5.35 is finite. The

factor V is referred to “redshift" factor and it converts the change in velocity per
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unit proper time of the particle to change in velocity per unit coordinate time of

observer at infinity. In other words, κ is the force per unit mass as measured at

infinity, required to hold a particle at place near horizon. What one has in mind is

that the particle is attached to one end of a massless inelastic string, with the other

end held by static observer at infinity44. Then, the tension the observer measures

approaches κ as the particle approaches horizon. In stationary case it is not possible

to hold particle at rest near the black hole. More precisely, tµ is spacelike near event

horizon, so a particle at rest would have to move along spacelike trajectories, which

is not possible for physical particle. Thus, the same line of thinking fails. One could,

however, consider a particle which corotates with the black hole with the angular

velocity ΩH , so its four-velocity is proportional to χµ. One can once again calculate

the proper acceleration and convert it to acceleration as measured by an observer

at by multiplying the acceleration by V . The result tends to κ when the particle is

infinitesimally close to the event horizon [45] [71][111].

5.1.4 The zeroth law

We will now state and prove the so-called zeroth law. There are many variations

of the proof, with slightly different assumptions. That is, the assumptions needed

to prove the claim depend on the rigidity theorems mentioned above. As we will

see, if one starts from Hawking’s strong rigidity theorem, which does not require the

t − φ orthogonality, one needs to impose a dominant energy condition to prove the

statement. On the other hand, starting from Carter’s rigidity theorem, the zeroth

laws follows as purely geometric claim. The zeroth law states that

The surface gravity of stationary black hole is constant.

It was first proved in [45] for stationary, axisymmetric black holes. The derivation

following [45] as adapted by [101] is given in App. D. Here we will follow [71].

Proof of the zeroth law The goal is to show that κ doesn’t change in any direction

tangent to the horizon. However, note that κ is defined only on the horizon, so we

cannot just calculate∇µκ, as divergence of κ may have some components orthogonal

to the horizon. The part of ∇µκ that is confined to the horizon is χ[µ∇ν]κ. This is

44An observer is called static if his four-velocity is aligned with the Killing vector tµ.
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because χ[µ∇ν]κ = εµνρτχρ∇τκ, and εµνρτχρχτ = 0. In other words, εµνρτχτ is tangent

to the horizon, working as a kind of projector to the horizon. Thus, κ is constant if

we can show that

χ[µ∇ν]κ = 0 . (5.36)

One starts by multiplying the definition of surface gravity χµ∇µχν = κχν by χ[ρ∇τ ],

χνχ[ρ∇τ ]κ+ κχ[ρ∇τ ]χν = χ[ρ∇τ ](χ
µ∇µχν)

χνχ[ρ∇τ ]κ = −κχ[ρ∇τ ]χν + (χ[ρ∇τ ]χ
µ)(∇µχν) + χµ(χ[ρ∇τ ]∇µχν)

= −χµR λ
µν[ τχρ]χλ .

(5.37)

The last line follows from the first two terms cancelling each other our and identity

∇µ∇νχρ = −R τ
νρµ χτ which is the result of definition of Riemann tensor and Killing

equation. To show the mentioned cancellation, note that from Frobenius’ theorem

5.6 and Killing’s equation we have

χµ∇ρχτ = −2χ[ρ∇τ ]χµ . (5.38)

On the right-hand side one may recognize the second term in 5.37. Multiplying the

obtained relation with ∇µχν from both sides leads to

(χ[ρ∇τ ]χ
µ)(∇µχν) = −1

2
(∇µχν)χµ∇ρχτ

= −1

2
κχν∇ρχτ

= κχ[ρ∇τ ]χν ,

(5.39)

in the second line we recognize the definition of κ and the last line follows from 5.38.

This is the same as the first term in 5.37. We will now rewrite the last term in 5.37

into a more convenient form. First, we multiply 5.38 by χ[ν∇λ], obtaining

(χ[ν∇λ]χµ)(∇ρχτ ) + χµχ[ν(∇λ]∇ρχτ ) = −2(χ[ν∇λ]χ[ρ)∇τ ]χµ − 2(χ[ν∇λ]∇[τχ|µ|)χρ] .

(5.40)
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By repeated use of 5.38 one can show that the first term on the left-hand side and

the first term on the right-hand side cancel each other out. Hence, we are left with

χµχ[ν∇λ]∇ρχτ = −2(χ[ν∇λ]∇[τχ|µ|)χρ]

−χµR σ
ρτ [λ χν]χσ = 2χ[ρR

σ
τ ]µ[λχν]χσ ,

(5.41)

where we once again made use of the definition of Riemann tensor. Next, multiplying

the expression with gµλ, contracting the indices µ and λ leads to

−χσχµRρτ [µσχν] = 2χ[ρR
λ
τ ] [λ|σ|χν]χ

σ

0 = χ[ρR
σ
τ ] χσχν − χ[ρRτ ]λνσχ

λχσ

χσRσν[τ |λ|χρ]χ
λ = −χ[ρR

σ
τ ] χσχν

(5.42)

The left-hand side vanishes due to symmetries of Riemann tensor. The second term

on the right-hand side has the same form as the last term in 5.37. Hence,

χ[ρ∇τ ]κ = −χ[ρRτ ]σχ
σ . (5.43)

To show that the right-hand side vanishes we will use Einstein’s equation and dom-

inant energy condition, according to which the current jµ = T µν χ
ν can only be fu-

ture null or timelike directed. On the other hand, for stationary spacetime, Ray-

chaudhuri’s equation gives Rµνχ
µχν = 0. Using Einstein’s equation, this implies that

T µν χ
νχµ = 0. In other words, the current can only point in the direction of χµ, which

we write as χ[ρTµ]νχ
ν = 0. Using Einstein’s equation again we get the result that the

right hand side has to vanish.

χ[µ∇ν]κ = 0 . (5.44)

We have shown that the surface gravity of stationary black hole is constant on the

horizon if the dominant energy condition is satisfied. It is expected that κ does not

change along the geodesic, since it is an integral curve of Killing vector field, along

which metric doesn’t change. The surprising part is that κ also doesn’t change as we

move from one geodesic to another, since in general, the horizon is deformed due

to rotation for example. Also note that the surface gravity exists only for stationary

black holes, as only then the Killing horizon coincides with the event horizon. In
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other words, κ is well defined only for black holes in equilibrium. The zeroth law

of black hole mechanics is analogous temperature being constant in thermodynamics

for a system in equilibrium.

Other versions of the proof of the zeroth law Second version of the proof, which

we will only sketch, does not require energy condition starts from stationary black

hole with t − φ orthogonality property. As proved in [112], necessary and sufficient

condition for the constancy of surface gravity on Killing horizon is that the exterior

derivative of the twist of the stationary Killing field tµ vanishes at the horizon.

∇[µων] = 0 , ωµ = εµνρτ t
ν∇ρtτ . (5.45)

One can show that, for tµ∇µtν = κtν ,

t[µ∇ν]κ = −1

4
εµνρτ∇[ρωτ ] . (5.46)

If tµ is hypersurface orthogonal, by definition ωµ = 0, so κ is constant. Consequently,

κ is constant for static black hole, as Killing horizon generated by tµ coincides with

the event horizon. Moreover, in the stationary case there exists a Killing field φµ,

linearly independent of tµ that commutes with tµ. Using these properties it is shown

that

φµ∇µκ = 0 , εµνρσφνtρ∇σκ = φν∇[µων] =
1

2
∇µ(φνω

ν) . (5.47)

The t − φ orthogonality property requires that φµωµ = 0, which means that both

φµ∇µκ = 0 and εµνρσφνtρ∇σκ = 0, implying that t[µ∇ν]κ = 0. In other words, surface

gravity is constant for stationary black holes satisfying t− φ orthogonality property.

The third version considers bifurcate Killing horizon. One proves, starting from

5.31, that divergence of surface gravity is zero as we move along the generators, and

constant as one moves from generator to generator. The derivation is similar to the

one in App.D. Furthermore, because we are dealing with bifurcate Killing horizon, we

know that the Killing vector field vanishes at the bifurcation 2-sphere. As a result, the

divergence of surface gravity must be zero as one moves from generator to generator,
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which means that κ is constant on the entire horizon. Conversely, one can also show

[112] if κ is constant and non-zero over a Killing horizon, then the horizon can be

extended so that it is one of the null hypersurfaces of bifurcate Killing horizon.

In summary, we have the following theorems:

• Surface gravity κ is constant on Killing horizon of stationary black hole if Ein-

stein’s equation holds with matter satisfying the dominant energy condition.

• The surface gravity κ is constant if the spacetime is either static or stationary

with t − φ orthogonality property, as a consequence of the vanishing of the

divergence of the twist.

• The surface gravity κ of stationary black hole is constant on the bifurcate Killing

horizon. Conversely, if it can be shown that κ is constant and non-zero on

Killing horizon, then the horizon can be extended to bifurcate Killing horizon.

When κ = 0 the horizon is said to be degenerate, and such black holes are called

extreme. They lie in the boundary between black holes and naked singularities and

are important in study of cosmic censorship conjecture. Another important question

concerning extreme black holes is their stability [113][114]. However, discussion

regarding extreme black holes is out of scope of this paper so we will not discuss the

issues further.

Apart from the degenerate case, it follows from the zeroth law that the bifurcate

horizons are the only types of Killing horizons in GR.

5.1.5 The first law

The first law of thermodynamics is an identity relating the change in massM , angular

momentum J and horizon area A of stationary black hole when it is perturbed. It is

often said that the first law is just a statement of energy conservation, and we will see

why this is so, but its real importance lies in the fact that it is the Clausius relation.

It has been proven for nearby stationary solutions, where one considers variations

in phase space, and for the case when matter fields fall across the horizon. The former

version of the proof is called equilibrium state version, while the latter is referred to

as physical process version. Moreover, the first law can most easily be derived using

the exact solution in vacuum. However, the significance of the first law is that it holds

in very general setting.
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The first order variation of stationary state of black hole of mass M , angular momentum

J and charge Q is

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ , (5.48)

where ΩH is angular velocity of the horizon, ΦH is the electric potential on the horizon,

κ is the surface gravity and A is area of 2-dimensional cross section of the horizon.

To simplify the derivation of the first law we will not consider charged black holes.

Equilibrium process version The first law was first derived in [45], and the proof

is given in App. E, since the derivation is lengthy. One considers two infinitesimally

different stationary black hole solutions, with matter, regarded as ideal fluid for sim-

plicity, in circular orbit outside of the black hole. Besides the differential formula,

one also obtains the so-called integral mass formula,

M =

∫
S

(2T µν − Tδµν ) tνdΣµ + 2ΩHJH +
κ

4π
A . (5.49)

The first term in 5.49 is the contribution of matter outside the black hole. In vacuum

5.49 reduces to so-called Smarr formula,

M =
κ

4π
A+ 2ΩHJH . (5.50)

The expression is analogous to Euler equation in thermodynamics (also called Gibbs-

Duhem equation),

U(S, V,N) = TS − pV + µN , (5.51)

where U is internal energy of the system, S is entropy, T is temperature, p is pressure,

V is volume, µ is chemical potential and N is number of particles. The Euler equation

follows from extensivity of the thermodynamic variables, and is different for system

described by a different set variables. The first term in 5.50 represents total rotational

energy of the black hole, while the last term is analogous to TS term of the Euler

equation. Moreover, since κ is constant on the horizon for stationary black hole,

just as temperature in thermodynamics, one can deduce that entropy S corresponds
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to area of the horizon A, S ∝ A. The differential formula obtained by varying the

integral mass formula (in vacuum) is

δM =
κ

8π
δA+ ΩHδJ . (5.52)

The analogous statement in thermodynamics is

δU = TδS − pdV . (5.53)

The second term is the work term and it depends on the kind of system we are

considering. Usually, in classical thermodynamics one considers work done by gas

which is expanding. One could for example consider work required to change angu-

lar momentum of the gas, so the work term would be more similar to the one in 5.52.

Another version of equilibrium process derivation of the first law uses Noether’s

procedure. It can be shown that 5.52 follows directly from Lagrangian or Hamil-

tonian formulation of general relativity [115][116]. In the Hamiltonian formula-

tion, 5.52 follows from considering variations of the Hamiltonian associated with the

Killing vector. It turns out that variation is a boundary integral whose value at infinity

can be related to the mass and angular momentum of black hole so that 5.52 holds.

Even more so, it is shown in [116] that 5.52 is valid if one starts from Lagrangian

of any diffeomorphism invariant theory of gravity with arbitrary matter fields. The

details of the derivation are out of the scope of this paper, so we show the important

results, following [115] and [116]. One starts with Lagrangian in its general form

L = L(gab, Rabcd,∇eRabcd, ...;ψ,∇aψ) , (5.54)

in n-dimensional spacetime, where ψ represents all matter fields. AN arbitrary but

finite number of derivatives of Rabcd and ψ are allowed to appear. Moreover, as

the theory is diffeomorphism invariant, vector fields on spacetime M constitute a

collection of infinitesimal local symmetries. Let ξa be any vector field on M. Then,

to each ξa one can associate Noether current (n − 1)-form j. Furthermore, when

equations of motion hold we have a relationship j = dQ, where an (n − 2)-form Q

is referred to as Noether charge. The first law follows from variation of the Noether

106



current. For Killing vector χ it follows,

δ

∫
Σ

Q[χ] = δM − ΩHδJ , (5.55)

where Σ is bifurcation (n − 2)-surface at which χ vanishes. Further analysis also

shows that

δ

∫
Σ

Q[χ] =
κ

2π
δS , (5.56)

with S, some geometrical quantity, given by

S ≡ −2π

∫
Σ

Eabcdnabncd , (5.57)

where nab denotes binormal to Σ and Eabcd is functional derivative of Lagrangian L

with respect to Rabcd

Eabcd ≡ δL

δRabcd

, (5.58)

such that gab and ∇a are held fixed. For the case where the Lagrangian describes GR

in vacuum L = 1
16π
R, one obtains that

Eabcd =
1

16π
gacgbd , (5.59)

and S is

S = −2π

∫
Σ

1

16π
gacgbdnabncd = −1

8

∫
Σ

nabnab =
1

4
A . (5.60)

Hence, the first law 5.52 holds if we can replace A/4 by S. Note that this derivation

also fixes the proportionality constant, so S ↔ A/4 and T ↔ κ/2π. This concludes

the discussion about equilibrium processes and we will now turn to the physical

process version of the derivation.

Physical process version This version of the first law describes the change in black

hole parameters when infinitesimal amount of matter crosses the event horizon so

it is closer in spirit to the first law of thermodynamics. We assume that the pro-
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cess if quasi-static and that stationary black hole settles down to a stationary state

after the process is over. The original derivation was done in [117], where they

considered slowing down of a black hole caused by non-axisymmetric matter and

non-axisymmetric gravitational perturbation produced by a distant mass.

When the perturbation is produced by a matter field, the change of parameters

can be calculated using formulas for flux of energy and angular momentum across

the event horizon, given by 5.61 and 5.62.

δM = −
∫
H

∆T µν t
νdΣµ , (5.61)

δJ =

∫
H

∆T µν φ
νdΣµ . (5.62)

Small amount of matter is represented by ∆T µν . The first expression is energy flux

through the horizon as seen by an observer at infinity, and we have a similar expres-

sion for the flux of angular momentum45. Combining the relations, one obtains

δM − ΩHδJ =

∫
H
Tµν(t

ν + ΩHφ
ν)χµdSdλ

=

∫
dλ

∫
H(λ)

Tµνχ
µχνdA .

(5.63)

The infinitesimal surface element of the horizon is dΣµ = χµdSdλ, where dS is an

element of the area of cross section, and dλ moves along the generators. The inte-

gration is done so that one integrates over the cross section first, which is what is

understood by H(λ), and then along the generators. Note that we are dealing with

perturbative approach to the first order, so we treat the initial black hole spacetime

as a background. In other words, the Killing vectors in 5.61 and 5.62 belong to ini-

tial state of black hole (to the first order). Moreover, we assume that sources of the

matter field are far away from the black hole and have low enough mass that their

gravitational effect on the black hole is negligible compared to the effect of matter

fields.

The integral 5.63 is calculated using Raychaudhuri’s equation 5.23. When deriv-

ing the zeroth law, we were looking at the equilibrium case, so expansion, shear and

twist all vanished. As we now have a flow of matter across the horizon, the geodesics

45The expression 5.61 and 5.62 are “generalizations" of formula for flux as a current, i.e., a vector
field, that is crossing a surface.
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deviate from one another as described by 5.64 to the first order. That is, the black

hole is not stationary while the process takes place.

dθ

dλ
= κθ − 8πTµνχ

µχν , (5.64)

where we neglected the quadratic terms in θ and σ and used Einstein’s equations.

With 5.64, the expression 5.63 is

δM − ΩHδJ = − 1

8π

∫
dλ

∫
H(λ)

(
dθ

dλ
− κθ

)
dA

= − 1

8π

∫
dλ

∫
H(λ)

dθ

dλ
dA+

κ

8π

∫
dλ

∫
H(λ)

θdA .

(5.65)

In the second line, κ can be taken in front of the integral because to the first order κ

is surface gravity of the initial state of black hole, and is constant across the horizon

as shown by the zeroth law. Let’s look at the first integral,

∫
dλ

∫
H(λ)

dθ

dλ
dA =

(∫
H(λ)

θdA

)∣∣∣λ2
λ1

= 0 . (5.66)

The boundaries refer to initial and final states of black hole, which are taken to be

stationary. Thus, θ = 0 at the lower and upper boundary, so the integral vanishes. To

evaluate the first term in 5.65 remember that expansion describes fractional rate of

expansion of cross sectional area as we are moving along the generators, i.e.,

θ =
1

dA

dA

dλ
=⇒ θdA =

dA

dλ
, (5.67)

where δA is cross section of a bundle of generators. As a result,

∫
dλ

∫
H(λ)

d

dλ
A = A(λ2)− A(λ1) = δA . (5.68)

The change in area is infinitesimal. Finally, 5.65 is

δM − ΩHδJ =
κ

8π
δA =⇒ δM = ΩHδJ +

κ

8π
δA . (5.69)

Hence, we reproduced the same formula as with equilibrium process version [101].
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5.1.6 The second law

The second law, unlike the zeroth and the first law, is not related only to stationary

black holes. In other words, one does not need any property of Killing vector field to

prove the theorem. It states that

Area of event horizon of a predictable46 black hole never decrease with time, assuming

the dominant energy condition Rµνk
µkν ≥ 0 is satisfied for all null vectors kµ.

δA ≥ 0 , (5.70)

where δA = 0 corresponds to the stationary case.

The assumption of predictability comes down to that cosmic censorship conjecture

holds. The second law is often called the area increase theorem since, as the name

suggest, it states that the area of the black hole cannot decrease. It is proved in

[118][103], by showing that the expansion of generators on the horizon is non-

negative, leading to condition that the surface area of black hole can never decrease.

The derivation in this section follows [115] and [102]. Before proving the second

law we need to mention some properties of the event horizons. The proofs can be

found in [103].

1. No two point on the horizon can be connected by a timelike curve.

2. The null geodesic generators of the event horizon may have past end-points in

the sense that the continuation of the geodesic further into the past is no longer

part of the event horizon.

3. The generators of event horizons have no future end-points, i.e., no generator

may leave the horizon.

These properties are depicted in Fig. 5.3. The first property is also called achronicity

property. As a consequence of second and third property the generators may enter

the horizon but not leave it. To prove the area increase theorem, let’s start from

46An asymptotically flat spacetime is said to contain a predictable black hole if there exists a globally
hyperbolic region containing both the exterior to the black hole and event horizon of the black hole.
There are several notions of globally hyperbolic spacetime, which are all equivalent. One is the exis-
tence of Cauchy surface — an achronal (cannot be linked by a causal curve) spacelike hypersurface,
which causal curve intersects only once [71][115].
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Figure 5.3: Penrose diagram of spherically symmetric collapsing star. The horizon
H is a null hypersurface generated by null geodesics with no future end-point. The
generators can be continued to the past null infinity [119].

affinely parametrized Raychaudhuri equation,

dθ

dλ̃
= −1

2
θ2 − σμνσ

μν −Rμνk
μkν . (5.71)

Affine parameter of null geodesic on the horizon is denoted by λ̃, and kμ is its tangent

vector, which is proportional to Killing vector χμ. However, kμ doesn’t satisfy the

Killing equation. Now, assuming the null energy condition holds,

Rμνk
μkν ≥ 0 , (5.72)

and because shear is spatial, so σμνσ
μν must be positive, it must hold that

dθ

dλ̃
≤ −1

2
θ2∫ θ

θ0

dθ

θ2
≤ −

∫ λ̃

0

dλ̃

2
=⇒ 1

θ(λ̃)
≥ 1

θ0
+

λ

2
.

(5.73)

The obtained result tells us that if geodesics are converging at some point, i.e., θ0 < 0,

then, as the parameter λ̃ increases, the geodesics reach a point where the right-hand

side is zero. This corresponds to θ → −∞. In other words, the geodesics reach a

point of infinite convergence for finite value of parameter, they intersect. One says

that the geodesics converge to a focus, or caustic. The physical explanation is that

geodesics get focused due to attractive nature of gravitation. The result if known as

the focusing theorem. This is the first step towards the area increase theorem [101].
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Next, to prove that the area of the horizon can never decrease, we must show that

each area element of the horizon a has this property. As expansion is by definition

the fractional rate of change of the cross section, we have that

da

dλ̃
= aθ . (5.74)

Thus, the area element is non-decreasing along λ̃ if θ ≥ 0 everywhere on the horizon.

This would follow immediately if the horizon would satisfy geodesic completeness,

i.e., if all the generators of the horizon could be extended for all values of the affine

parameter. However, the predictability condition imposes no such constraints. In-

stead, the proof is obtained by contradiction — consider geodesic γ and assume that

θ < 0. Then, as it was just proven, geodesics near γ will form a caustic at finite

distance away. That is (see Fig. 5.4), nearby geodesic passing through point p must

intersect γ a finite distance along it. The first point for which this happens is called

Figure 5.4: Solid line is geodesic γ. Geodesics near γ (dashed line), pass through
point p and form a caustic a finite distance away. The point q is conjugate to p. Points
on γ beyond q are timelike separated from p [119].

the point conjugate to p on γ. Let’s call it point q. It can then be proven47 that if

there exists such point, a variation of γ will give a timelike curve from q to p. That is,

points on γ beyond q are timelike separated from p. This is in contradiction with the

first property of event horizon. Hence, it must be true that θ ≥ 0 everywhere on the

horizon, otherwise the horizon would cease to exist [119]. Hence, we have showed

that

δA ≥ 0 . (5.75)

47The proof of the claim is Proposition 4.5.12 in [103].
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Moreover, as stated in [45], if two black holes coalesce, the area of the final event

horizon is greater than the sum of the areas of the initial horizons, i.e.,

A3 > A1 + A2 . (5.76)

The statement of the second law is similar to the entropy only increasing in thermo-

dynamics.

In summary, we have shown that area of the black hole horizon can only grow

larger or stay the same if the black hole is stationary, i.e., where no matter crosses

the horizon. Simply put, matter crossing the event horizon will cause an increase

of the area of event horizon. This result is surprising because it is possible to ex-

tract energy from spinning black hole via Penrose process. As already mentioned, in

Kerr spacetime outside the event horizon, tµ is spacelike in region called ergosphere.

Consequently, matter in ergosphere corotates with the black hole. Then, if a piece

of matter splits into two parts in the ergosphere under the right circumstances, one

piece of matter can escape to infinity with greater energy than the original piece of

matter, while the other piece falls into black hole with negative energy. The net effect

is that energy is extracted from the black hole, with the difference provided by the

black hole. The angular momentum of black hole decreases by the amount corre-

sponding to energy transferred to the escaping part of matter. It then seems at the

first sight that it may be possible to decrease the area of the black hole. However,

this is not the case [46].

5.1.7 The third law

The third law is concerned with the limiting behaviour of systems as the temperature,

or equivalently, surface gravity approaches absolute zero. Both in GR and thermody-

namics, it does not have the same importance as the other three laws, since (for some

formulations of the third law) there are counterexamples. The third law as stated by

[45] says,

No physical process can reduce the surface gravity of a black hole to zero by a finite

sequence of operations.

The formal proof is given in [120] by Israel, with assumption that matter satisfies the
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weak energy condition. The third law for black hole mechanics is similar to Nernst’s

formulation of the third law of thermodynamics, which state that it is not possible

to reduce the temperature of system to zero. We should also mention that Nernst’s

formulation is the most accepted version of the third law.

