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Abstract

Keywords: modal logic; metamathematics; formalised interpretability;
interpretability logics; generalised Veltman semantics

In this thesis we will study various properties of formalised relativised interpretability.
In the central part of this thesis we study for different interpretability logics the following
aspects: completeness for modal semantics, decidability and algorithmic complexity.

In particular, we will study two basic types of relational semantics for interpretability
logics. One is the Veltman semantics, which we shall refer to as the regular or ordinary
semantics; the other is called generalised Veltman semantics. In the recent years and
especially during the writing of this thesis, generalised Veltman semantics was shown to be
particularly well-suited as a relational semantics for interpretability logics. In particular,
modal completeness results are easier to obtain in some cases; and decidability can be
proven via filtration in all known cases. We prove various new and reprove some old
completeness results with respect to the generalised semantics. We use the method of
filtration to obtain the finite model property for various logics.

Apart from results concerning semantics in its own right, we also apply methods from
semantics to determine decidability (implied by the finite model property) and complexity
of provability (and consistency) problems for certain interpretability logics.

From the arithmetical standpoint, we explore three different series of interpretability
principles. For two of them, for which arithmetical and modal soundness was already
known, we give a new proof of arithmetical soundness. The third series results from
our modal considerations. We prove it arithmetically sound and also characterise frame
conditions w.r.t. ordinary Veltman semantics. We also prove results concerning the new
series and generalised Veltman semantics.
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Resum (extended abstract in Catalan)

El tema d’aquesta tesis són les lògiques d’interpretabilitat les quals descriuen el com-
portament del predicat d’interpretabilitat. Per tal de discutir la interpretabilitat entre
teories matemàtiques, permeteu que primer diguem unes paraules sobre interpretacions.
Hi ha diferents nocions d’una interpretació en ús, però una cosa que tenen en comú és que
totes involucren una traducció que preserva l’estructura; aquesta traducció transforma
formules de la teoria interpretada a formules de la teoria interpretadora. Aquest mapa
cal que preservi la demostrabilitat fins a un cert punt, i.e. si A és un teorem de la teoria
interpretada, llavors la imatge de A ha de ser demostrable en la teoria interpretadora.
Que aquest mapa preservi l’estructura significa que almenys commuta amb les connec-
tives lògiques. Les fórmules quantificades poden ser modificades lleugerament quan són
interpretades; específicament hom pot fitar el domini de (totes) les fórmules quantificades
fent servir un predicat fixat anomenat domini especificador (i.e. estem interessats en inter-
pretabilitat relativitzada). Això ens permet construir una interpretació de, per exemple,
una teoria de nombres en una teoria de conjunts, on (per la construcció habitual) només
alguns conjunts es fan servir per representar nombres. Podem requerir els axiomes de la
teoria interpretada de ser demostrables en la teoria interpretadora, però també podem re-
querir que això també es compleixi per tots els teoremes de la teoria interpretada (aquesta
diferència és rellevant només quan hom treballa en una metateoria dèbil).

Les lògiques d’interpretabilitat descriuen el comportament d’un tipus específic d’in-
terpretabilitat. Per començar, limitem el nostre interès en teories de primer ordre. En
segon lloc, només ens concentrem en interpretabilitat entre extensions finites d’una teoria
fixada T . En tercer lloc, estem interessats en interpretabilitat formalitzada, i.e, no estu-
diem el problema de si T + A interpreta T + B, sinó el problema de si T pot demostrar
que T + A interpreta T + B. En quart lloc, no estem interessats per quines A i B te-
nim que T + A interpreta T + B, sinó que estem interessats en aquelles propietats que
són estructurals en el sentit que es compleixen per qualsevol tria de A i B. Optem per
teoremes d’interpretabilitat en aquesta tesi; i.e. per tal que T + A interpreti T + B hem
requerit que la traducció de qualsevol teorema de T +B sigui demostrable en T +A. La
teoria T hauria de ser suficientment forta; i.e. seqüencial. Si tal teoria és axiomatitzable,
té un predicat IntT(·, ·), definit d’una manera natural, expressant el fet que el primer
argument del predicat interpreta el segon argument. La lògica d’interpretabilitat de T
és definida d’una manera molt semblant a la lògica de demostrabilitat de T , però amb
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Resum

un operador binari: �; la interpretació corresponent d’aquest operador és IntT. Així, la
lògica d’interpretabilitat d’una teoria T és el conjunt de totes les fórmules lògiques modals
en el llenguatge de lògiques d’interpretabilitat que són demostrables per qualsevol lectura
aritmètica que es doni a les variables proposicionals i prenent els operadors modals a les
seves aritmetitzacions corresponents. A diferència del que pot ser el cas en lògiques de
demostrabilitat, la lògica d’interpretabilitat de T realment depèn de T .

Per exemple, la lògica d’interpretabilitat de la teoria de conjunts de Gödel-Bernays
(que és la lògica denominada ILP), i la lògica d’interpretabilitat de l’Aritmètica de Peano
(que és la lògica denominada ILM), difereixen.

Donada una teoria seqüencial T , hi ha una certa quantitat de contingut, normalment
denominat IL(All), que la lògica d’interpretabilitat de T inevitablement ha de tenir.
Els continguts exactes de IL(All) no són coneguts; de fet, millorar la fita inferior és la
pregunta que motiva la major part de les investigació en aquest camp. Una simple fita és
la lògica d’interpretabilitat bàsica, denominada IL. Aquesta és una extensió de la lògica
de demostrabilitat i conté cinc esquemes d’axioma addicionals que en la literatura són
coneguts com J1-J5.

Tornant a la qüestió de IL(All), hi ha una manera interessant i sorprenent de millorar
les millors fites inferiors conegudes, i.e. de trobar nous principis d’interpretabilitat arit-
mèticament vàlids. L’enfocament és estudiar semàntiques relacionals modals (semblant a
Kripke). Nous principis aritmèticament vàlids han sorgit prenent les condicions de marc
de principis ja coneguts, modificant-les, i llavors obtenint la fórmula modal que caracterit-
za la condició de marc modificada. Això, efectivament, no garanteix la validesa aritmètica
de la fórmula modal obtinguda de tal forma, però noves fórmules aritmèticament vàlides
s’han descobert talment. Un altre enfocament relacionat és intentar establir completesa
d’una certa extensió de IL. Si la demostració de completesa modal falla per a alguna
extensió concreta, estendre l’extensió més enllà, fins que sigui modalment completa, pot
produir noves fórmules aritmèticament vàlides (aquest intent serà seguit en el capítol final
de la tesi).

Hi ha dos tipus de semàntiques modals per lògiques d’interpretabilitat. Una és cone-
guda com semàntica regular Veltman (o semàntica ordinària Veltman, o només Veltman
semantics quan no hi ha risc d’ambigüitat). L’altra és coneguda com semàntica generalit-
zada Veltman, introduïda per Verbrugge, que combina una semàntica en l’estil de Kripke
amb una semàntica de veïnat. La semàntica regular Veltman pot ser usada per demostrar
completesa per moltes lògiques d’interpretabilitat. Tanmateix, per lògiques més comple-
xes, la semàntica generalitzada Veltman es poden emprar per donar demostracions de
completesa més simples i fàcils d’entendre. En els darrers anys i especialment durant
la redacció d’aquesta tesi, la semàntica generalitzada Veltman ha sigut provada de ser
particularment ben adequada com a semàntica relacional per lògiques d’interpretabilitat.
En particular, resultats sobre completesa modal són més fàcils d’obtenir en alguns casos;
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Resum

i decidibilitat pot ser demostrada via filtració en tots els casos coneguts. Demostrem
diversos nous i redemostrem alguns resultats coneguts respecte la semàntica generalit-
zada. En alguns casos, només sabem que una lògica és completa respecte la semàntica
generalitzada Veltman. També hi ha exemples de lògiques completes respecte semàntica
generalitzada Veltman però incompletes respecte semàntica regular Veltman. Tots els
resultats de complexitat (la majoria dels quals són establerts en aquesta tesi) estan ba-
sats en semàntica regular Veltman. Pel que fa a decidibilitat, sembla que la semàntica
generalitzada Veltman és una eina més apropiada, ja que permet un mètode uniforme per
obtenir la propietat de model finit.