Another version is given by Simon [121], and states that for system in an

equilibrium the entropy goes to zero, as the temperature tends to absolute zero.

For black holes, temperature is analogous to surface gravity and entropy to area of

the horizon. Thus, we know that in GR this version of the third law does not hold

because there exist extreme Kerr black holes for which κ = 0 and A 6= 0 [98]. The

importance of this version is its relationship with statistical physics, where entropy is

S = lnΩ, and Ω is the number of microstates corresponding to the same macrostate.

A system at temperature zero is expected to be in its ground state, so it then follows

that if the ground state is non-degenerate, Ω = 1 and S = 0. Because this is not

always the case, the law was reformulated. It states that entropy approaches a

constant as the absolute temperature tends to zero [122], which is similar to the

black hole case.

This concludes the discussion about the four laws ob black hole mechanics. When

they were first derived they were considered nothing more then a formal analogy

because black hole could only have a temperature of absolute zero. This is because

energy can only flow into black hole, but never out. So the “equivalence" would

work only for extreme black holes. However, there is an indication that the rela-

tionship of the second law of black hole mechanics with the entropy increase should

be taken seriously. As noticed first by Wheeler, if one drops matter into black hole,

entropy of the visible universe decreases in the process. Then, since the outside of

the black hole is causally isolated system, the observer outside the black hole would

not be able to verify that the total entropy of the universe increased, surpassing the

second law of thermodynamics. On the other hand, as it was just showed, the area

of the black hole increased. Then, if one considers the area increase of the black

hole horizon as the actual increase in entropy, it is natural to generalize the second

law of thermodynamics as — the sum of entropy in the black hole exterior and the

entropy of black hole can never decrease. In other words, to salvage the second law of

thermodynamics one must add the black hole entropy to the entropy content of the
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universe. This is as far the classical picture takes us. The status of the four laws of

black hole mechanics changed when Hawking showed that, taking quantum effect

into account, black holes do radiate with a black body spectrum corresponding to

some finite temperature. The result is called Hawking radiation.

First we will derive Hawking radiation and then we will discuss the implications

it has on the four laws.

5.2 Hawking radiation

In this section we consider semi-classical picture, where the matter fields surround-

ing the black hole are quantized. Consequently, as shown by Hawking in [123], when

one takes into account the quantum behaviour of matter outside the black hole hori-

zon, black holes radiate with a spectrum of a black body of a temperature equal to

TH , called Hawking temperature.

TH =
κ

2π
. (5.77)

The Hawking temperature of the black hole at the center of the Milky Way, Sagittar-

ius A*, having a mass of approximately 4 × 106M�, is approximately 10−14 K [46].

Since the temperature of cosmic microwave background is ≈ 2.73 K, the Hawking ra-

diation is substantially overpowered, making the possible experimental verification

quite difficult. Nevertheless, Hawking radiation has been derived in many different

ways, which although is not the same as experimental verification, shows that theory

is consistent and one has good reasons to expect that in reality, black holes radiate.

The original derivation of the result is highly technical and requires one to con-

sider quantum field theory in curved spacetime, since spacetime at the event horizon

is curved. We have discussed quantum field theory on flat spacetime when talking

about Weinberg-Witten theorem, but generalization to curved spacetime is non-trivial

as some of the important concepts are deeply rooted in Poincare symmetries of flat

spacetime, such as the existence of unique vacuum state. In fact, the key feature

on which Hawking’s calculation is based on is that the choice of vacuum in curved

spacetime depends on time. Thus, we only briefly explain how Hawking obtained

the result. The details are worked out in [124]. Hawking considered a collapse to a

Schwarzschild black hole and a free quantum field that is propagating on the back-
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ground spacetime. Comparing the waves at infinitely late times, when the black hole

settled to a stationary state, with the ones at infinitely early times before the col-

lapse has begun, it was shown that the expected number of particles at late infinity

corresponds to emission from a perfect black body of temperature TH .

The heuristic argument explaining Hawking radiation is the following. Vacuum

is not empty as virtual particle-antiparticle pairs are continuously created and an-

nihilated, violating the energy conservation for short period of time as allowed by

Heisenberg’s uncertainty principle. In the case when the pair is created just out-

side the event horizon, during its short existence one of the particles may cross the

horizon, ending up with negative energy since its Killing vector becomes spacelike,

reducing the mass of black hole. The other particle, since it remains outside the event

horizon, escapes to infinity with positive energy. The net effect is that to an observer

outside it appears as the black hole emits particles. This is the Hawking radiation.

Moreover, if the pair is created just inside the event horizon, it is classically confined

to remain there, once again, because Killing vector field is spacelike beyond the hori-

zon. However, quantum mechanics allows the particles to tunnel out of region that

is classically forbidden, so once again we can have a situation where a particle es-

capes to infinity carrying with it a fraction of mass of the black hole, so that energy

is conserved. Derivation based on this picture is given by [125][126], which we now

reproduce.

Derivation of Hawking radiation using WKB approximation One stars by con-

sidering a virtual pair just inside the horizon. The probability of tunneling, i.e., an

emission (tunneling) rate Γ is calculated using WKB approximation, where it is given

by

Γ ∝ e−2ImS , (5.78)

and S is action for the trajectory,

ImS = Im

∫ rf

ri

p(r)dr . (5.79)

Quantity p is the momentum of particle that can be obtained from Hamiltonian.

Before proceeding, one should justify the WKB approximation. This is the case when
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the phase of wave function oscillates fast, i.e., when48 ~ → 0. In other words, WKB

is valid when de Broglie wavelength λ goes to zero. The wavelength of the emitted

radiation as measured by someone at infinity is of the order of the size of black hole,

λ ∝ M . However, tracing the geodesic back to the horizon, the wavelenghth is blue-

shifted (decreased in wavelength), approaching zero at the horizon. In other words,

local observer at the horizon measures infinite blue-shift, so λ→ 0.

Furthermore, since we are considering WKB approximation, one needs to specify

the potential barrier, classically forbidden region of finite size the particles tunnels

through. Although not obvious at first where the potential barrier is, the answer

comes from conservation of energy. The emission process lowers the mass of black

hole by the amount of energy carried by the particle being emitted. Consequently,

the horizon radius decreases. Hence, the barrier is taken as the region between the

initial and new position of the horizon. It is created by the outgoing particle itself.

We now return to the derivation. To evaluate the integral 5.79 we need a specific

trajectory. Let’s consider the case of Schwarzschild black hole, and take the particle

to be a photon. Now, because the particle escapes from the inside of event horizon

ri to the outside rf , one needs to use coordinates which are regular on the event

horizon. The spherical coordinates are not suitable for this purpose. Instead, we will

use Gullstrand-Painlevé coordinates,

ds2 = −
(

1− 2(M − ω)

r

)
dt2 + 2

√
2(M − ω)

r
dtdr + dr2 + r2dΩ2 . (5.80)

Note that M is exchanged by M − ω in the metric. The result follows from [127],

where it is shown that if self-gravitating shell of energy ω moves on the geodesic,

while total mass of spacetime is considered fixed, the shell travels on the geodesic

given by line element 5.80. That is, withM exchanged byM−ω. Moreover, assuming

that the photon moves along radial null geodesic, its trajectory is

dr

dt
= ±1−

√
2(M − ω)

r
, (5.81)

with upper (lower) sign corresponding to outgoing (ingoing) geodesics, assuming t

increases towards future. Also, ri = 2M and rf = 2(M − ω). One can see that the

48We are working in units where ~ = 1. That is, the expression in the exponent is S/~.
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width of the barrier depends on energy of the particle. Evaluation of 5.79 is done

using the methods of complex integration [125]. We provide the final result,

Γ ∝ e−8πMω(1− ω
2M

) . (5.82)

This is the emission rate of the Schwarzschild black hole. Neglecting the term ∝ ω2,

the expression takes the form e−βE, with E = ω which confirms the intuitive picture

that Hawking radiation can be viewed as tunneling. Moreover, by explicit calculation

one can check that for Schwarzschild black hole the surface gravity is

κ =
1

4M
=⇒ T =

1

8πM
=

κ

2π
, (5.83)

which leads to the result stated at the beginning of the section. The temperature of

the radiations is the Hawking temperature TH .

Lastly, we give a few remarks. The additional term ∝ ω2 is the result of energy

conservation in a sense that the negative sign ensures the temperature of black hole

increases the more energy it radiates. Secondly, the derivation in this section is given

for Schwarzschild black hole in specific coordinates for a special case of trajectory.

This is a very particular setting. Thus, it is worth to mention that the approach

has been generalized to other types of black holes, with the null geodesic method

replaced by Hamilton-Jacobi method [128][129].

As mentioned there are other ways to derive Hawking’s radiation. One such

method is by trace anomalies, proved in [130]. It consists of calculating the vacuum

expectation value of EMT of massless scalar field 〈Tµν〉 in 2-dimensional spacetime

evaluated in a 2-dimensional model of gravitational collapse. The method is called

trace anomaly because classically, the trace of EMT has to vanish on-shell, which is no

longer true when quantum corrections are taken into account. Then with the help of

covariant conservation law it follows that there is a flux of positive energy density at

infinity, describing thermal radiation, balanced by fluxed of negative energy through

the horizon. The idea was generalized by [131][132].

Another method relies on the fact that in quantum field theory (on flat spacetime)

one can obtain a thermal partition function from path integral approach. The basic

idea that the partition function ZC = Tre−βH , where β is inverse of temperature, is
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formally equivalent to probability amplitude Z = 〈F |e−iHt|I〉 for initial state |I〉 to

end up in the final state |F 〉 if |I〉 = |F 〉 and one analytically continues (real) time t

to imaginary time with period β, i.e., t → −iβ. The cyclic property makes sure that

every state goes back to itself, i.e., that |I〉 = |F 〉 holds [41].

In GR, as explained before, there is in general no preferred time coordinate, unless

the spacetime is stationary. Then the Killing vector field defines a preferred time

coordinate. We will now derive Hawking temperature for Schwarzschild black hole

using methods explained above, called Euclidean path integral approach following

[41][119][133].

Derivation of Hawking temperature using Euclidean path integral approach To

begin with, we briefly explain the idea of Euclidean path integrals within quantum

mechanics. As we know, the amplitude to propagate from initial state qI to the final

state qF is given by 〈qF |e−iHt|qF 〉, where t is time and H is the Hamiltonian. The path

integral representation of the amplitude is given by

〈qF |e−iHt|qI〉 =

∫
Dq ei

∫
d4L , (5.84)

where Dq is path integral measure. This is obtained by dividing time t into N seg-

ments, each lasting δt = t
N

, and making use of

∫ ∞
−∞
|q〉〈q| = 1 , (5.85)

so that the amplitude can be written as

〈qF |e−iHt|qI〉 =〈
qF

∣∣∣e−iHδt

(∫ ∞
−∞
|qN−1〉 〈qN−1| dqN−1

)
e−iHδt

(∫ ∞
−∞
|qN−2〉 〈qN−2| dqN−2

)
e−iHδt×

· · · e−iHδt

(∫ ∞
−∞
|q1〉 〈q1| dq1

)
e−iHδt

∣∣∣qI〉
=

(
N−1∏
j=1

∫
dqj

)〈
ψF
∣∣e−iHδt

∣∣ qN−1

〉 〈
qN−1

∣∣e−iHδt
∣∣ qN−2

〉
×

〈
qN−2

∣∣e−iHδt · · · e−iHδt
∣∣ q1

〉 〈
q1

∣∣e−iHδt
∣∣ qI〉 .

(5.86)
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If one assumes that the particle is free, H = p2/2m. Evaluating the individual integral

〈qj+1|e−iδt·p
2/2m|qj〉 gives

〈
qj+1

∣∣∣∣e−iHδt

(∫ ∞
−∞

dp

2π
|p〉〈p|

)∣∣∣∣ qj〉 =

∫ ∞
−∞

dp

2π
e−ip2δt/2m 〈qj+1 | p〉 〈p | qj〉 (5.87)

=

∫ ∞
−∞

dp

2π
e−ip2δt/2meip(qj+1−qj) (5.88)

=

(
−i2πm
δt

) 1
2

eiδt(m/2)[(qj+1−qj)/δt]2 . (5.89)

Consequently, the amplitude is

〈qF |e−iHt|qI〉 =

(
−im
2πδt

)N
2

(
N−1∑
k=1

∫
dqk

)
ei(m/2)δt

∑N−1
j=0 [(qj+1−qj)/δt]2 (5.90)

In the limit N → ∞ and δt → 0 one can replace (qj+1 − qj)/δt with q̇ and δt
∑N−1

j=0

with
∫ t

0
dt. Defining integral over paths as

∫
Dq = lim

N→∞

(
−im
2πδt

)N
2

(
N−1∑
k=1

∫
dqk

)
, (5.91)

one obtains 5.84. Finally, to evaluate the integral one performs Wick rotation by

substituting t → −it and rotating the integration contour in the complex plane.

Moreover, in most cases one is interested in the ground state which is denoted by |0〉,

and the amplitude is called Z ≡ 〈0|e−iHt|0〉.

Z =

∫
Dq e−

∫
d4xL . (5.92)

In QFT, the dynamical variable is field φ, so

Z =

∫
Dφ e−SE [φ] , (5.93)

where SE is Euclidean action. The Wick rotation changed Lorentzian signature to

Riemannian signature, which in flat spacetime gives the metric of Euclidean plane.

On the other hand, partition function of canonical ensemble, representing possi-

ble states of a system in thermal equilibrium with the surrounding at fixed tempera-
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ture of a quantum and discrete system is given by

ZC =
∑
n

〈n|e−βH |n〉 =
∑
n

e−βEn = Tre−βH , (5.94)

where En is energy of state |n〉. We will now show how path integral formulation

and partition function are related. Remember that the amplitude is given by Green

function,

G (q′, t; q, 0) =
〈
q′
∣∣e−iHt∣∣ q〉 . (5.95)

If we take t to be pure imaginary, we can write t = −iβ, where β is real. Then

G (q′,−iβ; q, 0) =
〈
q′
∣∣e−iH(−iβ)

∣∣ q〉
=

〈
q′

∣∣∣∣∣e−βH∑
j

∣∣∣∣∣ j
〉
〈j||q〉

=
∑
j

e−βEj 〈q′ | j〉 〈j | q〉

=
∑
j

e−βEj〈j | q〉 〈q′ | j〉 .

(5.96)

Considering q′ = q and integrating over q we get

∫
dqG(q,−iβ; q, 0) =

∑
j

e−βEj

〈
j|
∫
dq|q〉〈q︸ ︷︷ ︸

=1

|j

〉
= ZC . (5.97)

This shows that to relate path integral formulation to partition function we should

make time imaginary, t → −iβ and consider the state that goes back to itself. More-

over, in QFT for finite temperature the Green function is periodic. To show this,

consider the Green function of a scalar field φ in thermal ensemble at temperature
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T = 1/β.

Gβ (q′, t; q, 0) ≡ Tr
(
e−βHϕ(q′, t)ϕ (q, 0)

)
= Tr

(
e−βHϕ(q′, t)e−βHeβHϕ (q, 0)

)
= Tr

(
ϕ(q′, t)e−βHeβHϕ (q, 0) e−βH

)
= Tr

(
ϕ(q′, t)e−βHϕ (q, t+ iβ)

)
= Gβ (q, 0; q′, t+ iβ) .

(5.98)

We used the cyclic property of trace and eβHϕ (q, 0) e−βH = ϕ (q, t+ iβ) because

Hamiltonian generates time translations. It then follows that a Green function sym-

metric in its arguments is periodic in imaginary time. In other words, field living in

spacetime with imaginary and cyclic time is living in a temperature bath proportional

to inverse of the imaginary time period49.

Using this observation we will determine the temperature of Hawking radiation.

In spherical coordinates the metric os Schwarzschild black hole is

ds2 = −f dt2 +
1

f
dr2 + r2dΩ2 , f = 1− 2M

r
. (5.99)

We are interested in what is happening near the horizon. Hence, let’s make the

substitution r − 2M = x2/8M and look at the case when x → 0. Also taking into

consideration that surface gravity κ = 1/4M for Schwarzschild black hole, we have

that

f =
(κx)2

1 + (κx)2
≈ (κx)2 , dr2 = (κx)2dx2 . (5.100)

The approximation is valid near the horizon where x ≈ 0. The metric near the

horizon is

ds2 ≈ −(κx)2dt2 + dx2 +
1

4κ2
dΩ2 . (5.101)

We will be interested only in the first two terms. If we now set t = −itE, we get

ds2
2E ≈ x2d(κdtE)2 + dx2 , (5.102)

49The explanation is based on the mathematical procedure. Whether or not this connection is only
formal or it truly has a physical interpretation is an open question [41].
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which we can recognize as the metric of a plane in polar coordinates,

ds2 = dr2 + r2dθ . (5.103)

We can conclude that the angular coordinate is κtE. Consequently, κtE has the period

equal to 2π,

tE ∝ tE +
2π

κ
. (5.104)

The plane x− tE is flat only if κtE is periodic, as otherwise the point x = 0 is a conical

singularity, assuming that the vertex of the cone is at the origin [134].

On the other hand, as previously explained, the period of complex time is equal

to β. We can then make the following identification,

β =
2π

κ
, TH =

κ~
2πkB

, (5.105)

where we reintroduced all the Boltzmann and Planck’s constants, kB and ~. We see

that classically, the Hawking temperature vanishes. Moreover, from the first law we

can now determine the proportionality constant between area of the black hole and

entropy,

δM =
κ

8π
δA =⇒ A =

1

4
SBH , (5.106)

from analogy with thermodynamics, δU = TδS. The black hole entropy is called

Bekenstein-Hawking entropy,

SBH =
A

4~G
, (5.107)

and its nature is quantum gravitational in a sense that it contains Newton’s constant

G and Planck’s constant ~.

In summary, black hole radiate as black bodies with temperature TH . As a con-

sequence of this result and Hawking radiation, the entropy of black hole is SBH . We

will now discuss the impact this result has on the second law.
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5.3 Generalized second law

As already explained, from completely classical consideration it seems that the sec-

ond law should be generalized, in a sense that one should assign entropy to the black

hole.

Moreover, a problem with the second law of black hole mechanics arises taking

Hawking radiation into account. Quantum matter does not satisfy null energy con-

dition, assumed in the derivation of the second law. Consequently, as the black hole

radiated its area decreases, it “evaporates". Hence, the generalized statement of the

second law was proposed, stating that

δ(S +
1

4
A) ≥ 0 , (5.108)

where S is entropy of matter outside the black hole. The entropy outside the black

hole compensates for decrease in area of the black hole as it radiates [98].

Thus, the second law of thermodynamics fails in the presence of black hole, while

the second law of black hole mechanics fails if quantum effects are taken into ac-

count. It is the generalised second law that holds50.

5.4 Commentary on the four laws of black hole mechanics

In this section we consider some objections concerned with analogy between

black holes and thermodynamics. Let’s start by stating the four laws of black hole

mechanics obtained in the previous sections, next to their thermodynamic analogues

[46].

Zeroth Law

[Thermodynamics] The temperature T is constant throughout a body in thermal

equilibrium.

[Black Holes] The surface gravity κ is constant over the event horizon of a stationary

black hole.

50Although we have strong indications that the second law of black hole is valid, some ideas have
been proposed violating the second law, which led to proposition of an entropy bound [135]. We
will not discuss these issues here, as complete treatment relies on statistical interpretation of entropy,
which is out of scope of this paper.
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First Law

[Thermodynamics]

dE = T dS + p dV + ΩdJ

where E is the total energy of the system, T the temperature, S the entropy, p the

pressure, V the volume, Ω the rotational velocity and J the angular momentum.

[Black Holes]

δM =
1

8π
κδA+ ΩIIδJII

where M is the total black hole mass, A the surface area of its horizon, ΩII the

rotational velocity of its horizon, JII its total angular momentum, and δ denotes the

result of a first-order, linear perturbation of the spacetime.

Second Law

[Thermodynamics] δS ≥ 0 for any process in an isolated system.

[Black Holes] δA ≥ 0 in any process if null energy condition holds.

Third law

[Thermodynamics] No physical process can reduce the surface gravity of a black

hole to zero by a finite sequence of operations.

[Black Holes]No physical process can reduce the temperature of the system to zero

by a finite sequence of operations.

As already explained, in thermodynamics, a system is some type of matter mat-

ter confined in space and separated from the its surrounding by a wall, allowing for

transfer of various quantities. In a similar manner, black hole is a region of spacetime

that is causally disconnected from the rest, with the event horizon playing the role of

the boundary. Equilibrium is extended to geometry as existence of stationary Killing

vector field that is timelike near infinity. Moreover, the state of thermodynamical

system is specified by a few macroscopic parameters, depending on the nature of the

system, just like black holes can be characterized with a small number of parameters.

The behaviour of the system in (quasi)equilibrium is determined by thermodynam-

ical laws given above. However, unlike equations of motion which are limited to

specific systems and deterministic, prescribing exactly how the system evolves (at

least classically), thermodynamics works as a constraint imposed by probability the-
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ory. Thus, if the analogy of gravitation and thermodynamics can be considered as

equivalence, it would imply that Einstein’s field equations can be considered as a

constraint, underlined by some more fundamental laws.

Lastly, as we are discussing thermodynamic properties, note that heat capacity of

black hole is negative. Consider Hawking temperature of Schwarzschild black hole,

TH =
1

8πM
. (5.109)

As the black hole radiates, its mass decreases, meaning that the temperature in-

creases. The result is not unique to black holes, since some stars can also have

negative heat capacity.

Let’s now see what are the differences between black holes and thermodynamics.

The first difference is that the laws of thermodynamics, the zeroth law especially,

are not usually stated at this form. The zeroth law of thermodynamics states that if

two thermodynamic systems A and B are separately in thermal equilibrium with a

third system C, then they are in thermal equilibrium with each other. It defines ther-

mal equilibrium as an equivalence relation between thermodynamic systems [136].

The point is that that the Zeroth law in thermodynamics is not just a statement

that temperature is constant in equilibrium, but of transitivity of the equilibrium. The

constancy of temperature is in fact a consequence of transitivity.

The ‘in equilibrium with’ relation for the black holes exists thanks to Hawking

radiation [137]. Black holes are in thermal contact just as any other self-gravitating

system. Imagine putting two systems, one or both of which is a black hole, in a

large box far enough from each other so that their gravitational attraction can be

neglected. Each box will fill up with radiation corresponding to some temperature so

the heat will flow from the hotter to the colder body.

Another discrepancy is that in thermodynamics, entropy is an extensive quantity

that scales with volume. On the other hand for black holes entropy scales with area.

There is no arguing with this claim. Although this represents departure from ther-

modynamics, as stated in [137], there is nothing in thermodynamics that requires

extensivity of entropy.

Finally, it should be pointed out that Hawking radiation of black hole does not
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originate from microscopical degrees of freedom of the black hole itself, as it is

generally the case for black body radiation.

This concludes the discussion about relationship between black holes and thermo-

dynamics. Although there are many similarities, it is not clear that the analogy can

be considered equivalence. Note that we haven’t discussed the origin of the entroy.

The discussion of the subject is out of scope of this paper.

We now turn to more general setting motivated by the fact that the event horizons

are not constrained only to black holes. In other words, although the four laws we

discussed concern black holes, the crucial role was played by the event horizon, but

they exist even in spacetimes that do not contain a black hole. Following [65] we will

refer to horizons that are not the boundary of the black hole as causal horizons. More

precisely, we will consider Rindler horizons. In the next section we will introduce

them in the scope of so-called Unruh effect.

5.5 Unruh effect

An effect closely related to Hawking radiation, but independent is the Unruh effect.

A uniformly accelerated observer in flat spacetime, called Rindler observer perceives

a thermal state of temperature TU , what an inertial observer perceives as vacuum.

TU =
a

2π
, (5.110)

where a is the magnitude of acceleration of Rindler observer. In other words, Rindler

observer perceives thermal bath of particles. For example, if there is a scalar field

propagating in flat spacetime, Rindler observer would measure density of particles

as given by Bose-Einstein distribution with T = TU , while at the same time, the

expected number of particles according to an inertial observer is zero. Moreover, the

Unruh effect can be generalized to curved spacetimes with a bifurcate Killing horizon

[115].