En aquesta tesi estudiarem diverses propietats d’interpretabilitat relativitzada forma-
litzada.

En la part central d’aquesta tesi estudiem per diferents lògiques d’interpretabilitat els
següents aspectes: completesa per semàntiques modal, decidibilitat i complexitat algorís-
mica.

A banda de resultats al voltant de les semàntiques en el seu si, també apliquem mèto-
des de semàntiques per determinar la complexitat de problemes de demostrabilitat (i de
consistència) per certes lògiques d’interpretabilitat.

Des del punt de vista aritmètic, explorem tres sèries diferents de principis d’interpre-
tabilitat. Per dos d’ells, pels quals la solidesa aritmètica i modal ja era coneguda, donem
una nova demostració de solidesa aritmètica. La tercera sèrie resulta de les nostres con-
sideracions modals. Demostrem que és sòlida aritmèticament i que també caracteritza
condicions de marc respecte semàntica regular Veltman. A més, donem una demostració
de completesa per certes lògiques relacionades amb la tercera sèrie (les lògiques ILWR i
ILWω).

Permeteu que descrivim l’estructura de la tesi.
En el Capítol 1 donem una introducció informal del tema general de la tesi. En el

Capítol 2 donem una introducció més formal, definicions bàsiques i presentem alguns
resultats senzills.

En els dos capítols subseqüents explorem completesa modal. Primer introduïm l’eina
clau: etiquetes asseguradores. Aquí presentem la teoria general d’etiquetes asseguradores,
incloent la noció d’etiquetes asseguradores Γ-completes. Desenvolupem la teoria usada
posteriorment en la tesi, però també demostrem resultats interessants per si sols (com la
caracterització de Γ-completesa).

En el Capítol 4 fem servir etiquetes asseguradores per tal d’obtenir diversos resultats de
completes respecte la semàntica generalitzada Veltman. Definim ILX-estructures per X ⊆
{M,P,M0,P0,R} i X ⊆ {W,W∗} i demostrem que la les lògiques ILX corresponents són
completes respecte la seva classe de marcs característica. En particular obtenim que ILP0

i ILR són completes, els quals són resultats nous. També definim el problema d’iteració
d’etiqueta i introduïm un tipus especial d’estructures, ILWP-estructures, que poden ser
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Resum

usades per solucionar aquest problema en el cas simple de la lògica ILP. La motivació
d’això és que el problema d’iteració d’etiqueta reapareix en lògiques més complexes com
ILWR, on la solució encara és desconeguda. Sospitem que la mateixa solució pot ser
aplicable fins i tot en lògiques més complexes, però hi ha altres problemes que encara no
s’han solucionat en aquest cas. Tornem al tema de completesa en el capítol final de la tesi
on entre altres resultats donem una demostració condicional de la completesa de ILWR.

En el Capítol 5 apliquem resultats de completesa i obtenim resultats de decidibilitat.
Aquest és una aplicació, i potser la més útil, de la semàntica generalitzada: l’habilitat de
definir filtracions amb bon comportament.

El Capítol 6 tracta la complexitat; demostrem que IL, ILW i ILP són
PSPACE-completes.

En el Capítol 7 treballem amb l’aspecte aritmètic de les lògiques d’interpretabilitat.
Concretament, donem una nova demostració de solidesa per dues sèries de principis re-
centment descobertes.

En el capítol final, Capítol 8, introduïm una altra sèrie de principis, demostrem que és
aritmèticament sòlida i la hi donem semàntica ordinària Veltman. Com ja hem mencionat
abans, també donem demostracions condicionals de completesa per lògiques relacionades
amb aquesta sèrie nova.
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Prošireni sažetak (extended abstract
in Croatian)

Tema ove disertacije su logike interpretabilnosti, koje opisuju ponašanje predikata
interpretabilnosti. Prvo ćemo nešto reći o interpretacijama između teorija. Postoji ne-
koliko verzija interpretacija u upotrebi, ali ono što je zajedničko svima jest da se radi o
preslikavanju koje čuva strukturalna svojstva. To preslikavanje preslikava formule inter-
pretirane teorije u formule interpretirajuće teorije. Za ovo se preslikavanje zahtijeva da
u nekoj mjeri očuva dokazivost, tj. ako je A aksiom interpretirane teorije, onda slika
formule A mora biti dokaziva u interpretirajućoj teoriji. Zahtjev da preslikavanje čuva
strukturalna svojstva znači da komutira s propozicionalnim veznicima. Za kvantificirane
se formule dopušta malo odstupanje prilikom interpretacije; konkretno, moguće je ogra-
ničiti domenu (svih) kvantificiranih formula koristeći unaprijed određen predikat kojeg
zovemo specifikator domene (tj. zanima nas relativizirana interpretabilnost). Ovo nam
omogućuje izgradnju, primjerice, teorije brojeva u teoriji skupova, gdje (u uobičajenoj
konstrukciji) samo neki skupovi predstavljaju brojeve. Možemo zahtijevati da su aksi-
omi interpretirane teorije dokazivi u interpretirajućoj teoriji, ali možemo to zahtijevati i
za sve teoreme uopće interpretirane teorije (razlika je bitna samo kada se radi u slaboj
metateoriji).

Logike interpretabilnosti opisuju ponašanje određene verzije interpretabilnosti. Za po-
četak, ograničavamo se na teorije prvoga reda. Drugo, zanima nas samo interpretabilnost
između konačnih proširenja neke unaprijed određene teorije T . Treće, zanima nas for-
malizirana interpretabilnost, tj. ne proučavamo problem vrijedi li da T + A interpretira
T +B, već se bavimo problemom može li T dokazati da T +A interpretira T +B. Četvrto,
ne zanima nas za koje pojedinačne formule A i B vrijedi da T +A interpretira T +B, već
nas zanimaju ona svojstva koja su strukturalna u smislu da vrijede za bilo kakav odabir
formula A i B. U ovoj se disertaciji odlučujemo za interpretabilnost teorema, tj. za to da
T +A interpretira T +B zahtijevamo da svaki prijevod teorema od T +B bude dokaziv
u T + A. Teorija T pritom mora biti dovoljno snažna, primjerice sekvencijalna. Ako
je takva teorija aksiomatizabilna, onda postoji i predikat IntT (·, ·), definiran na prirodan
način, koji izražava svojstvo da je prvi argument predikata interpretira drugi argument.
Logika interpretabilnosti teorije T definira se na sličan način kao i logika dokazivosti te-
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Prošireni sažetak

orije T , ali s dodanim binarnim modalnim operatorom � čija je intendirana interpretacija
IntT . Dakle, logika interpretabilnosti teorije T jest skup svih modalnih formula u jeziku
logike interpretabilnosti koje su dokazive za koju god aritmetičku interpretaciju propozici-
onalnih varijabli te preslikavajući modalne operatore u njihove intendirane aritmetizacije.
Logika interpretabilnosti teorije T ovisi o teoriji T .

Primjerice, logika interpretabilnosti Gödel–Bernaysove teorije skupova (što je logika
koju označavamo kao ILP), i logika interpretabilnosti Peanove Aritmetike (što je logika
koju označavamo kao ILM), razlikuju se.

Za sekvencijalnu teoriju T postoji određeni skup formula, koji se obično označava kao
IL(All), kojeg logika interpretabilnosti bilo koje teorije T mora sadržavati. Točan sadržaj
skupa IL(All) nije poznat; u stvari, popravljanje donje granice je pitanje koje motivira
većinu istraživanja u ovom području. Jedna jednostavna donja granica je osnovna logika
interpretabilnosti, koju označavamo s IL. To je proširenje logike dokazivosti koje sadrži
pet dodatnih shema aksioma koje se u literaturi označava sa J1–J5.