Before dealing with the subject further, we need to discuss spacetime from the

point of view of Rindler observer. For simplicity, we will consider 2-dimensional

spacetime. Let the Rindler observer describe spacetime using coordinates (x, t), while

inertial observer uses Cartesian coordinates (X,T ). Then, the trajectory of uniformly

127



accelerating observer is hyperbola (see Fig. 5.5). The relationship between the coor-

Figure 5.5: Spacetime diagram of flat spacetime. Hyperbola is the trajectory of
Rindler observer. The region in grey is part of spacetime accesible to Rindler ob-
server, called right Rindler wedge (marked by R). The horizons are Killing horizons
for vector field ∂t and represent boundaries of past and future as experienced by
Rindler observer.

dinates is

X = xcosh(at) , T = xsinh(at) , x > |t| . (5.111)

The range of Rindler’s coordinates is −∞ < t, x < +∞ and covers only the right

wedge. Moreover, the line element is

ds2 = −dT 2 + dX2 = −a2x2dt2 + dx2 . (5.112)

One may recognize that the metric is the same as the one approximating geometry in

the neighbourhood of Schwarzschild spacetime, 5.101. As 5.112 is independent of

coordinate t we know that ∂t is a Killing vector field. We are in flat spacetime so the

Killing vector field can be either spacetime translation or rotation (including boosts

and spatial rotations). Expressing ∂t in (T,X) coordinates gives

∂t = a(X∂T + T∂X) . (5.113)

Thus, ∂t is boost Killing vector field. its orbits are hyperbolas. That is, they corre-

spond to the worldlines of uniformly accelerated observer with proper acceleration

a = 1/x. It is the boost Killing field that generates the bifurcate Killing horizon on
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Fig. 5.5. The horizon is called the Rindler horizon, and represents causal boundary

for Rindler observer. We can now give the formal definition of Unruh effect.

Consider a classical spacetime that contains a bifurcate Killing horizon K, so that there

is one parameter group of isometries whose associated Killing vector field is normal to K.

Consider a free quantum field on this spacetime. Then there exists at most one globally

nonsingular state of the field which is invariant under the isometries. Furthermore, in

the “wedges" of the spacetime where the isometries have timelike orbits, this state (if it

exists) is a thermal equilibrium state at temperature TU .

Rindler spacetime —- flat spacetime in Rindler coordinates — is the simplest ex-

amples satisfying the definition. In flat spacetime, any one-parameter group of

Lorentz boosts has an associated bifurcate Killing horizon comprised of two inter-

secting planes. The unique, globally nonsingular state which is invariant under these

isometries is the “usual" vacuum state, the one observed by inertial observer. In

the “right" and “left" wedge of flat spacetime defined by Killing horizon, the orbits

of Lorentz boost isometries are timelike and correspond to worldlines of uniformly

accelerating observers.

Just as Hawking radiation, Unruh effect can be derived in many ways — from

Bogoliubov coefficient method, path integral approach, structure of the propagator

[138], to name a few. Moreover, the derivation of Unruh effect is mathematically

very similar to the derivation of Hawking’s effect. This is the reason the Unruh tem-

perature TU has the same form as TH .

If one is not interested in the thermal spectrum (we are not), the fastest way to

derive the Unruh temperature is to start from explicit form of the Green function

in flat spacetime and apply the coordinate transformations to Rindler coordinates.

Incorporating the condition that the momenta of states must lie either inside or on the

future light cone one obtains a Green function that is periodic with β = 1/TU . There

is even shorter way, along the same lines. Note that Euclideanized flat spacetime

metric is periodic in imaginary Rindler time,

ds2 = −dT 2 + dX2 , X = acosh(at) , T = xsinh(at)
T=iTE ,t=itE−−−−−−−−→

ds2 = dT 2
E + dX2 , X = acos(atE) , T = xsin(atE) .

(5.114)

Euclidenized coordinates are periodic in tE with period 2π/a. Consequently, the
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Green functions are related by (remember 5.98)

GE(TE, X) ≡ GE(tE, x) = GE(tE +
2π

a
, x) . (5.115)

After the Wick rotation the Green function for inertial observer can be interpreted as

thermal Green function in Rindler time with β = 2π/a, i.e., T = a/2π. In other words,

vacuum of inertial observer looks like thermal state for Rindler observer [139].

5.6 Thermodynamics of spacetime

What we have shown so far is that thermodynamics is tied to a black hole spacetime.

It was first shown in [65] that one can obtain Einstein’s equations from geometrical

and thermodynamic considerations for causal horizons. In what follows, we will

show with the help of thermodynamics as perceived by Rindler observer, that the

geometry is constrained in a way that it satisfies Einstein’s equations.

We start by defining a local Rindler horizon at an arbitrary point p (see Fig. 5.6).

This will define one part of the spacetime as our system. First, we choose a small

Figure 5.6: P is 2-dimensional spacelike hypersurface containing p. The dashed line
in the lower part is the boundary of the past of P, whose one side (bold line) is
chosen as local Rindler horizon H. We think of the left wedge as a system, with
Unruh temperature as measured by an observer whose worldline is the hyperbola in
the left wedge, asymptotically approaching H. The heat flow across LCH is given by
δQ. The vector field χ is the approximate Killing vector field [65].
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patch of 2-dimensional spacelike hypersurface that contains p, called P. Because of

the equivalence principle, spacetime at p is flat, so one can introduce the normal

coordinates xµ such that gµν(x) = ηµν(x) + O(x2), which we transform to Rindler

coordinates,

ds2 = −dT 2 + dX2 + ds2
2 = −κ2x2dt2 + dx2 + ds2

2 , (5.116)

by uniformly accelerating along X axis with an acceleration κ. Because we are con-

sidering left Rindler wedge (Fig. 5.6), one should flip the sign in 5.111.

Next, note that the boundary of the past of P consists of two components, each

generated by a congruence of null geodesics perpendicular to P. We choose one of

the components which we will call local Rindler horizon (LRH) and denote it by H.

The next step is to set up a coordinate system using the congruence that generates

the LRH. We will consider future directed null vectors kµ tangent to the congruence

that generates the horizon, parametrized by an affine parameter λ, chosen so that it

vanishes as p.

Finally, we will consider the region behind LRH, i.e., the left wedge, as system

whose temperature is the Unruh temperature as measured by uniformly accelerated

observer asymptotically approaching the the horizon.

We are interested in how the area of the cross section of the horizon behaves

when infinitesimal amount of energy (i.e., heat, to be in line with thermodynamic

terminology) flows across it.

The notion of heat flux is related to energy-density current. As we know, in order

to define one we need a Killing vector field. In Rindler spacetime, as shown in the

previous section, the Killing vector field χ generates boosts. However, remember that

we are not in flat spacetime. Nevertheless, since our consideration is local, spacetime

in a small neighbourhood of P is approximately flat and consequently, there is an

approximate Killing vector field generating boosts. Moreover, Killing vector field is

uniquely determined by specifying its value and derivative at an arbitrary point. Let

χ vanish at P and generate boosts orthogonal to P in the small neighbourhood of P.

Furthermore, χ is normalized to unity so that the acceleration of the Killing orbit is
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equal to κ. Ultimately, the heat flow related to the approximate Killing vector field is

δQ =

∫
Tµνχ

µdΣν . (5.117)

The integral is over a small bundle of generators of H. The heat flow is defined as

boost-energy current of the matter Tµνχν , where Tµν is energy-momentum tensor.

Because the Killing vector field is spacelike in the region outside the horizon 51, the

flow of heat is from the outside towards the system behind the LRH.

Next, since k is negative to the past of P, the approximate boost Killing vector

field χ is related to the vector field of null generators as

χµ = −κλkµ , (5.118)

where κ = const. As one can check, multiplying 5.118 by χν∇ν ,

χµ∇µχ
ν = −κ (kνχµ∂νλ+ λ(−κλ)kµ∇µk

ν)

= −κ(χµ∂µλ)kν .
(5.119)

The second term in the curly brackets vanishes because k satisfies affinely

parametrized geodesic equation. Moreover, for the same reason

kµ∂µλ = 1 =⇒ χµ∂µλ = −κλ , (5.120)

where we used 5.118. Consequently,

χµ∇µχ
ν = κχν . (5.121)

The approximate Killing vector field χ satisfies the Killing’s equation at p. Moreover,

as the surface element is dΣµ = kµdλdA we have that

δQ = κ

∫
Tµν(−λ)kµkνdλdA . (5.122)

We will now relate the heat flux to entropy using Clausius’ relation δQ = TδS. This

relationship is thermodynamical in nature. Next, from the consideration of black

51The region of spacetime that is accessible to an observer which is in the past of p, the lower wedge
in Fig. 5.6.
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hole thermodynamics, we will assume that entropy is related to the area of the causal

horizon as

δS = αδA . (5.123)

If we were looking at the event horizon of the black hole, α = 1/4. This follows from

consideration of Hawking radiation. Here, we do not know what α is. In other words,

α is determined by microscopic theory of spacetime. Moreover, the only assumption

in the proof of the second law which cannot be generalized to causal horizons is the

cosmic censorship conjecture, replacing the assumption that the generators must be

future complete. Thus, under assumption of null energy condition and future com-

pleteness of the horizon generators, using the same steps as in the original derivation,

one can show that the second law holds for causal horizons [140]. This makes area

of the causal horizon analogous to entropy.

On the other hand, from purely geometrical considerations, we known that the

change in cross sectional area of the bundle of generator of the horizon is

δA =

∫
H
θdλdA , (5.124)

which follows from the definition of expansion,

θ =
1

δA

dδA

dλ
. (5.125)

We will now impose an instantaneous equilibrium condition — shear σ and expan-

sion θ vanish on P. This is necessary to justify the use of Clausius relation, as the

relation is valid only in equilibrium. In other words, energy flux δQ focuses the hori-

zon generators near P in just the right rate that the expansion vanishes at P. Hence,

using affinely parametrized Raychaudhuri’s equation,

dθ

dλ
= −1

2
θ2 − σµνσµν −Rµνk

µkν , (5.126)

and taking into consideration the instantaneous equilibrium condition, one obtains

θ = −λRµνk
µkν , (5.127)

133



integrating over the bundle of generators near P. The terms θ2 and σ2 are considered

as higher order contributions so we neglected them. Inserting 5.127 into 5.124 leads

to

δA =

∫
Rµνk

µkν(−λ)dλdA . (5.128)

On the other hand, Clausius’ relation requires that δQ = TδS,

δQ = TδS =
κ

2π
αδA , (5.129)

resulting with the use of 5.123. Inserting 5.122 into the left-hand side and 5.127 into

the right-hand side we have that

Tµνk
µkν =

1

2π
αRµνk

µkν =⇒ 2π

α
Tµν = Rµν + fgµν , (5.130)

where the implication follows because gµνkµkν = 0, and f is some function which we

now determine. Taking divergence of 5.130 gives us

2π

α
∇µTµν = ∇µRµν +∇νf

0 = ∇ν(
1

2
R + f) =⇒ 1

2
R + f = Λ .

(5.131)

In the second line we used the fact that EMT is covariantly conserved and contracted

Bianchi identity. The term Λ is a constant. Consequently, we obtain that

Rµν −
1

2
Rgµν + Λgµν =

2π

α
Tµν . (5.132)

This is Einstein’s equation. We also know that the constant of proportionality

α = 1/4G, and we interpret Λ as cosmological constant whose value remains un-

determined.

It is worth to remark one more time that the derivation of Einstein’s equations

from the Clausius’s relation assumes the existence of local equilibrium condition, as

Clausius’ relation applies only to variations between nearby stationary states. For

example, in adiabatic gas expansion, entropy is not associated with the heat flow

and one cannot use Clausius’ relation. Another reason to use the equilibrium as-

sumption is that temperature and entropy are not well defined concepts away from
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the equilibrium. In other words, LRH that are instantaneously stationary are in local

equilibrium.

One more comment concerns the fact that we have considered the left wedge

instead of the right one. That is, it is more natural to consider an observer asymptoti-

cally approaching one component of future horizon from the right side (see Fig. 5.7).

The problem is that such observer would perceive energy flow across the horizon out

of the right region as positive. Consequently, the heat flow as defined in 5.122 would

have an opposite sign, which would lead to Einstein’s equations with the wrong sign.

To fix this, the following adjustment is suggested in [141]. One should move the

Figure 5.7: P is 2-dimensional spacelike hypersurface containing p. The local Rindler
horizon is the bold line [65].

bifurcation point, the point at which χ vanishes, to the past (see Fig. 5.8). Let’s now

Figure 5.8: LRH and Killing vector field in the old (left) and new (right) setup. The
arrows indicate the flow lines of χ, which vanishes at p on the left, and at p0 on the
right [141].

see how modifying the location of the bifurcation point changes the heat flux. The
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new Killing vector field vanishes at p0, so χµN = κ(λ− λ0)kµ, where λ0 is the value of

λ at p0. This time there is no minus sign because k and χN both point to the future.

The boost energy current is

T µνχν = (λ− λ0)T µνkν . (5.133)

Integral from the bifurcation point to p is

∫ 0

λ0

(λ− λ0) = −λ
2
0

2
. (5.134)

which is the same result as would have been obtained in the previous case,

∫ 0

λ0

(−)λdλ = −λ
2
0

2
. (5.135)

Then, by applying Clausius relation to interval from λ = λ0 where χ vanishes, to

λ = 0 where expansion and shear vanish yields Einstein’s equations (in the limit

where λ0 → 0).

To summarize, it was shown using the Clausius relation and the second law on

one side, and Raychaudhuri’s equation on the other, that the geometry satisfies Ein-

stein’s equations at arbitrary point of spacetime. Clausius relation is purely thermo-

dynamical in nature, relating the change in heat to the change in entropy for systems

in local equilibrium. The bridge between thermodynamics and geometry is analogy

between area of the cross section of the causal horizon and entropy. The final piece

comes from Raychaudhuri’s equation which allows one to determine the change in

area based only on the behaviour of geodesics. This result suggests that Einstein’s

equation may be viewed as an equation of state. In thermodynamics, if the entropy

S(E, V ) is known, as a function of energy E and volume V , one can deduce the

equation of state with the help of the first law dQ = dE + pdV . Differentiation of

S(E, V ) gives

dS =
∂S

∂E
dE +

∂S

∂V
dV . (5.136)
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As a consequence of the first law it can be inferred that

1

T
=
∂S

∂E
, p = T

∂S

∂V
. (5.137)

The last equation is the equation of state.

Finally, it should be pointed out that the question we haven’t managed to discuss

is what kind of implications the non-equilibrium situation would have on Einstein’s

equation. This case was considered in [142].
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6 Summary and outlook

6.1 Summary

In the paper we reviewed some of the indications that gravitation may be an emer-

gent phenomenon. Its universal nature, perturbative non-renormalizability and the

analogy of four laws of black hole mechanics with the four laws of thermodynamics.

Motivated by these properties, which are usually attributed to effective, low-

energy theories, a wide variety of models was developed, mostly based on the ideas

from solid state physics, trying to reproduce some part of General Relativity — space-

time, and/or its dynamics, from more fundamental constituents. An overview of dif-

ferent approaches is given, along with the constraints the models should satisfy to

reproduce General Relativity.

One such idea, representing the central theme of aforementioned emergent the-

ories, is Causal Set Theory. Its premise is that spacetime as a smooth Lorentzian

manifold is just a coarse-grained consequence of the causal relations between ‘atoms’

of spacetime — points without structure. In other words, causal relations are con-

sidered fundamental, while all the other mathematical structures on which General

Relativity is based on can be derived from there. The main concepts of the approach

are explored, without much technical details.

Another interesting proposition thoroughly discussed in the paper is Weinberg-

Witten theorem. It constraints the spin of particles living on flat spacetime. We

proved the theorem and discussed the implications it has on graviton in the light of

emergent theories. Namely, on flat spacetime graviton cannot be a constructed as a

composite particle from elementary particles of the Standard Model.

A different category of emergent models is based on relationship between ther-

modynamics and general relativity. We derived the four laws of black hole mechanics

which initiated the emergent viewpoint. Some weaknesses in the analogy are pointed

out and discussed. Lastly, Einstein’s field equations are derived from Clausius’ rela-

tion, the second law of thermodynamics and Raychaudhuri’s equation, extending the

relationship from black holes to causal horizons.
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6.2 Outlook

Most Emergent Gravitation approaches are far from reproducing all aspects of Gen-

eral Relativity. In most cases they manage to replicate some elements under certain

circumstances. With experimental verification of the ideas currently out of reach,

there is no decisive answer on whether they are moving in the right direction or not.

Furthermore, although there certainly are indications that gravitation is emergent

phenomenon, the arguments rely mostly on analogies and it is not clear to what

extent these similarities should be taken seriously.
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Appendices

Appendix A Remarks concerning Noether’s theorems

Another subtlety concerning the (first) Noether’s theorem is that it the fact that all

fields must satisfy equations of motion in order for a conservation law to exist. The

case when field may not satisfy the field equations is when it is a background field. To

be more precise, its dynamics is not given by the particular action. This entails that

the action we are considering isn’t “whole", it does not contain all the information.

We use such actions when we are interested only in certain aspects of the theory. It

is easiest to show what this means on an example. Consider

S[ψ;Aµ, ηµν ] =

∫
d4x

[
ψ(iγµ∂µ −m)ψ + ψγµψAµ

]
. (A.1)

This is an action of a theory describing dynamics of electron on fixed electromagnetic

field when there is no presence of gravity. The background fields are Aµ and ηµν ,

which is stressed by the semi-colon. If, for the sake or argument, one tries to obtain

field equations for Aµ from A.1 for example, the result is

ψγµψ = 0 . (A.2)

As a consequence, the interaction term in Lagrangian should vanish. This insensible

result tells us that something is missing, a term that would contain derivatives of

Aµ. Thus, it makes sense to vary only dynamical fields of the action when looking

for field equations. Only their dynamics is correctly predicted in the presence of the

background fields, while they are considered as fixed.

On the other hand, performing a transformation of the action to check if it is a

symmetry affects all fields which have the right degrees of freedom, even if the fields

are background fields. It turns out, one may still obtain conservation laws only with

dynamical fields satisfying the field equations if the global symmetry group is not a

subgroup and the background field is invariant under the transformations. For In

other words, a group of symmetry transformations of the action is restricted to the

group leaving the background fields invariant.
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It should be pointed out that it is not just the question of conserved quantities, but

whether or not some transformation can be considered a symmetry transformation

according to definition 4.98. As it was mentioned in the previous section, symmetry

transformations permute solutions of the field equations. There we considered the

spacetime transformations of theories with metric as the background fields, so we

now look at such case. First, notice that there is a problem with the way the global

symmetry is defined. Lie derivative, which is tensorial quantity reduced to partial

derivative in Cartesian coordinates. As a result, global spacetime transformations in-

clude only translation. For example, in Cartesian coordinates vector field generating

rotation in a plane is ξ = ξµ∂µ = −y∂x+x∂y. Since components of the vector field are

coordinate dependent, rotation doesn’t fit into definition of global transformations,

although all points are rotated by the same amount, which suits the notion of global

transformations. Hence, in general, in case of global spacetime transformations, re-

lationship between symmetry and current should be

[
δL
δψi

]
EL

Lξψi = −∂µ(T µν ξ
ν(x)) , (A.3)

which looks the same as when dealing with local group, so it seems that it does not

lead to conservation law. However, for global transformations one can always find

coordinates in which the parameter of transformations is not a function of coordi-

nates. In the example of rotation in the plane, in polar coordinates one has ξ = φ∂φ,

where φ is constant. Thus, when field equations are satisfied the conserved current

resulting from spacetime symmetry is (in Cartesian coordinates)

∂µ(T µν ξ
ν(x)) = 0 . (A.4)

In the context of Weinberg−Witten theorem, only translations are important as they

lead to energy-momentum four-vector.

Now, for any theory where metric is the background field S[ψi; gµν ], one has ac-

cording to 4.96,

LξL =
∂L
∂ψi

Lξψi +
∂L

∂ (∂µψi)
Lξ (∂µψi) +

∂L
∂gµν

Lξgµν

=

[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
Lξψi + ∂µ

(
∂L

∂ (∂µψi)
Lξψi

)
+

∂L
∂gµν

Lξgµν ,

(A.5)
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where δ = Lξ for spacetime transformations. For dynamical fields satisfying field

equations, the above expression reduces to

∂µ

[(
∂L

∂ (∂µψi)
Lξψi

)
− LξL

]
+

∂L
∂gµν

Lξgµν = 0 . (A.6)

Thus, only if Lξgµν = 0 the transformation is a symmetry. What’s more,

Lξg
µν = 0 =⇒ ∇µξν +∇νξµ = 0 . (A.7)

Vector fields that satisfies A.7 are called Killing vector fields. They are are infinites-

imal generators of isometries, symmetries of metric tensor. For the flat metric, they

are translations and spacetime rotations. Hence, as it was mentioned, if metric field

is background field, it is its isometry group that determines the symmetry group of

the theory.

Final remark is the question of uniqueness of the conserved currents. Let’s look

at EMT, although the same is true for internal current. As one may have noticed, one

can always add a so-called super-potential term to Noether’s currents, i.e., divergence

of an antisymmetric tensor,

T ′µν = T µν + ∂ρχ
µρν , χµρν = −χρµν . (A.8)

The antisymmetry of super-potential in the first two indices ensures that if T µν is con-

served, then so is T ′µν . On the other hand, the conserved charged formed from either

of the conserved currents is the same, provided that χ0iν decreases with distance fast

enough. This freedom can be used to form EMT with certain useful properties. The

problem is that different improvements of EMT represent different localizations of

energy and momentum, which leads to a question if there is a way to determine the

correct current and energy-momentum tensor. Before we answer that, let’s discuss

what problems the super-potential can fix.

The first problem the super-potential can fix is that Noether’s theorem does not

produce gauge invariant EMT or current. This is problematic since EMT should de-

scribe measurable quantities, which are gauge invariant.

Furthermore, if EMT is not symmetric, the angular momentum tensor Mµνρ ob-

tained from rotational symmetry of the theory is not related to momentum the same
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way as in classical mechanics, i.e., by the form

Mµνρ = xνT µρ − xρT µν . (A.9)

From here it follows that

0 = ∂µM
µνρ = T νρ − T ρν . (A.10)

Otherwise, for non-symmetric EMT, there is an extra term,

Mµνρ = xνT µρ − xρT µν + sµνρ , sµνρ = −sµρν ≡ ∂L
∂(∂µψ)

M νρψ , (A.11)

where Mνρ is a finite dimensional representation of Lie algebra of Lorentz group un-

der which the fields transform. Thus, Mνρ = 0 for scalar field, Mνρ = Mνρ for a vector

field, etc. Non-symmetry of EMT is an indicator that the fields contributing to it don’t

transform covariantly under Lorentz group. Moreover, the symmetric property of

EMT is important when coupling it to gravity. Action should be a Lorentz scalar

and the only way to implement Lorentz invariant interaction terms is by coupling

the source to conserved current. In electromagnetism for example, photon field Aµ,

which is a four-vector, couples to four-vector current jµ = ψ̄γµψ. In the same way,

the source of gravity should be a symmetric second rank tensor to be able to cou-

ple to gravitational field gµν , symmetric second rank tensor. On flat spacetime, the

most common method of improving non-symmetric EMT to symmetric is by Belifante

[143], although the same result can be obtained by exploiting the gauge invariance of

Lagrangian [144][87], which in fact exploits the second Noether’s theorem. In short,

the problem with EMT missing some important properties is not in the Noether’s pro-

cedure, but in variations we choose. In other words, starting with variation that lacks

gauge invariance results in currents that are not gauge invariant. Either way, even

though EMT can be made symmetric with the help of super-potential, it is still not

unique. There are infinite number of super-potentials that result in symmetric EMT.

Finally, the ambiguity is removed with the fact that gravity couples to real EMT. In

other words, gravity identifies EMT. Using this fact, the EMT one obtains is so-called
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Einstein−Hilbert EMT,

δSM [gµν ;ψi] =

∫
d4xδ(

√
−gLM)

=

∫
d4x

[
δ(
√
−g)LM +

√
−g δLM

δgµν
δgµν +

√
−g δLM

δψi
δψi

]
= −

∫
d4x

√
−g
2

[
−2

δLM
δgµν

+ gµνLM
]
δgµν ,

(A.12)

where SM is the action that takes into account all fields, i.e., matter (which includes

the gauge fields) as dynamical, except gravitational field. The third line follows

from assumption that all dynamical fields satisfy field equations. Then, the action is

diffeomorphism invariant if

0 = −
∫
d4x

√
−g
2

T µνLξgµν , T µν ≡ −2√
−g

δ(
√
−gLM)

δgµν
= −2

δLM
δgµν

+ gµνLM . (A.13)

One obtains covariant conservation law

0 =

∫
d4x
√
−gT µν∇µξν = −

∫
d4x
√
−g∇µT

µνξν , (A.14)

since for diffeororphisms,

δgµν = −Lξgµν = 2∇µξν . (A.15)

EMT obtained this way is manifestly symmetric, due to the variation being sym-

metric, and gauge invariant, i.e., invariant under general diffeomorphisms, since the

variations are given by Lie derivatives, tensorial quantities. In flat spacetime in appro-

priate coordinates the covariant conservation law reduces to “ordinary" conservation

law,

gµν = ηµν =⇒ ∂µT
µν = 0 . (A.16)

What’s more, EMT obtained in such way coincides with EMT obtained by Belifante

procedure [145][146]. Notice however that this EMT contains only matter fields, i.e.,

all fields except gravity, which is expected since covariant conservation laws describe

exchange of conserved quantities, i.e., energy and momentum between matter field

and gravitation fields in this case. This doesn’t mean that gravity doesn’t have its
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energy-momentum tensor. In fact, since sources exchange energy and momentum

locally, one expects the gravitational field has its own EMT. This is in fact the goal

of the next section. What’s more, one can obtain conservation law by adding the

gravitational energy-momentum tensor to covariant conservation.

In flat spacetime, no gravitational field is present so covariant conservation law

reduces to ordinary conservation law [83][85][86][87][88][71][89].

Appendix B Poincaré group

Poincaré group in four-dimensional spacetime is a ten-dimensional, noncompact Lie

group that is a semiproduct of translation group R4 consisting of four spacetime trans-

lations, and homogeneous Lorentz group, pseudo-orthogonal group O(3, 1) consist-

ing of three rotations and three Lorentz boosts,

R4 oO(3, 1) . (B.1)

The multiplication rule of the group is given by

(Λ̃, ã)(Λ, a) = (Λ̃Λ, Λ̃a+ ã) , (B.2)

where (Λ, a) denotes general element of the group. From B.2 one concludes that the

neutral element must be (1, 0), and the inverse element is (Λ−1,−Λ−1a). Translation

subgroup is obtained by setting Λ = 1, while with a = 0 one obtains the homo-

geneous Lorentz group. Furthermore, homogeneous Lorentz group consists of all

invertible, linear matrices Λ ∈ GL(4,R) satisfying

ΛTηΛ = η , (B.3)

where η = diag(1,−1,−1,−1). To shorten the notation (Λ, 0) ≡ Λ. The group

consists of four components. This is shown by taking the determinant of B.3,

det(ΛTηΛ) = det(η)

det(ΛT ) det(η) det(Λ) = det(η)

det(Λ)2 = 1 =⇒ det(Λ) = ±1 ,

(B.4)
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where the second line follows from the rule for determinant of matrix product, and

the third from the fact that determinant of a matrix is the same as the determinant

of its transpose. Finally, determinant of any Λ belonging to homogeneous Lorentz

group is either +1 or −1. Action of elements with negative determinant flips the

orientation of space. Since determinant is continuous function, the subgroups with

different signs of determinant are disconnected.

Next, consider (0, 0) component of B.3,

Λµ
0ηµρΛ

ρ
0 = 1(

Λ0
0

)2 −
i=3∑
i=0

(
Λi

0

)2
= 1 =⇒ |Λ0

0| ≥ 1 .
(B.5)

Hence Λ0
0 is either greater than of equal to +1, or less than or equal to −1. For con-

nected component Λ0
0 is continuous function, so one ends up with two disconnected

groups.

Hence, depending on signs of det Λ and Λ0
0 homogeneous Lorentz group has four

disconnected subgroups which are all continuous. It also contains a discrete sub-

group {1, P, T, PT}, where T = diag(−1, 1, 1, 1), P = diag(1,−1,−1,−1). The con-

tinuous subgroup with det Λ = 1 and Λ0
0 ≥ 1 is called proper orthochronous Lorentz

group SO(1, 3)↑+. Proper refers to space orientation, and orthochronous to time direc-

tion. Elements of SO(1, 3)↑+ preserve orientation of time and space. Other subgroups

can be obtained by multiplication with elements of the discrete subgroup [27][81],

• Proper orthochronus — SO(1, 3)↑+: det Λ = 1, Λ0
0 ≥ 1

• Improper orthochronus — P × SO(1, 3)↑− : det Λ = −1, Λ0
0 ≥ 1

• Proper nonorthochronus — T × SO(1, 3)↓+ : det Λ = 1, Λ0
0 ≤ −1

• Improper nonorthochronus — PT × SO(1, 3)↓− : det Λ = 1, Λ0
0 ≤ −1

Laws of physics are not invariant under parity transformations (weak force for ex-

ample violates parity symmetry of the interaction) and indirectly under time reversal

transformations [71], hence the focus will be on studying only proper orthochronous

subgroup of homogeneous Lorentz group to which it will be referred to as Lorentz

group.
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It is yet left to determine Λ by solving B.3. This is hard to do in the given form,

but can be done by looking at element of the group near identity (1, 0). They are

referred to as infinitesimal elements or transformations. Thus, for Poincaré group52

(1 + ω, ε) = 1 +
i

2
ωµνM

µν − iεµP µ , (B.6)

where ωµν and εµ are infinitesimal and real parameters, P µ is a vector and Mµν is a

matrix. They belong to tangent space at the identity of Lorentz group. This will be

explained in the next section. With B.6, equation B.3 reduces to

ηαβ = (δµα + ωµα)(δµβ + ωµβ)ηµν

= ηαβ + δµαωµβ + δνβωνα =⇒ ωαβ = −ωβα ,
(B.7)

where we defined

ωαβ ≡
1

2
ωµν (Mµν)αβ . (B.8)

Result B.7 implies that Mµν = −Mνµ. Hence, near identity B.3 reduces to linear

equation. It then follows that elements of Lorentz group near identity should be

antisymmetric. Although this is only local description there exists a map, called

exponential map, using which one can obtain most of global properties of the group

from local ones.

Λ = e
i
2
ωµνMµν

. (B.9)

Next, consider translation subgroup. One can show that it is additive,

(1, a)(1, ā) = (1, a+ ā) . (B.10)

Then, for any integer n,

(1, a) =
(
1,
a

n

)n
. (B.11)

52Parametrization of infinitesimal element is done this way for later connection with unitary repre-
sentation. It ensures that generators of unitary representation are hermitian.
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For n→∞ it follows a
n
→ ε. As (1, ε) = 1− iεµP µ according to B.6, one can write

(1, a) = lim
n→∞

(
1− iaµ

n
P µ
)n

= e−iaµP
µ

. (B.12)

Thus, we have obtained general expression for element of translation. Because the

group is Abelian and additive the exponential map coincides with series expansion.

This is in general true only for matrix Lie groups.

Formally, local description of group properties is in the scope of Lie algebra, which

is introduced in the next section. All in all, it was demonstrated that algebra is easier

to work with. What’s more, except for some global properties, such as topological

structure, properties of the group, and naturally its representations, can be extracted

by considering its algebra. Thus, the next objective is determining algebra of Poincaré

group.

Appendix C Poincaré algebra

In this section we review Lie algebras and determine commutator relations of the

Poincaré group.

As it was mentioned, Poincaré group is a Lie group, which means that besides the

group structure, it is also a smooth differentiable manifold. This entails that there is

a tangent space at each point, i.e., at each element of the group. Furthermore, the

group has the same local properties at each point as all tangent spaces are isomorphic

[147]. For that reason it is the most common to describe local properties at the

identity elements. What’s more, every group is guaranteed to have it.

Tangent space is first of all a vector space. Using the basis on vector space one is

able to write down element of the group near identity, as B.6. Not only that, certain

vectors generate one parameter subgroup of Lie group G via exponential map exp,

exp : g→ G . (C.1)

Thus, they are appropriately referred to as generators. Accordingly, P µ and Mµν in

B.6 are generators of Poincaré group. Beyond that, when it comes to the structure of

the group, multiplication rule of the group elements, or more precisely, their failure to

commute, locally narrows down to so-called Lie bracket. Additionally, associativity
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of the group elements leads to Jacobi identity. Tangent space with respect to this

structures constitutes Lie algebra.

Also, Lie brackets have important physical interpretation. Generators in unitary

representation are hermitian operators and as such represent physical observables,

quantities one can measure to determine the state of the system. Non-vanishing

Lie bracket of the generators indicates that the order in which measurements are

performed is important. In other words, performing consecutive measurement rep-

resented by non-commuting generators changes initial state of the system. Conse-

quently, state of the system is determined by carrying out measurements represented

by generators that mutually commute, so state vectors will be labeled by eigenvalues

of mutually commuting generators.

This being said, before deriving the Lie brackets of Poincaré group let’s show how

the generators transform under Poincaré transformations, which in fact gives us the

interpretation of the generators. Start by looking at series of transformations

(Λ, a)(1 + ω, ε)(Λ, a)−1 = (Λ, a)

(
1 +

i

2
ωµνM

µν − iεµP µ

)
(Λ, a)−1 . (C.2)

The total effect of the transformations is obtained by using composition rule B.2,

(Λ, a)(1 + ω, ε)(Λ, a)−1 = (ΛωΛ−1,Λε− ΛωΛ−1a)

= 1 +
i

2
(ΛωΛ−1)µνM

µν − i(Λε− ΛωΛ−1a)µP
µ ,

(C.3)

where the last equality follows from B.6 since resulting transformation is infinitesimal

because ε and ω are infinitesimal parameters. The right-hand side of C.2 is

(Λ, a)

(
1 +

i

2
ωµνM

µν − iεµP µ

)
(Λ, a)−1 = 1 +

i

2
ωµν(Λ, a)Mµν(Λ, a)−1

− iεµ(Λ, a)P µ(Λ, a)−1 .

(C.4)

Finally, comparing coefficients next to ε and ω of C.2 and C.4 leads to

ε : (Λ, a)P µ (Λ, a)−1 = Λµ
ρP

ρ (C.5)

ω :
i

2
(Λ, a)Mµν(Λ, a)−1 =

i

2
Λµ
αΛν

β(Mαβ + 2aβPα) =⇒

(Λ, a)Mµν(Λ, a)−1 = Λµ
αΛν

β(Mαβ + aβPα − aαP β) .

(C.6)
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One can write aβPα = 1
2
(aβPα − aαP β), since the right-hand side is contracted with

antisymmetric tensor ω, obtaining the last line of C.6. Hence, Poincaré transforma-

tion of generator of translations leads to translation by ΛP . On the other hand,

Poincaré transformation of generator of Lorentz transformation turns out to be com-

bination of Lorentz transformation and translation. Moreover, under pure Lorentz

transformations, i.e., setting a = 0, P µ and Mµν transform as tensors, while for pure

translations, Λ = 1, one may recognize Mµν transforms as angular momentum of a

rigid body a distance a from the origin. Accordingly, the first term in the parentheses

of C.6 describes spacetime rotation of an object around it’s center of mass, and the

second part is angular momentum with respect to the origin. With that being said,

the objects considered are elementary particle, point-like object without structure, so

the first term is interpreted as spin. On the other hand, P µ is invariant under pure

translations. One can conclude that P µ is four-momentum, as it is a Lorentz four-

vector invariant under translations, which one expects from generator of translations,

whilst Mµν generates spacetime rotations.

Finally, Lie brackets stem from local composition law, so it follows that if all trans-

formations in C.5 and C.6 are infinitesimal,

(
1 +

i

2
ωµνM

µν − iεµP µ

)
P ρ

(
1− i

2
ωαβM

αβ + iεαP
α

)
= (δρσ + ωρσ)P σ , (C.7)(

1 +
i

2
ωαβM

αβ − iεαPα

)
Mµν

(
1− i

2
ωαβM

αβ + iεαP
α

)
= (δµρ + ωµρ )(δνσ + ωνσ)Mρσ .

(C.8)

Keeping only the terms linear in ε and ω,

iεµ[P ρ, P µ] +
i

2
ωµν [M

µνP ρ] = ωρνP
ν

= ηµρωµνP
ν

=
1

2
ωµν(η

µρP ν − ηνρP µ) ,

(C.9)

i

2
ωαβ[Mαβ,Mµν ] = ωαβ(ηµαMβν − ηναMµβ)

=
1

2
ωαβ(ηµαMβν − ηβµMαν − ηναMµβ + ηνβMµα) ,

(C.10)

where the last line of C.9 and C.10 follows because of antisymmetric property. Com-
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paring coefficients next to ε and ω leads to

[P ρ, P µ] = 0 , (C.11)

i[Mµν , P ρ] = ηµρP ν − ηνρP µ , (C.12)

i[Mαβ,Mµν ] = ηµαMβν − ηβµMαν − ηναMµβ + ηνβMµα . (C.13)

These are Lie brackets of the Poincaré group. Furthermore, one can check by explicit

calculation that the Casimir operators one can construct from P µ and Mµν are

C1 = P µPµ , (C.14)

C2 = W µWµ , (C.15)

where Wµ = 1
2
εµρσνM

ρσP ν is Pauli-Lubanski pseudovector. It’s Lie brackets are

[P µ,W ν ] = 0 , (C.16)

i[Mµν ,W ρ] = (ηρµW ν − ηρνW µ) , (C.17)

i[Wµ,Wν ] = εµνρσW
ρP σ . (C.18)

It is also useful to write down the commutator relations for components,

Mij = −εijkJk =⇒ Ji = −1

2
εijkM

jk , (C.19)

M0i = Ki , (C.20)

Generator J is interpreted as angular momentum (which includes spin and orbital

angular momentum), generating space rotations, while K is interpreted as generator

of boosts, rotations mixing space and time. Relations C.11-C.13 narrow down to

[Ji, Jj] = iεijkJk , [Ji, Pj] = iεijkPk , [Pi, Pj] = 0 .

[Ji, Kj] = iεijkKk , [Ki, Pj] = iδijP0 , [Ji, P0] = 0 .

[Ki, Kj] = −iεijkJk , [Ki, P0] = iPi , [Pi, P0] = 0 .

(C.21)

It should be mentioned that time component of four-momentum corresponds Hamil-

tonian, so generators that commute with it are constants of motion.

This concludes discussion about Lie algebra. Using these relations one may deter-
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mine the set of operators that mutually commute, but the set is not unique. Any such

set is equally valid, but the method used to generate the basis of minimal invariant

subspace will favor one.

Appendix D Proof of the zeroth law

To prove that κ = const., we must show that is true along the geodesic, but also from

one geodesic to another. The conditions are mathematically formulated as

(
∂κ

∂λ

)
θA

= χµ∇µκ = 0 , (D.1)(
∂κ

∂θA

)
λ

= eµA∇µκ = 0 , (D.2)

where both of the equations are evaluated at the horizon. From these relations it

follows that κ doesn’t change in any direction along the null hypersurface. Since

κ = −Nνχµ∇µχν from χµ∇µχν = κχν we start by first calculating ∇µχν . Because it

is a tensor, we can decompose it the basis as

∇µχν = c1χµχν + c2χµNν + cA3 χµeAν+

c4Nµχν + c5NµNν + cA6 NµeAν+

cA7 eAµχν + cA8 eAµNν + cAB9 eAµeBν .

(D.3)

The components ci, i = 1, ..., 9 will be determined using the properties ∇µχν must

satisfy. The first property we will use is the fact that χ satisfies the Killing equation.

As a result

∇µχν = −∇νχµ =⇒ c1 = c5 = c9 = 0 , c2 = −c4 , c
A
3 = −cA7 , cA6 = −cA8 . (D.4)

All the terms on the “diagonal" of D.3 are zero, while “upper" and “lower triangle"

differ up to a sign. Next, we use the geodesic equation χµ∇µχν = κχν . When D.3 is

contracted with χµ only terms which combine to χµNν survive, so

κχν = −c4χν + cA6 eAν =⇒ −c4 = c2 = κ , cA6 = −cA8 = 0 . (D.5)
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The only terms we are left with are

∇µχν = κ(χµNν − χνNµ) + cA3 (χµeAν − χνeAµ) . (D.6)

From here we also obtain, by contracting the above relation with eνB and Nµ,

N νeµB∇µχν = −cA3 eAµe
µ
B(Nνχν) = c3B . (D.7)

The last equality follows from σAB = gµνe
µ
Ae

ν
B, where σAB is spatial part of the metric,

and hµν = σABeµAe
ν
B. The next goal is to calculate ∇ρκ,

∇ρκ = ∇ρ(−N νχµ∇µχν)

= −(∇ρN
ν)χµ∇µχν −Nν∇ρ(χ

µ∇µχν)

= −κχν∇ρN
ν −N ν(∇ρχ

µ)(∇µχν)−N νχµ∇ρ∇µχν

= κNν∇ρχν −Nν(∇ρχ
µ)(∇µχν)−Rνµρτχ

τχµN ν .

(D.8)

The first term in the last line is the result of ∇ρ(χνN
ν) = 0 = N ν∇ρχ

ν + χν∇ρN
ν ,

where we also used ∇ρ∇µχν = Rνµρτχ
τ , which follows from the definition of Rie-

mann tensor and Killing equation. We will first show that D.1 holds.

χρ∇ρκ = κNνχρ∇ρχν −N νχρ(∇ρχ
µ)(∇µχν)−Rνµρτχ

ρχτχµN ν

= κ2χνN
ν −N νκχµ∇µχν

= −κ2 + κ2

= 0 .

(D.9)

To get the second line we used the geodesic equation and antisymmetry of Riemann

tensor in the second pair of indices. The third line follows from 5.10 and geodesic

equation. We have proven that scalar field κ does not change along the congruence of

geodesics. This result is not surprising because metric doesn’t change in the direction

of Killing vector, which is probably the reason why this part of the proof is not shown
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in [45]. It is left to prove D.2. The procedure is analogous to the previous case.

eρA∇ρκ = κNνeρA∇ρχν −N νeρA(∇ρχ
µ)(∇µχν)−Rνµρτe

ρ
Aχ

τχµN ν

= −κc3A −N νc3Aχ
µ∇µχν −RµνρτN

νχµeρAχ
τ

= −κc3A + κc3A −Rµνρτe
ρ
Aχ

µN νχτ

= Rνµτρ(−gντ − χνN τ − hντ )eρAχ
µ

= −Rµρe
ρ
Aχ

µ −Rµντρχ
µeνBe

τ
Ce

ρ
Aσ

BC .

(D.10)

The second line follows from D.7, the third from geodesic equation, and the fourth

from 5.15. The first term in the last line is by definition the Ricci tensor. Moreover,

contracting Riemann tensor with the second term in the brackets vanishes because

Riemann tensor is antisymmetric in the first two indices while χνχµ is symmetric.

The last term follows from expanding hντ in the basis.

To show that the second term of the last line in D.10 vanishes consider

∇µχνe
µ
Ae

ν
B = 0. This is the statement that transverse components of the velocity

gradient is zero, which we know is true because B̃µν = 0 as expansion, shear and ro-

tation all vanish. It also holds that everywhere on the horizon eρC∇ρ(∇µχνe
µ
Ae

ν
B) = 0.

Expanding this equation leads to

0 = (∇ρ∇µχν)e
µ
Ae

ν
Be

ρ
C + eρCe

ν
B(∇µχν)∇ρe

µ
A + eρCe

µ
A(∇µχν)∇ρe

ν
B

= Rνµρτχ
τeµAe

ν
Be

ρ
C − e

ρ
Cc3Bχµ∇ρe

µ
A + eρCc3Aχν∇ρe

ν
B

= Rνµρτχ
τeµAe

ν
Be

ρ
C + eρCc3Be

µ
A∇ρχ

µ − eρCc3Ae
ν
B∇ρχ

ν

= Rνµρτχ
τeµAe

ν
Be

ρ
C − e

ρ
Cc3Be

µ
A∇µχ

ρ + eρCc3Ae
ν
B∇νχ

ρ

= Rνµρτχ
τeµAe

ν
Be

ρ
C .

(D.11)

The second line follows from D.7, that is c3Aχ
ν = eµA∇µχν . Killing equation was also

used. In the third line we used that on the horizon ∇ρ(χµe
µ
A) = 0. Thus, the second

term in D.10 vanishes. Regarding the first term needs some additional conditions.
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We rewrite it as

eρA∇ρκ = −Rµρχ
µeρA

= −8π(Tµρ +
1

2
Rgµρ)χ

µeρA

= −8πTµρχ
µeρA

= 8πjµe
µ
A .

(D.12)

In the second line we used Einstein’s equations, while in the third lines one can

recognize the definition of current. Using Einstein’s field equations, it follows from

5.24 that Tµνχµχν = −jνχν = 0. We further impose dominant energy condition

gµνj
µjν ≤ 0. This means that the current density of matter is either timelike or null-

like, i.e., the current density cannot flow faster then light. Let’s write the current

vector j in the basis

jµ = aχµ + bNµ + cAeµA . (D.13)

From the null energy condition we have that

jµχµ = 0 =⇒ b = 0 , (D.14)

which, using the dominant energy condition yields

gµνj
µjν = gµν(aχµ + cAeµA)(aχν + cBeνB)

= σABc
AcB ≤ 0 .

(D.15)

However, since we obtain only the spatial component, σABcAcB ≥ 0. So, the only

possible solution is that cA = 0. As a result, the current D.13 has only null component.

Consequently D.10 is

eρA∇ρκ = 8πjµe
µ
A = 0 . (D.16)

As one moves across the geodesics the value of κ doesn’t change. This concludes the

proof.

In summary, we have shown that if spacetime admits a Killing vector which is

the generator of the event horizon and Einstein’s equations hold with matter satisfy-
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ing the dominant energy condition, the surface gravity κ is constant over the event

horizon.

Appendix E Proof of the first law

As mentioned, the first laws is a statement of energy conservation. Before proceeding

with the derivation, it needs to be clarified what is meant by energy conservation,

since it was shown that it is not possible to talk about gravitational energy in a

coordinate independent way. Total energy of asymptotically flat, stationary spacetime

is given by Komar integral,

Q =

∫
∂S∞

∇µKνdΣνµ , (E.1)

where ∂S∞ is a spacelike 2-dimensional hypersurface at infinity, whose surface ele-

ment is dΣνµ. Komar integral associated with Killing vector tµ of stationary spacetime

can be interpreted as total energy (also called mass). In a similar manner, taking

Kµ = φµ, one obtains the expression proportional to total angular momentum J of

a stationary axisymmetric spacetime. The reasoning behind Komar’s integral is as

follows. First of all, energy is associated with time translations. Note that Komar’s

integral works for both static and stationary spacetime, although Killing vector tµ in

stationary spacetime is timelike only at infinity. It turns out this is all that matters

because E.1 is evaluated at spatial infinity. Thus, we are concerned only with what

is happening at the boundary. The integrand looks somewhat arbitrary, but further

insight is gained by transforming the surface integral E.1 into volume integral E.2.

Q = −
∫
S∞

Rµ
νK

νdΣµ , (E.2)

where S∞ is a hypersurface bounded by ∂S and dΣµ is a surface element of S∞. We

used Stokes’ theorem53 and property ∇µ∇µKν = −Rν
µK

µ satisfied by Killing vectors.

The integrand jK ≡ Rµ
νK

ν reminds of Noether’s current jµ = T µν K
ν , and one can

show that ∇µj
µ
K = 0. Hence, jK is some covariantly conserved quantity. Moreover, if

one takes hypersurface S∞ consisting of two disconnected parts, one at infinity, and

the other at the horizon, the boundary term at infinity turns out to be proportional

53Stokes’ theorem states that
∫
∂S
ωµνdΣνµ =

∫
S
∇µωµνdΣν .
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to mass M , which can be checked by explicit calculations [111]. In summary, it is

possible to define total energy (mass) in asymptotically flat spacetime as one can de-

fine boundary integrals, concerned only with the behaviour at infinity, where one can

meaningfully talk about time and spatial translations which we relate to conservation

of energy, momentum and angular momentum. We now turn to proving the first law.

One starts with Komar’s integral over hypersurface S, bounded by ∂S

∫
∂S

∇µtνdΣνµ = −
∫
S

Rµ
ν t
νdΣµ , (E.3)

where dΣνµ is a surface element of ∂S, and dΣµ is a surface element of S. We are

considering a black hole spacetime that is stationary axisymmetric asymptotically

flat. Thus, we choose S that is spacelike and tangent to axisymmetric Killing vector

field φµ. The boundary ∂S consists of 2-surface ∂B that intersects the event horizon

and 2-surface S∞ at infinity. Hence,

(∫
S∞

+

∫
∂B

)
∇µtνdΣνµ = −

∫
S

Rµ
ν t
νdΣµ . (E.4)

One can recognize the mass of spacetime M as measured from infinity,

∫
S∞

∇µtνdΣνµ = −4πM . (E.5)

Rearranging the right-hand side using of E.4 using Rµ
ν = 1

2
8π (2T µν − Tδµν ), results in

M =

∫
S

(2T µν − Tδµν ) tνdΣµ +
1

4π

∫
∂B

∇µtνdΣνµ . (E.6)

The first term can be regarded as contribution of the matter outside the horizon to

the total mass, while the second term is viewed as the mass of the black hole. By

completely analogous procedure for Killing vector φµ one obtains(∫
S∞

+

∫
∂B

)
∇µφνdΣνµ = −4π

∫
S

(2T µν − Tδµν )φνdΣµ

= −8π

∫
S

T µν φ
νdΣµ .

(E.7)

The second term vanishes due to the choice of hypersurface — S is spacelike, tangent

to φµ, so the normal of its surface element dΣµ is timelike. Consequently, φµdΣµ = 0.
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The total angular momentum J is

8πJ =

∫
S∞

∇µφνdΣνµ , (E.8)

which leads to

J = −
∫
S

T µν φ
νdΣµ −

1

8π

∫
∂B

∇µφνdΣνµ

= −
∫
S

T µν φ
νdΣµ + JH ,

(E.9)

where we defined

JH ≡ −
1

8π

∫
∂B

∇µφνdΣνµ . (E.10)

The first term in E.9 is angular momentum of matter, and the second term is regarded

as angular momentum of the black hole. To put everything together, remember that

Killing vector field that is null on the horizon is

χµ = tµ + ΩHφ
µ . (E.11)

Using ∇µtν = ∇µχν − ΩH∇µφν in E.6, together with E.9, yields

M =

∫
S

(2T µν − Tδµν ) tνdΣµ + 2ΩHJH +
1

4π

∫
∂B

∇µχνdΣνµ . (E.12)

Let’s expand the last integral in the expression. The surface element at the horizon

is dΣνµ = χ[νNµ]dA. The normal of the surface element is χ[νNµ]d, and and dA is

surface element of the horizon. As before, Nµ is the auxillary null vector, normalized

so that χµNµ = −1. It follows that

1

4π

∫
∂B

∇µχνdΣνµ =
1

4π

∫
∂B

∇µχνχ[νNµ]dA

=
1

4π

∫
∂B

Nµχν∇µχνdA

= − 1

4π

∫
∂B

Nµχν∇νχµdA

=
1

4π

∫
∂B

κdA

=
κ

4π
A .

(E.13)
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In the second line we omitted the antisymmetric braces because ∇µχν is al-

ready antisymmetric, since χµ satisfies the Killing equation. In the third line we

used the Killing’s equation and finally recognized the definition of surface gravity,

κ = −Nνχµ∇µχν . The zeroth law states that κ is constant on the horizon, which is

why κ can be taken in front of the integral. The total mass E.12 is then

M =

∫
S

(2T µν − Tδµν ) tνdΣµ + 2ΩHJH +
κ

4π
A . (E.14)

This is the integral mass formula. The first term in E.14 is the contribution of matter

outside the black hole. Since we are interested in making the correspondence be-

tween black holes and thermodynamics, we will ignore it for the time being. In such

case, E.14 reduces to so-called Smarr formula,

M = 2ΩHJH +
κ

4π
A . (E.15)

The expression is analogous to Euler equation in thermodynamics (also called Gibbs-

Duhem equation),

U(S, V,N) = TS − pV + µN , (E.16)

where U is internal energy of the system, S is entropy, T is temperature, p is

pressure, V is volume, µ is chemical potential and N is number of particles. The

Euler equation follows from extensivity of the thermodynamic variables, and is

different for system described by a different set variables. The first term in E.15

represents total rotational energy of the black hole, while the last term is analogous

to TS term of the Euler equation.

We will now derive the expression of how formula for M changes when infinites-

imal, stationary, axisymmetric change is made to the solution. As stated by [45],

when comparing two slightly different solutions there is a freedom when choosing

which points are meant to correspond. In other words, one can make use of diffeo-

morphisms to ensure that the surface S, event horizons and the Killing vectors tµ and
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φµ stay the same in two solutions [71]. Hence,

δtµ = δφµ = 0 , (E.17)

δgµν ≡ γµν = −gµρgντδgρτ , (E.18)

δtµ = γµνt
ν , δφµ = γµνφ

µ , (E.19)

δχµ = δΩHφ
µ , (E.20)

δχµ = γµνχ
ν + δΩHφµ . (E.21)

Moreover, as event horizons stay the same, Killing vector of the first solution must be

parallel with the Killing vector of the new solution. Consequently, the Lie derivative

of δχµ with respect to χ vanishes,

Lχδχµ = χν∇νδχµ + δχν∇µχ
ν = 0 , (E.22)

as δχµ ∝ χµ, and we used Killing equation. To evaluate δM we first express E.14

using Einstein’s equation as

M =

∫
S

(
1

8π
Rδµν + 2T µν

)
tνdΣµ + 2ΩHJH +

κ

4π
A . (E.23)

The procedure is to vary each term. Starting with the first,

1

8π
δ

(∫
S

RtµdΣµ

)
=

1

8π
δ

(∫
S

Rtµnµ
√
hd3y

)
=

1

8π

∫
S

δ
(
Rρτg

ρτ
√
h
)
tµnµd

3y

=
1

8π

∫
S

(
gρτ
√
hδRρτ +Rρτ

√
hδgρτ +Rρτg

ρτδ
√
h
)
tµnµd

3y

=
1

8π

∫
S

(
gρτ
√
hδRρτ − γρτRρτ

√
h+R

1

2
gαβγ

αβ
√
h

)
tµnµd

3y

= − 1

8π

∫
S

(
Rρτ −

1

2
Rgρτ

)
hρτ tµdΣµ +

1

8π

∫
S

gρτδRρτ t
µdΣµ .

(E.24)

As S is a spacelike hypersurface, in the first line the surface element was expended

as dΣµ = nµ
√
hd3y, where nµ is normal to the hypersurface, and hµν = gµν − nµnν is

projection of metric on hypersurface S, so that
√
hd3y is invariant three-dimensional

surface element (or volume element, depending how you look at it). When varying
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the surface element we made use of the fact that both S and tµ do not change under

variation. It is now left to calculate the variation of Ricci tensor. We start from

Palatini identity,

δRµν = ∇ρδΓ
ρ
µν −∇νδΓ

ρ
ρµ . (E.25)

The variation of Christoffel symbol defined in 4.137 is

δΓρµν = gρτ
1

2
(∂µδgντ + ∂νδgµτ − ∂τδgµν) + δgρτ

1

2
(∂µgντ + ∂νgµτ − ∂τgµν)

= gρτ
1

2
(∇µδgντ +∇νδgµτ −∇τδgµν)

=
1

2

(
∇µγ

ρ
ν +∇νγ

ρ
µ −∇ργµν

)
.

(E.26)

The second line follows because variation of Christoffel symbol must be a tensor. In

other words, since the variation is difference between two infinitesimally different

connections with the same indices, the non-tensorial parts will rule each other out.

As a result, we obtain

gµνδRµν =
1

2
gµν∇ρ

(
∇µγ

ρ
ν +∇νγ

ρ
µ −∇ργµν

)
− 1

2
gµν∇ν

(
∇ργ

ρ
µ +∇µγ

ρ
ρ −∇ργρµ

)
=

1

2

(
2∇ρ∇µγ

ρµ − 2∇ρ∇ργµµ

)
= −2∇ρ∇[ργ

µ
µ] .

(E.27)

Finally, putting everything together, the variation of the first term of E.23 is

1

8π
δ

(∫
S

RtµdΣµ

)
= − 1

8π

∫
S

(
Rρτ −

1

2
Rgρτ

)
hρτ tµdΣµ −

1

4π

∫
S

∇ρ∇[ργ
ν
ν]t

µdΣµ .

(E.28)

We can further rearrange the last term to be in the form of boundary integral. Starting
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from

∇ρ∇[ργ
ν
ν]t

µ = ∇ρ(∇[ργ
ν
ν]t

µ)−∇[ργ
ν
ν]∇ρtµ

= ∇ρ(∇[ργ
ν
ν]t

µ) +∇[ργ
ν
ν]∇µtρ

= ∇ρ(∇[ργ
ν
ν]t

µ) +∇µ(∇[ργ
ν
ν]t

ρ)︸ ︷︷ ︸
(1)=0

−(∇µ∇[ργ
ν
ν])t

ρ

= ∇ρ(∇[ργ
ν
ν]t

µ)− 1

2

(
∇ρ(∇µγνν t

ρ)−∇µγνν∇ρt
ρ︸ ︷︷ ︸

(2)=0

−∇µ∇νγ
ν
ρ t
ρ︸ ︷︷ ︸

(3)

)
.

(E.29)

The first term has the “boundary" form. The last line is obtained with the help of

product rule and Killing equation. The term (2) vanishes because of Killing’s equa-

tion. To show the same is true for (1) we will use the identities

∇ργµνt
ρ + γρµ∇νt

ρ + γρν∇µt
ρ = 0 , (E.30)

∇ργ
ν
ν t
ρ = 0 . (E.31)

The first relation is the variation of Lie derivative of the metric in direction of tµ,

Ltg = ∇ρgµνt
ρ + gρµ∇νt

ρ + gρν∇µt
ρ = 0. The second is obtained by taking the trace

of E.30 and using the fact that variation of the metric is symmetric, while tensor∇µtν

is antisymmetric. Thus, it follows that

(1) = ∇µ(∇[ργ
ν
ν]t

ρ) =
1

2
∇µ
(
∇ργ

ν
ν t
ρ −∇νγ

ν
ρ t
ρ
)

= −1

2
∇µ
(
∇ν(γ

ν
ρ t
ρ)− γνρ∇νt

ρ
)

= 0 .

(E.32)

The first term vanishes as a consequence of E.31. The second line follows from the

product rule. Finally, the first term in the second line is zero because δtν = γνρ t
ρ = 0,

and the second because γνρ is symmetric and multiplied by an antisymmetric tensor.
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Let’s now further expand the term (3) in E.29

(3) = ∇µ∇νγ
ν
ρ t
ρ = ∇µ(∇νγ

ν
ρ t
ρ)−∇νγ

ν
ρ∇µtρ

= ∇µ∇ν(γ
ν
ρ t
ρ)−∇µ(γνρ∇νt

ρ)−∇ν(γ
ν
ρ∇µtρ) + γνρ∇ν∇µtρ

= −∇ν(γρν∇µtρ) + γνρR
νµρ

τ t
τ

= ∇ν(∇ργ
µ
ν t
ρ + γµρ∇νt

ρ) + γνρR
νµρ

τ t
τ

= ∇ν
(
∇ργ

µ
ν t
ρ −∇ρ(γµρ tν) + tν∇ργµρ

)
+ γνρR

νµρ
τ t
τ

= ∇ν(∇ργµρ tν) +∇ν
(
∇ργ

µ
ν t
ρ −∇ρ(γµρ tν)

)
−Rµνρτγνρtτ︸ ︷︷ ︸

(4)=0

= ∇ρ(∇νγµν t
ρ) .

(E.33)

Once again, the final result is obtained by repetitive use of product rule and Killing

equation. To get the third line one recognizes the definition of Riemann tensor. We

also used E.31 and δtν = γνρ t
ρ = 0. The fourth line follows from E.30, and the last

line is obtained by rearranging the terms and using the product rule. To show that

(4) is zero we need the following identities,

∇ρ∇νAµρ −∇ν∇ρAµ
ρ

= Rµ ρν
τ Aτρ −Rτ ρν

ρ Aµτ , (E.34)

∇µ∇νKρ = Rτ
µνρKτ . (E.35)

One starts by expanding the derivatives,

(4) = ∇ν∇ργ
µ
ν t
ρ +∇ργ

µ
ν∇νtρ −∇ν∇ργµρ tν −∇ργµρ∇νtν −∇νγµρ∇ρtν − γµρ∇ν∇ρtν −Rµνρτγνρtτ

= ∇ν∇ργµν tρ −∇ν∇ργµρ tν − γµρ∇ν∇ρtν −Rµνρτγνρtτ

= Rµ ρν
τ γτρ tν −Rτ ρν

ρ γµτ tν − γµρRτνρ
νtτ −Rµνρτγνρtτ

= Rµτρνγτρtν +Rτρν
ργ

µ
τ tν −Rτνρ

νγ
µ
ρ tτ −Rµνρτγνρtτ

= 0 .

(E.36)

In the first line the second and the fifth term cancel each other out, and the fourth

is zero because of Killing equation. The third line is obtained by renaming indices of

the first term and using E.34, while the third term follows from E.35. Finally, using

the symmetries of the Riemann tensor one obtains the result. Hence, E.29 can be
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written as

∇ρ∇[ργ
ν
ν]t

µ = ∇ρ(∇[ργ
ν
ν]t

µ)− 1

2

(
∇ρ(∇µγνν t

ρ)−∇ρ(∇νγµν t
ρ)
)

= ∇ρ(∇[ργν]
ν t

µ)−∇ρ(∇[µγν]
ν t

ρ)

= ∇ρ(∇[ργν]
ν t

µ −∇[µγν]
ν t

ρ) .

(E.37)

The relation is valid for any Killing vector field of stationary spacetime, as we have

not used any properties of tµ specifically. Consequently, using E.37 the last term of

E.28 can be written as

1

4π

∫
S

∇ρ∇[ργ
ν
ν]t

µdΣµ =
1

4π

∫
S

∇ρ(∇[ργν]
ν t

µ −∇[µγν]
ν t

ρ)dΣµ

=
1

4π

∫
∂S

(∇[ργν]
ν t

µ −∇[µγν]
ν t

ρ)dΣµρ

= δM +
1

4π

∫
∂B

2∇[ργν]
ν t

µχ[µNρ]dA

,

(E.38)

where we transferred the volume on the left to integral over 2-hypersurface ∂S and

integrated over the components of ∂S, the horizon and boundary at infinity. Accord-

ing to [45], the integral over S∞ gives δM , with no other arguments given. It seems

to me that this is the case simply because the integral is evaluated at infinity, but I

do not know how to show this precisely. A possible justification, looking at explicit

variation of Kerr solution in [111] or [148], may be that as we are infinitely far away

from matter, so one is only left with variation of total energy. In the term that is

integrated over horizon we expended the surface element and took advantage of the

antisymmetry of indices. Continuing the derivation,

1

4π

∫
S

∇ρ∇[ργ
ν
ν]t

µdΣµ = δM +
1

4π

∫
∂B

(∇[ργν]
ν χ

µ − ΩH∇[ργν]
ν φ

µ)(χµNρ − χρNµ)dA

= δM +
1

4π

∫
∂B

∇[ργν]
ν χρdA−

1

4π

∫
∂B

ΩH∇[ργν]
ν φ

µdΣµρ︸ ︷︷ ︸
(5)=0

= δM +
1

4π

∫
∂B

(−)
1

2
∇νγρνχρdA .

(E.39)

The first line is obtained using E.11 and the second with 5.10. Finally, in the last line
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we used the identity E.31. To show (5) is zero we will need

∇ρ∇[ργ
ν
ν]φ

µdΣµ = ∇ρ(∇[ργν]
ν φ

µ −∇[µγν]
ν φ

ρ)dΣµ

= (∇[ργν]
ν φ

µ −∇[µγν]
ν φ

ρ)dΣµρ

= 2∇[ργν]
ν φ

µdΣµρ .

(E.40)

Using the obtained expression it then follows that

(5) =

∫
∂B

ΩH∇[ργν]
ν φ

µdΣµρ =
1

2

∫
∂B

ΩH∇ρ∇[ργ
ν
ν]φ

µdΣµ

= 0 .

(E.41)

The result is zero because 2-surface ∂S is chosen so that it is tangent to φ, as previ-

ously explained. We now have, from E.28 and expression E.39, that E.23 is

δM = − 1

8π

∫
S

(
Rρτ −

1

2
Rgρτ

)
hρτ tµdΣµ − δM +

1

4π

∫
∂B

1

2
∇νγρνχρdA+

2

∫
S

δ(T µν t
νdΣµ) + 2δ(ΩHJH) +

1

4π
δ(κA) .

(E.42)

Next, consider variation of surface gravity κ = −Nνχµ∇µχν = 1
2
N ν∇ν(χµχ

µ),

δκ =
1

2
δN ν∇ν(χµχ

µ) +
1

2
N ν∇ν(δχµχ

µ + δχµχµ)

= δN νχµ∇νχµ +
1

2
Nν
(
∇ν(δχµχ

µ) + δΩH∇ν(φµχ
µ)− δχµ∇νχ

µ + δχµ∇νχ
µ
)

= δN νχµ∇νχµ +
1

2
Nν
(
χµ∇νδχµ + δΩH∇ν(φµχ

µ) + χµ∇µδχν + 2δχµ∇νχ
µ
)

= ∇νχµ(δN νχµ +N νδχµ) +
1

2
(∇νδχµ)(Nνχµ +Nµχν) +

1

2
N νδΩH∇ν(φµχ

µ)

(E.43)

The second line follows from E.20 and the derivative product rule. To obtain the third

line we used E.22 and expended the derivative of the first term in curly brackets. The

fourth line is a result of re-combining the terms. The first term vanishes because the

bracket is symmetric, but χ satisfies Killing equation which is antisymmetric. In the

brackets of the second term we recognize the induced metric gµν = −χµN ν−χνNµ+

hµν . However, as δχµ ∝ χµ on the horizon (∇νδχµ)hµν = 0. We can use E.44 to
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rewrite the last term,

δΩH∇ν(φµχ
µ) = ∇ν(δχµχ

µ)

= χµ∇νδχµ + δχµ∇νχ
µ

= χµ∇νδχµ − χµ∇µδχν

= χµ∇νδχµ + χµ∇νδχµ

= 2δΩHχ
µ∇νφµ ,

(E.44)

which is a consequence of the vanishing of E.22. Consequently,

δκ =
1

2
(∇νδχµ)(−gµν) +N νδΩHχ

µ∇νφµ

= −1

2
∇µδ(gµρχ

ρ) +NνδΩHχµ∇νφµ

= −1

2
∇µγµρχ

ρ − 1

2
∇ρδχ

ρ + δΩHN[νχµ]∇νφµ

= −1

2
∇νγρνχρ + δΩHN[νχµ]∇νφµ .

(E.45)

Metric can be put under variation because the additional term from the product rule

vanishes as a result of antisymmetry of Killing equation. The second term in the

third line is zero for the same reason. Moreover, since ∇νφµ is already antisymmet-

ric in indices, adding the antisymmetry brackets doesn’t change anything. Finally,

integrating E.45 over the horizon and recognizing E.10, leads to

1

4π

∫
∂B

(−)
1

2
∇νγρνχρ =

δκ

4π
A+ 2δΩHJH . (E.46)

Thus, inserting the obtained expression into E.42 results in

δM = − 1

8π

∫
S

(
Rρτ −

1

2
Rgρτ

)
hρτ tµdΣµ − δM −

δκ

4π
A− 2δΩHJH+

2

∫
S

δ(T µν t
νdΣµ) + 2δ(ΩHJH) +

1

4π
δ(κA)

2δM = −
∫
S

Tρτh
ρτ tµdΣµ +

κ

4π
δA+ 2ΩHδJH + 2

∫
S

δ(T µν t
νdΣµ) .

(E.47)

To vary the EMT we need to specify with what kind of matter we are dealing with.

Consider the case of perfect fluid described by energy density ρ = ρ(n, s) which is

a function of number density n and energy density s. The temperature θ, chemical
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potential µ and pressure p are defined by

θ =
∂ρ

∂s
, (E.48)

µ =
∂ρ

∂n
, (E.49)

p(n, s) = µn+ θs− ρ . (E.50)

Hence, EMT is given by

Tµν = (ρ+ p)vµvν + pgµν , (E.51)

where v is defined as

vµ =
uµ

√−gρτuρuτ
, uµ = tµ + Ωφµ . (E.52)

Note that EMT is given with respect to an observer moving with the fluid. Moreover,

the matter outside the black hole is in circular orbit outside the black hole, so that

the spacetime is axisymmetric. We will also use the expressions

dJ = −T µν φµdΣν , (E.53)

dS =
s√
−uνuν

tµdΣµ , (E.54)

dN =
n√
−uνuν

tµdΣµ , (E.55)

describing the change in angular momentum, entropy, and number of particles of

the fluid corssing the surface element dΣµ respectively. Moreover, from the previous

definitions we see that

δp = nδµ+ sδθ (E.56)

δuµ = 0 , (E.57)

uµδ
( uµ
−gρτuρuτ

)
=

1

2
vαvβhαβ . (E.58)
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The variation of the last term in E.47 is then∫
S

δ(T µν t
νdΣµ) =

∫
S

δ(T µν u
νdΣµ)−

∫
S

δ(T µν φ
νdΣµ)

=

∫
S

δ
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]
+

∫
S

ΩδdJ

=

∫
S
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∫
S

uνu
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uρuρ
δ
[
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]
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S

(µn+ θs)uνδ
[ uν
−gρτuρuτ

]
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∫
S

ΩδdJ

=
1

2

∫
S

pgαβhαβt
µdΣµ +

∫
S

δptµdΣµ −
∫
S

δ
[
(µn+ θs)tµdΣµ

]
+

1

2

∫
S

(µn+ θs)vαvβhαβt
µdΣµ +

∫
S

ΩδdJ .

(E.59)

The first line follows from definition of u, E.52. The second line uses the definition of

EMT given in E.51 and also E.53. We further use φµdΣµ = 0. The variations of surface

elements were derived before, and we make use of E.58, hence the last line. Further,

we defined the “red-shifted" chemical potential and temperature respectively,

µ̄ =
√
−uµuµµ , θ̄ =

√
−uµuµθ . (E.60)

This is because, as mentioned, quantities in EMT are defined with respect to ab

observer which is moving together with the fluid, while everything else is formulated

with respect to an observer at infinity. To restate, we have introduced the red-shift

factor to “convert" the quantities of EMT from the one an observer which moves with

the fluid measures, to the one measured by an observer at infinity, so that everything

is consistent. Thus, the variation E.59 is

∫
S

δ(T µν t
νdΣµ) =

1

2

∫
S

pgαβhαβt
µdΣµ +

∫
S

µ̄δdN +

∫
S

θ̄δdS+ (E.61)

1

2

∫
S

Tαβhαβt
µdΣµ −

1

2

∫
S

pgαβhαβt
µdΣµ +

∫
S

ΩδdJ (E.62)

=

∫
S

µ̄δdN +

∫
S

θ̄δdS +
1

2

∫
S

Tαβhαβt
µdΣµ +

∫
S

ΩδdJ (E.63)

The second line follows from definition of EMT and previously defined definitions.

Inserting the obtained expression into E.47 results in

δM =

∫
S

µ̄δdN +

∫
S

θ̄δdS +

∫
S

ΩδdJ + ΩHδJH +
κ

8π
δA . (E.64)
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This is the differential mass formula. The last two terms describe the change in black

hole energy, while the rest of the terms describe the perfect fluid outside the black

hole as measured from infinity. In vacuum, the first law is

δM =
κ

8π
δA+ ΩHδJH . (E.65)

The mass formula expresses how parameters of two nearby stationary solutions are

related.
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7 Prošireni sažetak

7.1 Uvod

Izranjajuća gravitacija polazi od ideje da je opća teorija relativnosti efektivna teorija,

a gravitacija fenomen koji proizlazi iz kolektivnog gibanja mikroskopskih stupnjeva

slobode neke trenutno nepoznate teorije. Razlog zašto uopće postoji potreba za

novim pristupom jest to što, iako je opća teorija relativnosti vrlo uspješna u repro-

duciranju mnogih opažanja, postoje problemi s teorijske i eksperimentalne strane

koji indiciraju da opća teorija relativnosti nije cijela priča.

Neka svojstva gravitacije koje govore u prilog izranjajućoj paradigmi su zakoni

mehanike crnih rupa koji su analogni zakonima termodinamike, isključivo privlačna

priroda gravitacije i perturbativna ne-renormalizabilnost. S druge strane, osim tih in-

dicija, postoje modeli, uglavnom temeljeni na fizici kondenzirane tvari, koji uspješno

reproduciraju neke od svojstava gravitacije.

U ovom radu dan je pregled različitih pristupa paradigmi izranjajuće gravitacije

bez zalaženja u detalje različitih modela. Fokus je na odred̄enim rezultatima i teori-

jama koje ilustriraju glavne ideje i smjerove ovog pristupa. Konkretno, kratko raz-

matramo kauzalnu teoriju skupova kao primjer teorije koja polazi od toga da je pros-

torvrijeme diskretno. Nadalje, objašnjena je uloga Weinberg-Wittenovog teorema koji

ograničava vrste čestica koje mogu postojati na ravnom prostorvremenu. Konačno,

izvedeni su zakoni termodinamike crnih rupa i diskutirana je njihova uloga u us-

postavljanju veze izmed̄u termodinamike i gravitacije. Osim toga, pokazano je da se

Einsteinova jednadžba može dobiti iz veze geometrije i termodinamike za kauzalne

horizonte.

7.2 Izranjajuća priroda gravitacije

U ovom poglavlju cilj je objasniti što podrazumijevamo pod pojmom “izranjajuća

gravitacija", stavljajući u kontekst teme koje ćemo obraditi u narednim poglavljima.

Diskusija prati [1] i [2]. Najprije ćemo kratko ponoviti temelje opće teorije rela-

tivnosti. Spomenut ćemo neke nedostatke teorije koji postoje s teorijske i eksperi-

mentalne strane i upućuju na to da se teorija treba "nadograditi". Jedan od pristupa

dan je upravo teorijama koje možemo grupirati pod nazivom "izranjajuća gravitacija".
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Spomenut ćemo svojstva gravitacije koja indiciraju da je to slučaj i dati pregled ra-

zličitih modela koji pripadaju toj paradigmi.

Opća teorija relativnosti je opis prostorvremena, 4-dimenzionalne mnogostrukosti

s Lorentzovom metrikom koja opisuje gravitacijsko polje [3]. Objasnit ćemo koja

opažanja vode na opis gravitacije kao metričke teorije. Taj pristup prezentiran je u

[4] i naziva se EPS formulacija.

Fundamentalni objekti EPS formulacije su svjetlost i tijelo u slobodnom padu,

koji se tretiraju klasično. Svjetlost kao valni paket elektromagnetskog zračenja, dok

se tijelo odnosi na bilo koje tijelo zanemarivih dimenzija i strukture. U tekstu ćemo

se na takvo tijelo u slobodnom padu referirati kao na česticu. Formulacija kreće od

sljedećih aksioma,

• Postoji skup dogad̄aja M zajedno sa skupom svjetskih krivulja zraka svjetlosti

L i čestica P .

• Svjetske linije definiraju topologiju na M. Trajektorije svjetlosti i čestica su

kontinuirane. Nadalje, čestice mogu med̄usobno slati svjetlosne signale što

možemo iskoristiti da svakom dogad̄aju pridijelimo koordinate.

• Svjetlosne zrake odred̄uju kauzalnu strukturu, tj. definiraju svjetlosne stošce

u svakoj točki skupa M. Kaže se da takva mnogostrukost ima konformalnu

strukturu. Posljedično, možemo govoriti o vektorima i krivuljama vremenskog,

svjetlosnog ili prostornog tipa. Štoviše, može se pokazati da su krivulje svjet-

losnog tipa geodezici.

• Čestice se gibaju po vremenolikim krivuljama. Postoji poseban tip čestica koje

ne nose naboj nijedne druge sile osim gravitacije. Takve čestice gibaju se po

autoparaleli i definiraju projektivnu strukturu koneksija na mnogostrukosti.

• Konfromalna i projektivna struktura su kompatibilne u smislu da svjetlosni

geodezici moraju biti autoparalele koneksije. Takav prostor zove se Weylov

prostor.

• Kako bi “brzina" vremena bila neovisna o putanji, u smislu da vremenski inter-

val ovisi samo o putanji kojom se gibamo, nameće se uvjet da je iznos vektora
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koji je paralelno transportiran neovisan o putanji. Iz tog uvjeta slijedi da konek-

sija mora biti tzv. Levi-Civita koneksija i Weylov prostor svodi se na Lorentzovo

prostorvrijeme.

Ovime smo odredili kinematiku teorije relativnosti. Dinamika je odred̄ena La-

grangianom ili Hamiltonijanom. U tu svrhu, postuliramo da je teorija invarijantna na

difeomorfizme i zahtijevamo da dinamika ovisi samo o metriki. Tada je Lagrangian

(u najnižem redu) dan Riccijevim skalarom, a jednadžbe polja dane su Einsteinovom

jednadžbom.

Time smo došli do kraja diskusije o formulaciji opće teorije relativnosti. Iako

teorija uspješno reproducira Keplerove zakone i mnoga druga opažanja, postoje neke

nedosljednosti. Kako bi teorija bila u skladu s opaženim ubrzanim širenjem svemira

mora postojati velika količina “tamne" materije. Nadalje, postoje problemi sa stan-

dardnim kozmološkim modelom baziranim na općoj teoriji relativnosti i standard-

nom modelu. Konkretno, problem ravne geometrije svemira, tzv. problem horizonta,

te problem magnetskog monopola.

Kako bi teorija bolje adresirala navedene probleme predložena su mnoga

proširenja opće teorije relativnosti, npr. f(R) teorije, ne-minimalna vezanja u

Lagrangianu, zamjena metrike nekakvom drugačijom tenzorskom strukturom, itd.

S druge strane, izranjajuća gravitacija gleda na opću teoriju relativnosti kao na

makroskopski limes neke fundamentalnije teorije.

Izranjajući fenomeni Izranjajuće fenomene može se sumirati kao "više je dru-

gačije". Opis sustava sastavljenoga od velikog broja čestica nije dan samo ekstrap-

olacijom fundamentalnih zakona dobivenih promatranjem malog broja čestica, već

se na drugačijoj skali javljaju novi fenomeni [19]. Primjer je pojava frakcionog

kvantnog Hallovog efekta, gdje se elektroni u 2D kristalu ponašaju kao čestice frak-

cionog naboja. Ovakav fenomen je u potpunosti neočekivan. Još jedan primjer su

deformacije u kristalu opisane Navierovom jednadžbom, dok je ponašanje pojedinog

atoma dano Schrödingerovom jednadžbom. Dakle, na različitim skalama imamo

neočekivane fenomene, opisane novim zakonima. Navedeni primjeri obuhvaćaju srž

ideje izranjajućih fenomena. Formalna definicija je stoga sljedeća.

Mikroteorija M1 teorije T je tipa I ako i samo ako je M1 inspirirana teorijom T , npr.
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diskretizacijom, kvantizacijom ili renormalizacijom.

Mikroteorija M2 teorije T je tipa II ako i samo ako M2 nije motivirana ili inspirirana

teorijom T .

Teorija je izranjajuća ako i samo ako njezina mikroteorija pripada tipu II.

Daljni cilj bit će objasniti kad je mikroteorija inspirirana makroskopskom teorijom.

Nerijetko je slučaj da mikroteorija ima svojstva tipa I i tipa II, stoga podjela nije

oštra.

7.2.1 Tipovi usrednjavanja (coarse-graining)

U ovom poglavlju razmatramo vezu izmed̄u mikroskopskog i makroskopskog opisa,

koja je u principu dana nekakvom metodom usrednjavanja. Obrnut smjer dan je

diskretizacijom u širem smislu riječi.

• Postupak diskretizacije u užem smislu sastoji se od toga da neku kontinuiranu

veličinu "podijelimo" na manje dijelove. Primjer je veza ukupne mase i funkcije

koja opisuje raspodjelu mase u tijelu, dobivene tako da podijelimo tijelo čiju

masu opisujemo na male komadiće konstantne gustoće. U ovom primjeru ko-

madić ima ista svojstva kao masa ukupnog tijela. Diskretizacija nije dovela do

nekog novog fenomena pa u većini slučajeva diskretizacija vodi do mikroteorije

tipa I. Metoda diskretizacije bitna je kod kauzalne teorije skupova koju ćemo

kasnije razmatrati.

• Kvantizacija u pravilu odgovara teorijama tipa I. Iako je ponašanje kvantizira-

nog sustava drugačije od klasičnog, takva promjena je očekivana. Na primjer,

kvantizacija vibracijskih modova kristalne rešetke daje fonone, no njih ne sma-

tramo izranjajućim fenomenom. Drugim riječima, fononi nisu fundamentalni

stupnjevi slobode, već atomi. Posljedično, teorije linealizirane gravitacije ne

smatramo izranjajućima.

• Renormalizacija je postupak kojim dobivamo efektivnu teoriju. Ona daje dobar

opis samo na odred̄enim energetskim skalama jer su visoko-energetski modovi

izintegrirani. Prema [1] renormalizacija spada u tip I, no [32] daje protuprim-

jer.
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Možemo zaključiti će diskretizacija i kvantizacija u pravilu voditi to mikroteorije

tipa I, dok kod renormalizacije nije sasvim jasno.

7.2.2 Indicije emergentnosti

U ovom poglavlju razmatramo svojstva gravitacije koja upućuju na to da se radi o

izranjajućoj pojavi.

• Univerzalnost — gravitacija je uvijek privlačna što podsjeća na situaciju iz

molekularne fizike. Neutralne molekule privlače se Londonovim silama koje

uzrokuje fluktuacija naboja u molekuli što inducira dipole. Analogno, privlačna

priroda gravitacije mogla bi potjecati od fluktuacija neke nepoznate veličine.

• Perturbativna ne-renormalizabilnost gravitacije upućuje na to da interakcija

nije fundamentalna zbog slične situacije s Fermijevom teorijom koja opisuje

beta raspad i nije renormalizabilna. Fermijeva teorija zamijenjena je slabom

interakcijom koja jest.

• Termodinamika crnih rupa opisuje mehaniku crnih rupa zakonima koji imaju

isti oblik kao zakoni termodinamike. Osim toga, karakteristike crnih rupa slične

su termodinamičkim sustavima — opisane su malim brojem makroskopskih

parametara i zrače kao crna tijela temperature Hawkingovog zračenja. Imp-

likacije ove analogije razmatrane su u kasnijim poglavljima.

7.2.3 Pregled izranjajućih modela

Teorije izranjajuće gravitacije mogu se ugrubo podijeliti u dvije skupine. U jednoj

su teorije gdje fundamentalni stupnjevi slobode žive u nekakvom mediju (tip I). U

drugoj skupini modela i samo prostorvrijeme je izranjajuće (tip II). Postoji i treća

skupina, koja se uglavnom ne ubraja u emergentne teorije, gdje je dinamika pros-

torvremena izranjauća, a metrika i mnogostrukost su zadani (tip III).

• tip I

– Analogni modeli [48][49], kao što ime kaže, pokušavaju reproducirati svo-

jstva gravitacije na primjerima iz čvrstog stanja, npr. valovi zvuka u fluidu

ponašaju se kao svjetlost u zakrivljenom prostorvremenu.
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– Modeli inspiriranim fizikom kondenzirane tvari, npr. ekscitacije blizu Fer-

mijeve točke [50], rubne escitacije kvantnog Hallovog efekta [52], defekti

u kristalu [53].

• tip II

– Modeli koji se temelje na teoriji grafova [56] — prostorvrijeme je diskretno

u smislu da se sastoji od vrhova grafa koji su spojeni bridovima. Ovdje

spadaju npr. kauzalna teorija skupova i Loop Quantum Gravity (kvantna

teorija petlji).

– Kvantna gravitacija u formulaciji grupne teorije polja (group field theory)

[59] koristi sve koncepte teorije polja. Razlika je u tome što ne ovisi o

pozadini.

– AdS/CFT korespondencija [60] u verziji gdje se CFT smatra primarnim, a

prostorvrijeme emergentnim.

• tip III

– Inducirana gravitacija [36] — dobije se član proporcionalan Einstein-

Hilbertovoj akciji ekstremiziranjem efektivne akcije.

– Modeli koji se baziraju na vezi termodinamike i gravitacije [66][65].

Kako bi modeli izranjajuće gravitacije reproducirali opću teoriju relativnosti trebaju

zadovoljavati sljedeće uvjete.

• Lokalna Lorentz invarijantnost (LLI) eksperimentalno je potvrd̄ena da vrijedi

barem do Planckove skale. Ona je u modelima tipa I narušena jer postojanje

medija u kojem fundamentalni stupnjevi slobode žive narušava princip rela-

tivnosti, tj. postoji preferirani referentni sustav. Modeli tipa II stoga nemaju

taj problem.

• Univerzalno vezanje zahtijeva da je konstanta vezanja jednako jaka za sve

tipove materije. Prema Weinbergovom teoremu za gravitone niskih energija

(soft graviton theorem), to je slučaj kada postoji jedinstvena metrika i vrijedi

LLI. Modeli tipa I često sadrže više od jedne metrike. Modeli tipa II u većini

slučajeva nisu još u mogućnosti opisati vezanje materije i gravitacije.
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• Invarijantnost na difeomorfizme, tj. zahtjev da ne postoji pozadina koja nije

dinamička. Kod modela tipa I to se može postići ako veličine koje možemo

opažati nisu vezane ("coupled") s pozadinom. Većina modela tipa II još nije u

mogućnosti proizvesti glatku mnogostrukost u kontekstu koje bi imalo smisla

razmatrati difeomorfizme.

Osim uvjeta povezanih s pitanjem reproduciranja opće teorije relativnosti, postoje

druge vrste ograničenja na modele. Jedan takav primjer je Weinberg-Wittenov teo-

rem koji ograničava vrste čestica koje mogu postojati u ravnom prostorvremenu.

7.3 Kauzalna teorija skupova

Kauzalna teorija skupova (CST)[25][73] razmatra ideju da se mikrostruktura pros-

torvremena sastoji od točaka u kauzalnom odnosu, tzv. kauzeta. Trenutno ne postoji

eksperimentalni dokaz kojim bismo utvrdili da je prostorvrijeme diskretno, jer se

takvo ponašanje očekuje tek na Planckovoj skali. Med̄utim, postoje naznake u teoriji

koje govore tome u prilog. Konkretno, to što nailazimo na divergencije i singularnosti

u općoj teoriji relativnosti i kvantnoj teoriji polja, što obično implicira da smo izašli

iz režima u kojem teorija vrijedi.

Motivacija iza kauzalne teorije skupova je sljedeća. Ako prihvatimo da je pros-

torvrijeme diskretno, pitanje je kakva struktura može reproducirati topologiju, difer-

encijalnu strukturu i metriku koje opažamo na velikim skalama. Prema CST, to

su kauzalni odnosi. Za razliku od EPS formulacije gdje je metrika bila primarna i

odredila kauzalnu strukturu, CST uzima kauzalne odnose kao fundamentalne i izvodi

ostale matematičke strukture iz toga. Formalnim jezikom, CST kreće od drugačije

topološke strukture, tzv. Alexandrove topologije, definirana kao najmanja topologija

u kojoj su kronološka budućnost i prošlost nekog skupa otvorene. Nadalje, svjet-

losne stošce možemo definirati samo pomoću kauzalnih odnosa izmed̄u dogad̄aja što

implicira da možemo dobiti metriku (do na konformalnu transformaciju).

Kauzalni skup (C,≺) definiran je kao konačni parcijalno udred̄en skup. Drugim

riječima, skup C s binarnom relacijom ≺ "prethodi" zadovoljava sljedeća svojstva,

1. Tranzitivnost — ako x ≺ y i y ≺ z, ∀x, y, z ∈ C

2. Ne-cirkularnost — ako x ≺ y i y ≺ x onda x = y ∈ C
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3. Konačnost — (∀x, z ∈ C) (card{y ∈ C|x ≺ y ≺ z} <∞)

gdje “card" označuje kardinalnost skupa. Kao što je objašnjeno, kauzalna struktura

odred̄uje gotovo svu geometrijsku strukturu, osim konformalnog faktora. Kako bismo

ga fiksirali postuliramo da konačan volumen prostorvremena sadrži velik, ali konačan

broj elemenata tako da je
√
−gd4x mjera volumena. Drugim riječima, broj elemenata

nekog dijela prostovremena odgovara volumenu tog prostorvremena, N = V .

Nadalje, kako bi kauzet reproducirao neko prostorvrijeme koje je Lorentz invar-

ijantno točke tog kauzeta moraju biti raspodijeljene prema Poissonovoj raspodjeli.

Tako neće postojati preferirani smjer u prostoru. Taj proces zove se “prskanje" (“sprin-

kling"). Treba naglasiti da ne postoji nužno prostorvrijeme koje odgovara nekom

kauzetu. Pitanje evolucije kauzeta vodi nas do dinamike. U CST-u dinamika se naziva

sekvencijalni rast, tj. rast skupa jest ono što se smatra "tokom vremena".

Ovo su glavne ideje kauzalne teorije skupova. Kauzalni odnosi i volumen zajedno

nose dovoljno informacija da odrede geometriju.

7.4 Weinberg-Wittenov theorem

Weinberg-Wittenov teorem ograničava spin, tj. helicitet j bezmasenih čestica koje

nose naboj očuvane Lorentz kovarijantne struje [95][77].

(a) Teorija u kojoj možemo konstruirati očuvanu Lorentz kovarijantnu struju Jµ

ne može sadržavati bezmasene čestice spina j > 1
2

ako ona nosi naboj

Q ≡
∫
J0d3x 6= 0 .

(b) Teorija u kojoj možemo konstruirati Lorentz kovarijantni tenzor energije i impulsa

za koji je P ν ≡
∫
T 0νd3x očuvani impuls ne može sadržavati čestice spina j > 1 .

Kako bismo razumjeli dokaz ovog teorema moramo najprije definirati spin i bez-

masene čestice.

7.4.1 Masa i spin

Jednočestična stanja opisana masom i spinom su ireducibilne reprezentacije Poincar-

éove grupe, grupe izometrija ravnog prostorvremena. Stanja kvantnog sustava raza-

pinju Hilbertov prostor gdje je svako stanje sustava reprezentirano vektorom stanja.
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Njih možemo odrediti ako znamo grupu simetrija teorije koja opisuje čestice. Ona os-

tavlja jednadžbe gibanja invarijantne, a dotični Lagrangian invarijantan do na rubni

član. Na ravnom prostorvremenu to je Poincaréova grupa, što će biti objašnjeno kas-

nije. Nadalje, ako želimo da grupa djeluje na vektore stanja, moramo naći njezinu

reprezentaciju. Kad radimo s vektorima stanja želimo da reprezentacija bude uni-

tarna kako bi vjerojatnost bila očuvana. Štoviše, ako postoje Casimirovi operatori,

Hilbertov prostor stanja možemo organizirati u minimalne invarijantne podprostore,

tako da je svaki podprostor ireducibilna reprezentacija. Poincaréova grupa ima dva

Casimirova operatora koja označuju ireducibilnu reprezentaciju. Cilj je stoga odrediti

Casimirove operatore i ireducibilne reprezentacije Poincaréove grupe.

Ireducibilne reprezentacije Poincaréove grupe Svojstva Poincaréove grupe i

Poincaréove algebre dana su u Dodatcima. Jer Poincaréova grupa nije kompak-

tna, ireducibilna reprezentacija je beskonačno dimenzionalna. Poincaréova grupa

sadržava invarijantnu podgrupu koja je ujedno Abelova, grupu translacija, pa ire-

ducibilne reprezentacije možemo naći metodom induciranih reprezentacija [80].

Stanje kvantnog sustava jedinstveno odred̄eno svojstvenim vrijednostima pot-

punog skupa operatora koji med̄usobno komutiraju. Stoga, krećemo od proizvoljno

odabranog svojstvenog stanja operatora impulsa kojeg nazivamo standardni impuls.

Zatim odredimo malu grupu standardnog vektora. Ona se sastoji od generatora koji

ostavljaju svojstvenu vrijednost standardnog impulsa invarijantnom. Broj genera-

tora u maloj grupi odred̄uje dimenziju podprostora koji pripada standardom impulsu.

Potpunu ireducibilnu reprezentaciju onda dobivamo tako da generatori koji nisu ele-

menti male grupe djeluju na stanja podprostora.

Casimirovi operatori P 2 i W 2 označuju Poincaréovu reprezentaciju. Impuls pri-

pada jednoj od četiri moguće klase,

• P 2 > 0,

• P 2 = 0, P = 0

• P 2 = 0, P 6= 0

• P 2 < 0.
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Nas zanimaju bezmasene čestice pa ćemo promatrati samo slučaj kad je kvadrat im-

pulsa P 2 = 0, tj. m2 = 0 i impuls P 6= 0. Drugi Casimirov operator W 2 je Pauli-

Lubanski pseudovektor. Kao standardni impuls bezmasenih čestica odabrat ćemo

p0 = (E, 0, 0, E) . (7.66)

Odredimo malu grupu tog vektora. Iz 7.66 vidimo da mora uključivati SO(2). Alge-

bra male grupe je

[W1,W2] = 0 ,

[W2, J3] = iW1 ,

[W1, J3] = −iW2 .

(7.67)

Prepoznajemo da su ovo komutacijske relacije Euklidske grupe u dvije dimenzije.

Stoga slijedi da je stanje definirao kao

P µ|p0, w1, w2〉 = pµ0 |p0, w1, w2〉 ,

W1|p0, w1, w2〉 = w1|p0, w1, w2〉 ,

W2|p0, w1, w2〉 = w2|p0, w1, w2〉 .

(7.68)

Može se pokazati da su svojstvena stanja W1 i W2 kontinuirana. Jer nisu opažene čes-

tice koje bi bile opisane takvim kvantnim brojevima, zahtijevamo da W1 = W2 = 0 .

Iz toga slijedi da je generator male grupa bezmasene čestice J3 koji odgovara he-

licitetu. Jer je grupa Abelova,

U(R(θ)) = e−iθJ3 . (7.69)

Dakle, stanje je opisano kao

P µ|m = 0, j = 0;p0,±j〉 = pµ|m = 0, j = 0;p0,±j〉 (7.70)

W3|m = 0, j = 0;p0,±j〉 = ±j|m = 0, j = 0;p0,±j〉 (7.71)

Da bismo dobili cijelu ireducibilnu reprezentaciju moramo djelovati operatorima koji
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ne pripadaju maloj grupi. To je Lorentzov potisak L0(p).

|m = 0, j = 0;p,±j〉 = R(φ, θ, 0)U(L0(p))|m = 0, j = 0;p0,±j〉 , (7.72)

gdje je R rotacija i |p| = etanh−1(β)E. Konačno, matrični elementi ireducibilne

reprezentacije su

U(1, a)|p,±j〉 = e−iap|p,±j〉 , (7.73)

U(Λ, 0)|p,±j〉 = e±jiθ(Λ,p)|Λp,±j〉 , (7.74)

gdje θ(Λ, p) možemo odrediti iz

e±iθ(Λ,p) = 〈p0,±j|L0(Λp)−1ΛL0(p)|p0,±j〉 . (7.75)

Time je zaključena rasprava o ireducibilnim reprezentacijama Poincaréove grupe

[81][80][82].

7.4.2 Polja i čestice

U ovom poglavlju objašnjeno je koja je veza izmed̄u polja i čestica, te kako se polja

transformiraju na Lorentzove transformacije.

Čestice opisuju fizikalna stanja, stoga proizlaze iz unitarne reprezentacije. Isto

ne vrijedi za polja, stoga su ona povezana s ne-unitarnom reprezentacijom. Iz tog

razloga ne postoji direktna veza izmed̄u čestica i polja, već je ona dana jednadžbom

gibanja. Ona je zapravo relativistički izraz za energiju, čijim rješavanjem dobivamo

Ψ(x) =
∑
λ

∫
d3p

(2π)3
√

2E

(
a(p, λ)εa(p, λ)eipx + a†(p, λ)ε∗a(p, λ)e−ipx

)
, (7.76)

gdje je a(p, λ) operator poništenja i

|p, λ〉 = a†(p, λ)|0〉 , (7.77)

gdje je |0〉 vakuum. Jer znamo kako se jednočestična stanja transformiraju na Lorent-
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zove transformacije, slijedi da za polja mora vrijediti

U(Λ)Ψ(x)aU(Λ−1) = D(Λ−1)abΨ
b(Λx) , (7.78)

gdje je U(Λ) ne-unitarna reprezentacija i D(Λ) je reprezentacija Lorentzove grupe.

No, dovoljan i nužan uvjet da gornja relacija vrijedi jest

D(Λ)aa′ε
a′(p, λ) = D(j)(R(Λ, p))λλ′ε

a(Λp, λ′) . (7.79)

Za konkretan slučaj bezmasene čestice heliciteta 1, odgovarajuće polje Aµ

Aµ(x) =
∑
λ

∫
d3p

(2π)3
√

2E

(
a(p, λ)εa(p, λ)eipx + a†(p, λ)ε∗a(p, λ)e−ipx

)
, (7.80)

transformira se na Lorentzove transformacije kao

U(Λ)Aµ(x)U−1(Λ) = Λν
µAν(Λx) + ∂µΩ(x,Λ) . (7.81)

Bezmasena polja ne transformiraju se kovarijantno na Lorentzove transformacije.

Rezultat zapravo slijedi zbog toga što mala grupa sadrži translacije.

7.4.3 Noetherin teorem i zakoni očuvanja

Očuvane struje i naboje nalazimo pomoću Noetherinog teorema koji kaže da očuvane

struje slijede iz akcije koja je invarijantna na kontinuirane globalne simetrije. Dokaz

slijedi iz varijacionog postupka. Polazimo od akije S[ψi],

S[ψi] =

∫
d4xL(ψi, ∂µψi) , i = 1, ..., N . (7.82)

Veličina L je gustoća Lagrangiana koju zovemo Lagrangian, ψ je polje (koje nije

nužno skalarno).

Cilj je primijeniti Weinberg-Wittenov teorem na standardni model i gravitaciju.

Jedine čestice standardnog modela koje su u domeni Weinberg-Wittenovog teorema

su gluoni koji nose naboj boju i imaju spin j = 1 . Medijator gravitacijske sile je

hipotetska čestica graviton spina j = 2 . Njegov naboj jest energija, tj. impuls. Grupa

simetrija QCD-a je SU(3), dok je Einstein-Hilbertova akcija invarijantna na generalne
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difeomorfizme, koje ćemo sada ukratko objasniti.

Difeomorfizmi su prostornovremenske transformacije. Vektorsko polje ξ u svakoj

točki generira tok Φξ. Pomoću tog toka možemo pomaknuti točku P tako da slijedimo

tok za neku vrijednost parametra ε,

Φξ
ε : U →M

P 7→ Φξ
ε(P ) = Q .

(7.83)

U koordinatama je 7.83 dan s

x(P ) = xµ → x(Q) = xµ + ε(x)ξµ = xµ + εµ(x) . (7.84)

Nadalje, zanima nas kako izgleda polje koje opisuje ovu novu konfiguraciju točaka.

Uzmimo primjer skalarnog polja φ(x) koje opisuje situaciju prije prostornovremenske

transformacije i povežimo ga s φ′(x) koje opisuje novu konfiguraciju. Mora vrijediti

da je

φ′(x(Q)) = φ(x(P ))

φ′(x+ ε) = φ(x) .
(7.85)

S gledišta novog polja imamo vezu

φ′(x) = φ(x)− εξµ(x)∂µφ(x)

= φ(x)− Lξφ ,
(7.86)

gdje je Lξφ Liejeva derivacija. Drugim riječima, Liejeve derivacije generiraju

infinitezimalne difeomorfizme. Sličnu analizu možemo provesti za vektorsko polje,

tj. tenzor bilo kojeg višeg ranga.

Vratimo se na pitanje očuvanih struja. Kao što je spomenuto, one slijede iz vari-

jacije akcije,

δS =

∫
d4x

δS

δψi
δψi , (7.87)
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Varijacija Lagrangiana je dana s

L → L+ δL ,

δL ≡ ∂L
∂ψi

δψi +
∂L

∂ (∂µψi)
δ (∂µψi)

=

[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
δψi + ∂µ

(
∂L

∂ (∂µψi)
δψi

)
,

(7.88)

gdje smo iskoristili

δ(∂µψi) = ∂µψ
′
i − ∂µψi = ∂µ(ψ′i − ψi) = ∂µ(δψi) . (7.89)

Kad se radi o simetrijskoj transformaciji akcija se može promijeniti do na rubni član,

δsL = ∂µK
µ =⇒ δsS = S[ψi + δsψi]− S[ψi] =

∫
d4x ∂µK

µ , (7.90)

gdje je Kµ neka funkcija. Varijacija koja je simetrija označena je s indeksom s. Valja

primijetiti da kad dozvolimo da se akcija promijeni do na rubni član podrazumije-

vamo da taj član iščezava za iste rubne uvjete koji su vrijedili prije transformacije.

Ako iskoristimo prethodne izraze, dobivamo da

∫
d4x∂µK

µ =

∫
d4x

{[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
δsψi + ∂µ

(
∂L

∂ (∂µψi)
δsψi

)}

0 =

∫
d4x

{[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
δsψi + ∂µj

µ

}
,

(7.91)

gdje je jµ definiran kao

jµ ≡ ∂L
∂ (∂µψi)

δsψi −Kµ . (7.92)

Da bismo pojednostavili notaciju uvodimo pokratu

[
δL
δψi

]
EL

≡
[
∂L
∂ψi
− ∂µ

(
∂L

∂ (∂µψi)

)]
. (7.93)

Slijedi da kad je transformacija simetrija akcije,

[
δL
δψi

]
EL

δsψi = −∂µjµ . (7.94)
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Nadalje, promotrimo slučaj kad je varijacija globalna za slučaj difeomorfizama i

SU(N) grupe,

δψi = δ0ψi − Lξψi

= αiωaX
a − ξµ∂µψi .

(7.95)

Lagrangian se transformira kao

LξL = ∂µ(Lξµ) =⇒ Kµ = Lξµ , (7.96)

jer je skalarna gustoća. Konačno, dobivamo rezultat

jµ =
∂L

∂ (∂µψi)
δ0ψi −

[
∂L

∂ (∂µψi)
(ξν∂νψi)− δµνLξν

]
=

∂L
∂ (∂µψi)

αiω
aXa −

[
∂L

∂ (∂µψi)
(∂νψi)− δµνL

]
ξν

≡ Jµαω
α − T µν ξν ,

(7.97)

gdje smo definirali Jµα

Jµα ≡
∂L

∂ (∂µψi)
αiXa , (7.98)

i veličinu T µν ,

T µν ≡
∂L

∂ (∂µψi)
(∂νψi)− δµνL . (7.99)

Relacija 7.94 se svodi na oblik,[
δL
δψi

]
EL

(αiω
aXa − ξµ∂µψi) = −∂µjµ =⇒[

δL
δψi

]
EL

αi,a = −∂µJµα ,[
δL
δψi

]
EL

∂µψi = −∂µT µν .

(7.100)

Ako sva polja zadovoljavaju jednadžbe gibanja vrijedi da je

∂µj
µ = 0 . (7.101)
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Jer su varijacije nezavisne,

∂µJ
µ
α = ∂µ

[
∂L

∂ (∂µψi)
αa,i

]
= 0 , (7.102)

∂µT
µ
ν = ∂µ

[
∂L

∂ (∂µψi)
(∂νψi)− δµνL

]
= 0 . (7.103)

Ovo su lokalni zakoni očuvanja koji vrijede za svaki parametar grupe. Rezultat je

poznat kao Noetherin teorem. Veličine Jµα i T µν su Noetherine struje. Veličina T µν je

tenzor energije i impulsa. Iz ovih veličina možemo dobiti i globalne zakone očuvanja,

tzv. Noetherine naboje.

∂µJ
µ
α = ∂0J

0
a + ∂iJ

i
α . (7.104)

Naboj Qα definiramo kao

Qα(t) ≡
∫
d3xJ0

a , (7.105)

Nulta komponenta struje odgovara gustoći. Ako polja trnu dovoljno brzo u beskon-

ačnosti,

0 =

∫
d3x

[
∂0J

0
α(x, t) + ∂iJ

i
α(x, t)

]
=

∫
d3x∂0J

0
α(x, t)

= ∂0Qα(t) .

(7.106)

Na potpuno analogan način možemo pokazati da je

P µ ≡
∫
d3xT 0µ , (7.107)

gdje je P µ impuls.

Bitno je reći da postoji i drugi Noetherin teorem koji bismo dobili da nismo pret-

postavili da su transformacije globalne.{[
δL
δψi

]
EL

αi − ∂µ

(
βi

[
δL
δψi

]
EL

)}
ω = −∂µ(jµ + bµ) . (7.108)

Drugi Noetherin teorem vrijedi uvijek, i kad jednadžbe gibanja nisu zadovoljene. U
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slučaju da jesu, dobivamo tautologiju. Posljedica drugog Noetherinog teorema jest

da ako je globalna grupa simetrija podgrupa veće grupe, grupe lokalnih simetrija,

tada ne postoje zakoni očuvanja, već identiteti. Dobivene rezultate primijenit ćemo

na QCD-u i gravitaciji.

7.4.4 QCD

Lagrangian QCD-a dan je izrazom

Lg(Ga
µ) = −1

4
F a
µν(x)F µν

a (x) ,

F a
µν(x) = ∂µG

a
ν(x)− ∂νGa

µ(x) + fabcG
b
µ(x)Gc

ν(x)

= DµG
a
ν(x)−DνG

a
µ(x) + fabcG

b
µ(x)Gc

ν(x) .

(7.109)

Polje Ga
µ je gluonsko polje, a Dµ je kovarijantna derivacija

Dµψ = ∂µψ + iGµψ . (7.110)

Grupa simetrija je SU(3) i Lagrangian je invarijantan na lokalne baždarne transfor-

macije. Iako iz drugog Noetherinog teorema slijedi da ne bi trebao postojati zakon

očuvanja, to ipak nije slučaj zbog toga što je F µν
a antisimetričan. Odnosno, dobije se

rezultat da je drugi Noetherin teorem uvjet da jednadžbe gibanja budu zadovoljene.

Postupkom varijacije dobivamo

∂µF
µν
a = fbacF

νρ,bGc
ρ . (7.111)

Možemo definirati očuvanu struju

J ν
a = ∂µF

µν
a = fbacF

νρ,bGc
ρ =⇒ ∂µJ µ

a = 0 , (7.112)

i naboj koji je dan izrazom

Qa =

∫
d3x∂µF

µ0
a =

∫
d3xF µ0,bGc

µfabc . (7.113)

Pokazali smo da postoji očuvana struja i naboj za kvantnu kromodinamiku [27].
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7.4.5 Gravitacija

U slučaju gravitacije postoji više akcija koje daju iste jednadžbe gibanja

Gµν ≡ Rµν −
1

2
Rgµν . (7.114)

Tenzor Gµν je Einsteinov tenzor, Rµν je Riccijev tenzor i R je Riccijev skalar,

R = gµν(Γσµσ,ν − Γσµν,σ)− gµν(ΓσµνΓρσρ − ΓρµσΓσνρ) , (7.115)

gdje su Christoffelovi simboli Γ dani s

Γρµν =
1

2
gρσ (∂νgσµ + ∂µgσν − ∂σgµν) . (7.116)

Akcija koja se najčešće pojavljuje u literaturi je Einstein-Hilbertova (EH) akcija

SEH [gµν ] =

∫
d4x
√
−gR . (7.117)

Grupa simetrija EH akcije je grupa generalnih difeomorfizama pa ne postoji očuvana

struja. Točnije, zakoni očuvanja nisu kompatibilni s generalnim difeomorfizmima EH

akcije. Kako bismo dobili akciju koja daje iste jednadžbe gibanja, ali ima globalnu

grupu simetrija zapišemo integrand EH akcije u obliku

R
√
−g =

√
−ggµν(Γσµσ,ν − Γσµν,σ)−

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ)

= ∂ν(
√
−ggµνΓσµσ)− ∂σ(

√
−ggµνΓσµν)− ∂ν(

√
−ggµν)Γσµσ + ∂σ(

√
−ggµν)Γσµν−

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ)

= ∂ν(
√
−ggµνΓσµσ)− ∂σ(

√
−ggµνΓσµν) + gvβΓµβvΓ

σ
µσ

√
−g+(

−2gνβΓµβσ + gµνΓβσβ

)
Γσµν −

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ)

= ∂ν(
√
−ggµνΓσµσ)− ∂σ(

√
−ggµνΓσµν) +

√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ) .

(7.118)

Einsteinove jednadžbe gibanja mogu se dobiti samo iz zadnjeg člana.

S ′G =

∫
d4x
√
−ggµν(ΓσµνΓρσρ − ΓρµσΓσνρ) . (7.119)
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Akcija 7.119 invarijantna je na globalne transformacije,

δgαβ = ξµ∂µgαβ . (7.120)

Primijetimo da nova akcija sadrži samo prve derivacije metrike. No, iako izgleda

kao skalar, ne transformira se dobro na generalne difeomorfizme. Iz Noetherinog

teorema slijedi da je

τ νµ
√
−g =

(
∂L′G

∂(∂νgαβ)

)
∂µgαβ − δνµL′G , (7.121)

gdje L′G =
√
−ggλτ (ΓσλτΓρσρ − ΓρλσΓστρ). Kad se sve uvrsti dobivamo

τ νµ
√
−g =

[ (
Γναβ − δνβΓσασ

)
∂µ
(
gαβ
√
−g
)
− δνµ
√
−ggλτ (ΓσλτΓρσρ − ΓρλσΓστρ)

]
. (7.122)

Veličina τ je pseudovektor energije i impulsa. Možemo provjeriti da doista je očuvan

kad su jednadžbe gibanja zadovoljene. Očuvani naboj je impuls P ,

P µ =

∫
d3xτ 0µ . (7.123)

Iako je τ pseudovektor transformira se kao vektor na Lorentzove transformacije.

Primijetimo da je ova diskusija klasična. Da bismo primijenili Weinberg-Wittenov

teorem želimo promatrati graviton koji se propagira na ravnom prostrovremenu. To

se postiže tako da se graviton promatra kao mala perturbacija ravne metrike,

gµν = ηµν + hµν , |hµν | << 1 , (7.124)

gdje je dinamičko polje hµν graviton [92].

7.4.6 Dokaz Weinberg-Wittenovog teorema

Dokaz Weinberg-Wittenovog teorema kreće od matričnih elemenata

〈p′,±j|Jµ|p,±j〉 , (7.125)

〈p′,±j|T µν |p,±j〉 . (7.126)
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Izrazi su motivirani dalje u tekstu. Pretpostavimo da bezmasene čestice koje proma-

tramo nose naboj,

Q|p,±j〉 = q|p,±j〉 , (7.127)

P µ|p,±j〉 = pµ|p,±j〉 , (7.128)

što vodi do izraza

〈p′,±j|Q|p,±j〉 = q〈p′ ± j|p,±j〉 , (7.129)

〈p′,±j|P µ|p,±j〉 = pµ〈p′ ± j|p,±j〉 . (7.130)

Treba biti pažljiv kad izvrjednjujemo desnu stranu. Obično se uzima da je

〈p′ ± j|p,±j〉 = δ(3)(p′ − p), no u stvarnosti je impuls “razmazan". Dakle, fizikalno

je točnije uzeti

〈p′,±j|p,±j〉 = δ(3)
a (p′ − p) , (7.131)

gdje smo definirali

lim
a→0

δ(3)
a (p′ − p) = δ(3)(p′ − p) . (7.132)

Parametar a je odred̄en preciznošću eksperimenta. Stoga, slijedi da je

〈p′,±j|Q|p,±j〉 = qδ(3)
a (p′ − p) , (7.133)

〈p′,±j|P µ|p,±j〉 = pµδ(3)
a (p′ − p) . (7.134)

Ako raspišemo lijevu stranu ovih jednadžbi dobivamo

〈p′,±j|Q|p,±j〉 =

∫
Va

d3x
〈
p′,±j

∣∣J0(t,x)
∣∣ p,±j〉

=

∫
Va

d3x
〈
p′,±j

∣∣eiP ·xJ0(t, 0)e−iP ·x
∣∣ p,±j〉

=

∫
Va

d3xei(p
′−p)x

〈
p′,±j

∣∣J0(t, 0)
∣∣ p,±j〉

= (2π)3δ3
a (p′ − p)

〈
p′,±j

∣∣J0(t, 0)
∣∣ p,±j〉 .

(7.135)
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Analogno, izraz za impuls je

〈p′,±j|P µ|p,±j〉 =

∫
Va

d3x
〈
p′,±j

∣∣T 0µ(t,x)
∣∣ p,±j〉

=

∫
Va

d3x
〈
p′,±j

∣∣eiP ·xT 0µ(t, 0)e−iP ·x
∣∣ p,±j〉

=

∫
Va

d3xei(p
′−p)x

〈
p′,±j

∣∣T 0µ(t, 0)
∣∣ p,±j〉

= (2π)3δ3
a (p′ − p)

〈
p′,±j

∣∣T 0µ(t, 0)
∣∣ p,±j〉 .

(7.136)

Integral je po nekom konačnom volumenu Va. Ako sad usporedimo lijevu i desnu

stranu dobivenih izraza, dobivamo da mora vrijediti da je za proizvoljnu komponentu

lim
p′→p
〈p′,±j |Jµ(t, 0)| p,±j〉 =

qpµ

(2π)3E
, (7.137)

lim
p′→p
〈p′,±j |T µν(t, 0)| p,±j〉 =

pµpν

(2π)3E
. (7.138)

Ovi izrazi odgovaraju eksperimentalnoj definiciji naboja i impulsa. Nadalje, promot-

rimo slučajeve kad je j > 1/2 i j > 1 za impulse p i p′,

(p′ + p)2 = 2(p′p)

= 2 (|p′| |p| − p′ · p)

= 2 |p′| |p|(1− cosφ) ≤ 0 ,

(7.139)

gdje je φ kut izmed̄u prostornih komponenti impulsa. Ako je φ 6= 0 ukupni impuls

je vremenoliki i možemo odabrati referentni sustav u kojem je ukupna prostorna

komponenta impulsa jednaka nuli,

p = (|p|,p), p′ = (|p|,−p) . (7.140)

U tom sustavu promotrimo rotaciju za kut θ oko osi u smjeru p,

|p,±j〉 → U(RW (θ))|p,±j〉 = e±iθj|p,±j〉 ,

|p′,±j〉 → U(RW (θ)) |p′,±j〉 = e∓iθj|p′,±j〉 ,
(7.141)
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S druge strane, umjesto da rotiramo česticu možemo rotirati operatore. Pret-

postavimo da su oni Lorentz kovarijantni. Tada slijedi da

e±2iθj 〈p′,±j |Jµ(t, 0)| p,±j〉 = RW (θ)µν 〈p′,±j |Jν(t, 0)| p,±j〉 , (7.142)

e±2iθj 〈p′,±j |T µν(t, 0)| p,±j〉 = RW (θ)µρRW (θ)νσ 〈p′,±j |T ρσ(t, 0)| p,±j〉 , (7.143)

gdje je RW (θ) matrica rotacije sa svojstvenim vrijednostima e±iθ i 1. Zbog toga imamo

e±2iθj 〈p′,±j |Jµ(t, 0)| p,±j〉 = e±iθ 〈p′,±j |Jµ(t, 0)| p,±j〉 , (7.144)

e±2iθj 〈p′,±j |T µν(t, 0)| p,±j〉 = e±2iθ 〈p′,±j |T µν(t, 0)| p,±j〉 , (7.145)

ili,

e±2iθj 〈p′,±j |Jµ(t, 0)| p,±j〉 = 〈p′,±j |Jµ(t, 0)| p,±j〉 , (7.146)

e±2iθj 〈p′,±j |T µν(t, 0)| p,±j〉 = 〈p′,±j |T µν(t, 0)| p,±j〉 , (7.147)

Konačno, slijedi rezultat da

lim
p′→p
〈p′,±j |Jµ(t, 0)| p,±j〉 = 0 , j >

1

2
, (7.148)

lim
p′→p
〈p′,±j |T µν(t, 0)| p,±j〉 = 0 , j > 1 . (7.149)

U dokazu smo pretpostavili da su struje Lorentz kovarijantne i da je struja očuvana.

7.4.7 Lorentz kovarijantnost i baždarne transformacije

Pokazali smo da gluon i graviton imaju očuvane struje. Nadalje, gluon nosi boju,

a graviton ima impuls. Iako je graviton hipotetska čestica, znamo da gluon mora

postojati, no Weinberg-Witten teorem to zabranjuje. Odgovor je u tome što se struje

bezmasenih čestica ne transformiraju kovarijantno na Lorentzove transformacije jer

ovise o baždarnim poljima. Podsjetimo se, za česticu spina 1,

Aµ → Aµ + ∂µξ , (7.150)

191



dok za česticu spina 2,

hµν → hµν + ∂µξν + ∂νξµ . (7.151)

Weinberg-Wittenov teorem važan je jer eliminira mogućnost da je graviton kompoz-

itna čestica. Na primjer, graviton se ne može sastaviti od dva gluona jer bi doprinosili

Lorentz kovarijantnom, očuvanom tenzoru energije i impulsa (materije).

7.5 Termodinamika i opća teorija relativnosti

U ovom poglavlju izvedeni su zakoni mehanike crnih rupa sa naglaskom na njihovu

analogiju s četiri zakona termodinamike. Zatim je izvedeno Hawkingovo zračenje.

Naposljetku, razmatramo termodinamiku samog prostorvremena.

7.5.1 Klasični zakoni mehanike crnih rupa

U ovom poglavlju najprije uvodimo definicije koje su potrebne za razumijevanje za-

kona mehanike crnih rupa. Zatim dajemo pregled različitih načina na koji se oni

mogu izvesti. Istovremeno uspored̄ujemo uvedene koncepte s termodinamikom.

Matematički temelji Hiperploha je (n−1)-dimenzionalna mnogostrukost uronjena

u n dimenzionalnu mnogostrukost. Definirana je tako da zahtijevamo da je funkcija

koordinata Φ(xµ),

Φ(xµ) = 0 . (7.152)

Hiperploha je svjetlosnog tipa ako je njezina normala n vektor svjetlosnog tipa.

nµ ∝ ∂µΦ . (7.153)

U tom slučaju, normala je ujedno i tangenta. Promotrimo slučaj kada normala koju

ćemo zvati χ zadovoljava Killingovu jednadžbu,

∇µχν +∇νχµ = 0 . (7.154)
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Pripadne integralne krivulje zadovoljavaju jednadžbu geodezika koji nije afino

parametriziran. Štoviše, integralne krivulje su ortogonalne na hiperplohu, tj.

zadovoljavaju Frobeniusov teorem.

Dalje nas zanima evolucija susjednih geodezika. Opisana je tenzorom Bµν ,

Bµν = ∇νχµ . (7.155)

Transverzalni dio dobije se tako da djelujemo na tenzor transverzalnom metrikom

hµν ,

hµν = gµν + χµNν +Nµχν . (7.156)

Vektor N je pomoćni vektor svjetlosnog tipa. Tenzor možemo rastaviti na njegov

simetrični i antisimetrični dio,

B̃µν =
1

2
θhµν + σµν + ωµν , (7.157)

gdje tilda označava da se radi o transverzalnoj komponenti. Veličina θ je ekspanzija

geodezika, σ je smik, a ω je rotacija. Kao posljedica Frobeniusovog teorema, rotacija

iščezava. Od velike je važnosti tzv. Raychaudhurijeva jednadžba koja opisuje evolu-

ciju ekspanzije,

dθ

dλ
= χρ∇ρ(g

µνB̃µν)

= χρ∇ρg
µνBµν − χρ∇ρκ .

(7.158)

Može se pokazati da odavde slijedi

dθ

dλ
= κθ − 1

2
θ2 − σµνσνµ + ωνµωνµ −Rµνk

µkν . (7.159)

To je Raychaudhurijeva jednadžba. Uzevši u obzir da je χ Killingov vektor, slijedi da

ekspanzija i smik iščezavaju [101].
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7.5.2 Crne rupe

Crna rupa je dio prostorvremena gdje je gravitacija toliko jaka da ništa ne može

pobjeći u beskonačnost. U asimptotski ravnom prostoru formalna definicija crne rupe

je

B = M − J−(J +) , (7.160)

gdje je B crna rupa, M prostorvrijeme, a J−(J +) kauzalna prošlost buduće svjet-

losne beskonačnosti. Granica crne rupa je horizont dogad̄aja H. Navedeni koncepti

mogu se lijepo prikazati pomoću Penroseovog dijagrama prikazanog na slici 7.1. U

Slika 7.1: Penroseov dijagram sferično simetričnog urušavanja zvijezde (iscrtkani
dio) [102]. Sivom bojom označena je crna rupa B, a horizont je H.

stvarnosti, crne rupe nastaju urušavanjem zvijezde čija je masa dovoljno velika da

ništa ne može zaustaviti urušavanje. Na kraju se formira singularnost, točka beskon-

ačne zakrivljenosti. Kad se sve smiri, kažemo da je u okolini crne rupe postignuto

stacionarno stanje. Ono je analogno ravnotežnom stanju u termodinamici. Formalno,

to znači da postoji Killingov vektor tμ koji je vremenoliki u beskonačnosti. Štoviše,

crna rupa je statična ako Killingov vektor tμ zadovoljava Frobeniusov teorem. Za

dokaze koji slijede moramo još uvesti pojam aksijalno simetričnog prostorvremena i

Killingov hoizont.

Analogno definiciji za stacionarno prostorvrijeme, crna rupa je aksijalno

simetrična ako postoji Killingov vektor φμ koji u beskonačnosti odgovara rotacijama.

Ako je 2-dimenzionalna hiperploha razapeta vektorima tμ i φμ ortogonalna na 2-
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dimenzionalnu familiju hiperploha, kažemo da stacionarna aksisimetrična crna rupa

ima t− φ svojstvo ortogonalnosti.

Killingov horizon je koncept koji je neovisan o horizontu dogad̄aja, a defini-

ran je kao svjetlosna hiperploha čija je normala Killingov vektor. Specijalni slučaj

Killingovog horizonta je Killingov horizont s bifurkacijom, prikazan na slici 7.2. Veza

KAKB

B

Slika 7.2: Killingov horizont s bifurkacijom sastoji se od svjetlosnih hiperploha KA i
KB, koje se sjeku u bifurkacijskoj sferi B.

izmed̄u Killingovog horizonta i horizonta dogad̄aja dana je tzv. teoremima o rigid-

nosti (krutosti). Killingov horizont poklapa se s horizontom dogad̄aja za

χµ = tµ + ΩHφ
µ . (7.161)

Carterova verzija teorema o rigidnosti odnosi se na stacionarno aksijalno simetrične

crne rupe sa svojstvo t − φ ortogonalnosti, dok se Hawkingova verzija odnosi na

stacionarne crne rupe [98]. Vrijedi još spomenuti ‘no-hair’ teorem — crne rupe

nemaju kosu. Odnosno, za opis crne rupe potreban je mali broj parametara.

Iz ovog razmatranja vidimo da su stacionarne crne rupe sustavi u ravnoteži.

Granica tog sustava je horizont dogad̄aja, a opis crne rupe dan je malim brojem

parametara. Ovo je početak veze s termodinamikom.

7.5.3 Površinska gravitacija

Na Killingovom horizontu Killingov vektor zadovoljava jednadžbu geodezika koja

nije afino parametrizirana.

χµ∇µχν = κχν . (7.162)
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Veličina κ zove se površinska gravitacija. Ekvivalentna definicija površinske grav-

itacije dana je izrazom

κ2 = −1

2
∇µχν∇µχν . (7.163)

Nadalje, može se pokazati da odavde slijedi

κ = lim(V a) , (7.164)

gdje je aρ = χν∇νχρ/(−χµχµ) akceleracija, a V =
√−χµχµ takozvani faktor pomaka

prema crvenom. Iz ovog izraza jasno je zašto se κ zove površinska gravitacija.

U statičnom slučaju odgovara sili po jedinici mase koju mora primijeniti opažač u

beskonačnosti da drži česticu koja se približava horizontu na mjestu.

7.5.4 Nulti zakon

Izjava prvog zakona mehanike crnih rupa jest

Površinska gravitacija stacionarne crne rupe je konstantna.

Prvi put je dokazan u [45]. Postoji nekoliko verzija dokaza, tj. ovisno o tome pret-

postavi li se Hawkingova ili Carterova verzija teorema o rigidnosti potreban je domi-

nantni uvjet na energiju [45][112].

Kako bismo dokazali nulti zakon moramo pokazati da kovarijantna derivacija

površinske gravitacije iščezava. Potrebna je mjera opreza jer je površinska gravitacija

κ definirana samo na horizontu. Stoga, promatramo χ[µ∇ν]κ.

χ[µ∇ν]κ = 0 . (7.165)

Prvo pomnožimo χµ∇µχν = κχν sa χ[ρ∇τ ],

χνχ[ρ∇τ ]κ+ κχ[ρ∇τ ]χν = χ[ρ∇τ ](χ
µ∇µχν)

χνχ[ρ∇τ ]κ = −κχ[ρ∇τ ]χν + (χ[ρ∇τ ]χ
µ)(∇µχν) + χµ(χ[ρ∇τ ]∇µχν)

= −χµR λ
µν[ τχρ]χλ .

(7.166)
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Korišten je identitet ∇µ∇νχρ = −R τ
νρµ χτ . Sličnim postupkom pokaže se da

χµχ[ν∇λ]∇ρχτ = −2(χ[ν∇λ]∇[τχ|µ|)χρ]

−χµR σ
ρτ [λ χν]χσ = 2χ[ρR

σ
τ ]µ[λχν]χσ .

(7.167)

Zatim kontrahiramo indekse µ i λ što nam daje

−χσχµRρτ [µσχν] = 2χ[ρR
λ
τ ] [λ|σ|χν]χ

σ

0 = χ[ρR
σ
τ ] χσχν − χ[ρRτ ]λνσχ

λχσ

χσRσν[τ |λ|χρ]χ
λ = −χ[ρR

σ
τ ] χσχν

(7.168)

Sve zajedno vodi do

χ[ρ∇τ ]κ = −χ[ρRτ ]σχ
σ . (7.169)

Kako bi se pokazalo da desna strana izraza iščezava treba nam dominantni uvjet na

energiju i Einsteinova jednadžba [71] iz čega onda slijedi nulti zakon. Navest ćemo

još ostale verzije nultog zakona.

• Pokazali smo da je κ konstantna na horizontu stacionarne crne rupe ako vrijedi

Einsteinova jednadžba i materija zadovoljava dominantni uvjet na energiju.

• Površinska gravitacija je konstantna ako je prostorvrijeme statično ili sta-

cionarno i zadovoljava t− φ svojstvo ortogonalnosti [112].

• Površinska gravitacija κ stacionarne crne rupe konstantna je na bifurkacijskom

Killingovom horizontu. Vrijedi i obrnuta tvrdnja [112].

Kad je κ = 0 kaže se da je horizont degeneriran, a crna rupa ekstremna. Ovaj slučaj

nećemo razmatrati. Štoviše, iz nultog zakona slijedi da su jedini tipovi Killingovog

horizonta u općoj teoriji relativnosti ili degenerirani ili bifurkacijski.

Nulti zakon je u analogiji s tvrdnjom da je temperatura tijela u ravnoteži stalna.

Stoga, površinska gravitacija analogna je temperaturi. Bitno je napomenuti [136]

kako nulti zakon termodinamike sadrži i tranzitivnost.
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7.5.5 Prvi zakon

Prvi zakon povezuje promjenu parametara crne rupe ako ju perturbiramo.

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ , (7.170)

gdje je M masa crne rupe κ je površinska gravitacija, ΩH je angularna brzina na hori-

zontu, J je angularni moment crne rupe, ΦH je električni potencijal na horizontu, a Q

je naboj. Postoje dvije verzije dokaza. Jedna se u literaturi naziva ravnotežna, a druga

fizikalna. U prvom slučaju uspored̄ujemo dvije infinitezimalno različite stacionarne

crne rupe. Dokaz slijedi iz varijacije po parametrima. Osim toga, u ravnotežnu verz-

iju spada metoda koja je slična Noetherinom pristupu.

U fizikalnoj verziji dokaza, kao što ime sugerira, promatramo fizikalni proces, tj.

infinitezimalna količina materija prelazi horizont dogad̄aja. Ova verzija je “u duhu"

najsličnija termodinamici. Kreće se od izraza za tok,

δM = −
∫
H

∆T µν t
νdΣµ , (7.171)

δJ =

∫
H

∆T µν φ
νdΣµ . (7.172)

Izraze iskombiniramo na način,

δM − ΩHδJ =

∫
H
Tµν(t

ν + ΩHφ
ν)χµdSdλ

=

∫
dλ

∫
H(λ)

Tµνχ
µχνdA .

(7.173)

Element površine horizonta dan je s dΣµ = χµdSdλ. Kako bismo izvrijednili integral

koristimo Raychaudhurijevu jednadžbu,

dθ

dλ
= κθ − 8πTµνχ

µχν , (7.174)

gdje smo iskoristili Einsteinovu jednadžbu i zanemarili više doprinose. Slijedi da je

δM − ΩHδJ = − 1

8π

∫
dλ

∫
H(λ)

(
dθ

dλ
− κθ

)
dA

= − 1

8π

∫
dλ

∫
H(λ)

dθ

dλ
dA+

κ

8π

∫
dλ

∫
H(λ)

θdA .

(7.175)
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Prvi integral je nula jer su početno i konačno stanje stacionarni. Da izvrijednimo

drugi integral upotrijebit ćemo definiciju ekspanzije,

θ =
1

dA

dA

dλ
=⇒ θdA =

dA

dλ
, (7.176)

Konačno, dobivamo da je

δM − ΩHδJ =
κ

8π
δA =⇒ δM = ΩHδJ +

κ

8π
δA . (7.177)

Ovaj zakon analogan je prvom zakonu termodinamike,

δU = TδS − pdV . (7.178)

Jer iz nultog zakona očekujemo da je κ analogna temperaturi, slijedi da je površina

horizonta analogna entropiji. Kako bismo odredili konstantu proporcionalnosti

moramo uključiti kvantne efekte u sliku.

7.5.6 Drugi zakon

Drugi zakon, za razliku od nultog i prvog zakona, nije vezan samo uz stacionarne

crne rupe. Izjava drugog zakona jest da se površina horizonta ne može smanjiti

δA ≥ 0 , (7.179)

ako vrijedi hipoteza o kozmičkoj cenzuri (“cosmic censorship conjecture") i materija

zadovoljava dominantni uvjet na energiju. Dokaz kreće od afino parametrizirane

Raychaudhuriejeve jednadžbe koja zajedno s dominantnim uvjetom daje

dθ

dλ̃
≤ −1

2
θ2

∫ θ

θ0

dθ

θ2
≤ −

∫ λ̃

0

dλ̃

2
=⇒ 1

θ(λ̃)
≥ 1

θ0

+
λ

2
,

(7.180)

gdje je ˜lambda afini parametar. Sljedeći korak je pokazati da svaki element površine

horizonta a ima pozitivnu ekspanziju. Kao što se može vidjeti iz definicije ekspanzije
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[119],

da

dλ̃
= aθ . (7.181)

Dokaz ove tvrdnje slijed iz po kontradikciji sa svojstvima horizonta ako gornja tvrdnja

ne vrijedi [103]. Štoviše, ako se crne rupe sjedine, mora vrijediti da je

A3 > A1 + A2 . (7.182)

Drugi zakon sličan je zakonu porasta entropije. Ovaj zakon ne vrijedi više kad se

uzmu u obzir kvantni efekti jer oni ne zadovoljavaju dominantni uvjet.

7.5.7 Treći zakon

Treći zakon dokazan je u [120]. Verzija trećeg zakona koja je najprihvaćenija u

literaturi kaže sljedeće.

Nijedan fizikalni proces ne može sniziti površinsku gravitaciju crne rupe na nulu u kon-

ačnom broju koraka.

Treći zakon potpuno je analogan termodinamičkom izričaju ako se temperatura

zamijeni površinskom gravitacijom.

Ovime završavamo pregled klasičnih zakona mehanike crnih rupa. U sljedećem

poglavlju promatrat ćemo poluklasičnu sliku i izvesti Hawkingovo zračenje.

7.6 Hawkingovo zračenje

Kad se uzmu u obzir kvantni efekti crne rupe zrače kao crna tijela na temperaturi TH ,

TH =
κ

2π
. (7.183)

Hawkingovo zračenje za generičke crne rupe je reda veličine mikrokelvin pa ne

postoji eksperimentalna potvrda. Hawkingov originalni izvod [123] bazira se na

činjenici da u zakrivljenom prostorvremenu ne postoji jedinstveni vakuum. Ovdje

nećemo izlagati taj izvod. Umjesto toga, držat ćemo se “rukomahajućeg" obra-

zloženja ovog rezultata, prema kojem su za Hawkingovo zračenje odgovorne kvantne
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fluktuacije blizu horizonta crne rupe. Antičestica koja za vrijeme svojeg postojanja

prijed̄e horizont imat će negativnu energiju, dok će čestica koja je ostala izvan

horizonta moći pobjeći u beskonačnost s pozitivnom energijom što opažamo kao

Hawkingovo zračenje. Nadalje, kako bi energija bila očuvana, masa, tj. energija

crne rupe se smanji što nakon dovoljno vremena dovodi do toga da crna rupa pot-

puno “ispari". Ovdje se nećemo baviti tim problem, već ćemo samo kratko izložiti

kako iz ove slike možemo izvesti Hawkingovo zračenje.

Zamislimo da je par čestice i antičestice nastao unutar Schwarzschildove crne

rupe. Klasično ništa ne može pobjeći, no kvantna fizika dozvoljava da se čestica

tunelira u klasično zabranjeno područje. Jer se masa crne rupe smanji radijus hori-

zonta se pomakne što predstavlja kvantnu barijeru. Iz WKB aproksimacije možemo

izračunati emisiju, Γ,

Γ ∝ e−2ImS , (7.184)

gdje je veličina u eksponent definirana kao

ImS = Im

∫ rf

ri

p(r)dr . (7.185)

Valna duljina čestice na horizontu pomaknuta je prema plavom. Drugim riječima,

valna duljina čestice je mala što opravdava korištenje WKB aproksimacije. Ako pret-

postavimo da je čestica foton koji se po putanji radijalnog geodezika ( u Gullstrand-

Painlevé koordinatama)

dr

dt
= ±1−

√
2(M − ω)

r
, (7.186)

tunelira iz crne rupe, slijedi da je

Γ ∝ e−8πMω(1− ω
2M

) , (7.187)

odnosno, ako zanemarimo ω2 član,

κ =
1

4M
=⇒ T =

1

8πM
=

κ

2π
. (7.188)

Temperatura zračenja crne rupe je TH . Valja primijetiti [46] da temperatura ne dolazi
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od mikroskopskih stupnjeva slobode same crne rupe, već od kvanata materije koji

uspiju iztunelirati. U svakom slučaju, jer možemo govoriti o temperaturi crne rupe,

nulti zakon mehanike crnih rupa dobiva tranzitivnu prirodu. Nadalje, usporedbom sa

prvim zakonom možemo zaključiti da je S = 1/4A. Dakle, konstanta proporcional-

nosti izmed̄u entropije i površine horizonta je 1/4. Ovaj izraz zove se Bekenstein-

Hawking entropija. Osim toga, kao što smo već spomenuli, površina crne rupe se

smanjuje, što znači da drugi zakon ne vrijedi. Iz tog razloga, a i nekih klasičnih

razmatranja, predložen je generalizirani drugi zakon koji glasi

δ(S +
1

4
A) ≥ 0 . (7.189)

Suma doprinosa entropije izvan crne rupe S i entropije crne rupe 1/4A se nikad ne

smanjuje.

Od ostalih načina dobivanja Hawkingovog zračenja, zanimljiv je pristup koji se

temelji na vezi kvantne amplitude i kanonske funkcije izvodnice. Za kvantni sustav

na inverznoj temperaturi β, kanonska funkcija izvodnica je

ZC =
∑
n

〈n|e−βH |n〉 =
∑
n

e−βEn = Tre−βH , (7.190)

gdje je En energija stanja |n〉. S druge strane, Greenova funkcija je

G (q′, t; q, 0) =
〈
q′
∣∣e−iHt∣∣ q〉 . (7.191)

Ako umjesto realnog promatramo kompleksno vrijeme t = −iβ, dobivamo

G (q′,−iβ; q, 0) =
〈
q′
∣∣e−iH(−iβ)

∣∣ q〉
=

〈
q′

∣∣∣∣∣e−βH∑
j

∣∣∣∣∣ j
〉
〈j||q〉

=
∑
j

e−βEj 〈q′ | j〉 〈j | q〉

=
∑
j

e−βEj〈j | q〉 〈q′ | j〉 .

(7.192)
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Za slučaj kad je q = q′ slijedi

∫
dqG(q,−iβ; q, 0) =

∑
j

e−βEj

〈
j|
∫
dq|q〉〈q︸ ︷︷ ︸

=1

|j

〉
= ZC . (7.193)

Osim toga, može se pokazati da je Greenova funkcija periodička s periodom β,

Gβ (q′, t; q, 0) ≡ Tr
(
e−βHϕ(q′, t)ϕ (q, 0)

)
= Tr

(
e−βHϕ(q′, t)e−βHeβHϕ (q, 0)

)
= Tr

(
ϕ(q′, t)e−βHeβHϕ (q, 0) e−βH

)
= Tr

(
ϕ(q′, t)e−βHϕ (q, t+ iβ)

)
= Gβ (q, 0; q′, t+ iβ) .

(7.194)

Dakle, polje koje živi u prostorvremenu s kompleksnim vremenom koje je periodičko,

smatra da živi u termalnom spremniku inverzne temperature β.

Time smo zaključili razmatranje zakona termodinamike crnih rupa. Bitno je prim-

jetiti da je ključnu ulogu u svemu igrao horizont dogad̄aja. Kako horizonti nisu strik-

tno vezani uz crne rupe, postavlja se pitanje mogu li se ovi rezultati generalizirati na

proizvoljne horizonte. Prije nego se vratimo na to pitanje, promotrit ćemo prostorvri-

jeme u kojem postoji Rindlerov horizont.

7.7 Unruhov efekt

Opažač koji se giba uniformnom akceleracijom a zove se Rindlerov opažač i opaža

termalni spektar koji odgovara temperaturi TU .

TU =
a

2π
. (7.195)

Prije nego što pokažemo kako se dod̄e do Unruhove temperature (spektar zračenja

nećemo izvoditi), potrebno je objasniti kakvo prostorvrijeme opaža Rindlerov opažač.

Neka su koordinate Rindlerovog opažača (x, t), dok inercijalni opažač koristi ko-

ordinate (X,T ). Veza izmed̄u njih dana je s

X = xcosh(at) , T = xsinh(at) , x > |t| . (7.196)
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Prostornovremenski interval je

ds2 = −dT 2 + dX2 = −a2x2dt2 + dx2 . (7.197)

U Rindlerovim koordinatama imamo Killingovo vektorsko polje

∂t = a(X∂T + T∂X) . (7.198)

koje generira bifurkacijski horizont, prikazan na slici 7.3. Možemo prepoznati da se

radi o Lorentzovom potisku. Kako bismo izveli Unruhovu temperaturu koristit ćemo

Slika 7.3: Dijagram ravnog prostorvremena. Hiperbola je putnja Rindlerovog
opažača. Dio prostorvremena koji mu je dostupan označen je sivom bojom. Rindlerov
horizont je bifurkacijski horizont generiran Lorentzovim potiskom.

vezu Greenove funkcije i kanonske funkcije izvodnice. Ako analitički produljimo

vrijeme u kompleksnu ravninu na način da

ds2 = −dT 2 + dX2 , X = acosh(at) , T = xsinh(at)
T=iTE ,t=itE−−−−−−−−→

ds2 = dT 2
E + dX2 , X = acos(atE) , T = xsin(atE) ,

(7.199)

vidimo da tE ima period 2π/a. Stoga,

GE(TE, X) ≡ GE(tE, x) = GE(tE +
2π

a
, x) . (7.200)

Nakon Wickove rotacije slijedi da Rindlerov opažač mjeri temperaturu koja odgovara

Unruhovoj temperaturi [132].
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7.8 Termodinamika prostorvremena

U ovom poglavlju pokazat ćemo da se Einsteinova jednadžba može izvesti iz zakona

termodinamike i Raychaudhurijeve jednadžbe.

Najprije definiramo sustav tako da promotrimo proizvoljnu točku p iz perspektive

Rindlerovog opažača. Odaberemo jednu stranu horizonta kao što je prikazano na

slici 7.4. Sustav je onda lijevi “stožač". Jer je prostor lokalno ravan u okolini točke p

Slika 7.4: Lijeva strana prostorvremena je sustav u koji ulazi toplina δQ. Podebljana
crta je horizont [65].

imamo aproksimativno Killingovo vektorsko polje χ koje odaberemo tako da iščezava

u p. Geodezici koji generiraju horizon parametrizirani su afinim parametrom λ i k je

vektor svjetlosnog tipa tangentan na geodezike. Pomoću ove konstrukcije možemo

definirati tok topline, dan sljedećom relacijom

δQ = κ

∫
Tµν(−λ)kµkνdλdA . (7.201)

Iz analogije zakona termodinamike znamo da vrijedi

δS = αδA , (7.202)

gdje je α konstanta proporcionalnosti. S druge strane, pomoću Raychaudhurijeve
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jednadžbe možemo dobiti

θ = −λRµνk
µkν , (7.203)

Nadalje, iz definicije ekspanzije imamo

δA =

∫
H
θdλdA , (7.204)

gdje smo pretpostavili da horizont u trenutnoj ravnoteži. Ove relacije možemo

povezati pomoću Clausiusove relacije,

δQ = TδS =
κ

2π
αδA , (7.205)

Iz čega slijedi Einsteinova jednadžba.

Tµνk
µkν =

1

2π
αRµνk

µkν =⇒ 2π

α
Tµν = Rµν + fgµν . (7.206)

Funkcija f odredi se pomoću zakona očuvanja tenzora energije i impulsa i

Bianchievog identiteta.

Rµν −
1

2
Rgµν + Λgµν =

2π

α
Tµν . (7.207)

Isto rezultat dobije se za desni stožac ako točku u kojoj Killingovo polje iščezava

pomaknemo u prošlost (slika 7.5).

Slika 7.5: Lijevo je “stari", a desno novi postav. Killingovo polje iščezava u točki p0

[141].

Pokazali smo da se Einsteinova jednadžba može izvesti iz drugog zakona termod-

inamike, Raychaudhurijeve jednadžbe i Clausiusove relacije. Stoga se može reći da
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je Einsteinova jednadžba u neku ruku jednadžba stanja.

7.9 Sažetak i osvrt

7.9.1 Sažetak

U radu smo razmatrali indicije koje upućuju na to da je gravitacija izranjajući

fenomen — univerzalna priroda gravitacije, perturbativna ne-renormalizabilnost i

analogija zakona mehanike crnih rupa sa zakonima termodinamike.

S druge strane, razvijeni su mnogi modeli, temeljeni na analogiji s fizikom kon-

denzirane tvari, koji uspješno reproduciraju neka svojstva gravitacije. U radu je dan

pregled različitih modela i neka ograničenja koja modeli moraju zadovoljavati kako

bi mogli rekonstruirati opću teoriju relativnosti na makroskopskim skalama.

Jedan od takvih modela je teorija kauzalnih skupova gdje je prostorvrijeme

diskretno. Na takvoj skali preživljavaju kauzalni odnosi izmed̄u točaka kauzalnog

skupa što je dovoljno da odredimo metriku do na konformalni faktor. Nakon što

fiksiramo i volumen dobije se jedinstvena metrika.

Ograničenje na modele izranjajuće gravitacije jest Weinberg-Wittenov teorem koji

postavlja ograničenje na vrste čestica koje mogu postojati na ravnom prostorvre-

menu. Štoviše, kao posljedica teorema graviton ne može biti kompozitna čestica.

Još jedan pravac proizlazi iz analogije termodinamike i opće teorije relativnosti.

Izveli smo zakone mehanike crnih rupa i pokazali da su analogni zakonima termodi-

namike. Veza je učvršćena otkrićem Hawkingovog zračenja. Istaknuli smo neke prob-

lematične aspekte analogije. Naposljetku izveli smo Einsteinovu jednadžbu stanja iz

Clausiusove relacije, drugog zakona termodinamike i Raychaudhurijeve jednadžbe,

čime je analogija proširena izvan domene crnih rupa.

7.9.2 Osvrt

Većina emergentnih modela daleko je od toga da reproducira opću teoriju rela-

tivnosti. Iako postoje indicije da gravitacija jest emergentna pojava, nije jasno koliko

se ozbiljno postojeće analogije trebaju shvatiti.
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