Vraćajući se na pitanje sadržaja skupa IL(All), postoji zanimljiv i iznenađujuć pris-
tup podizanju najbolje poznate donje granice; drugim riječima, traženja novih aritmetički
valjanih principa interpretabilnosti. Pristup o kojem je riječ jest proučavanje modalne
relacijske semantike. Novi su aritmetički valjani principi otkriveni promatrajući karakte-
ristična svojstva već poznatih principa, modificirajući ih, te određujući modalne formule
koje karakteriziraju tako dobivena relacijska svojstva. Ovakav postupak naravno ne ga-
rantira aritmetičku valjanost tako otkrivenih modalnih formula, ali neki aritmetički valjani
principi doista jesu pronađeni na ovaj način. Još jedan sličan pristup je pokušati doka-
zati modalnu potpunost određenih proširenja logike IL. Ako dokaz modalne potpunosti
ne uspije, daljnje proširivanje spomenutog proširenja, dok god se ne ustanovi modalna
potpunost, može rezultirati novim aritmetički valjanim formulama (ovaj će se pristup
primijeniti u posljednjem poglavlju ove disertacije).

Postoje dva osnovna tipa modalne semantike korištena za logike interpretabilnosti. Je-
dan je regularna Veltmanova semantika (ili obična Veltmanova semantika, ili samo Veltma-
nova semantika kad ne postoji mogućnost zabune). Druga je generalizirana Veltmanova
semantika koju je uvela Verbrugge, a koja osim osobina relacijske semantike ima i oso-
bine okolinske semantike. Regularnu Veltmanovu semantiku moguće je koristiti za dokaz
potpunosti brojnih logika interpretabilnosti. Međutim, za kompleksnije logike, generalizi-
rana semantika može se iskoristiti za dati jednostavnije i razumljivije dokaze potpunosti.
Posljednjih godina i posebno tijekom pisanja ove disertacije, generalizirana se semantika
pokazala kao posebno dobro primjenjiva relacijska semantika za logike interpretabilnosti.
Preciznije, jednostavnije je doći do rezultata o modalnoj potpunosti, a odlučivost se može
dokazati koristeći filtracije u svim poznatim slučajevima. Mi dokazujemo različite nove
rezultate, a uz to dajemo i nove dokaze starih rezultata, vezane uz potpunost u odnosu
na generaliziranu semantiku. U nekim slučajevima znamo samo da je određena logika
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potpuna u odnosu na generaliziranu semantiku. Štoviše, postoje primjeri logika koje su
potpune u odnosu na generaliziranu semantiku, a za koje znamo da su nepotpune u od-
nosu na regularnu Veltmanovu semantiku. Svi poznati rezultati o složenosti (od kojih
se većina dokazuje upravo u ovoj disertaciji) koriste regularnu Veltmanovu semantiku.
Što se tiče odlučivosti, čini se da je generalizirana semantika ponovno pogodniji alat, jer
omogućava uniformnu metodu dokazivanja svojstva konačnih modela.

U ovoj se disertaciji bavimo različitim svojstvima formalizirane relativizirane interpre-
tabilnosti.

U središnjem dijelu disertacije bavimo se različitim logikama interpretabilnosti i slje-
dećim njihovim aspektima: potpunost u odnosu na modalnu semantiku, odlučivost te
algoritamska složenost.

Osim rezultata koji se tiču same semantike, koristimo semantičke metode kako bismo
odredili algoritamsku složenost problema dokazivosti (i konzistentnosti) za različite logike
interpretabilnosti.

Što se tiče aritmetičkog aspekta, proučavamo tri niza principa interpretabilnosti. Za
dva među njima, za koja su aritmetička i modalna adekvatnost već poznati, dajemo
nove dokaze aritmetičke adekvatnosti. Treći je niz rezultat naših modalnih razmatranja.
Dokazujemo da je aritmetički adekvatan i karakteriziramo klasu okvira u odnosu na običnu
Veltmanovu semantiku. Osim toga, razmatramo potpunost nekih logika vezanih uz treći
niz (radi se o logikama ILWR i ILWω).

Sad ćemo dati pregled strukture disertacije.
U prvom poglavlju dajemo neformalan uvod u okvirno područje kojem pripada ova

disertacija.
U drugom poglavlju dajemo formalniji uvod, osnovne definicije te dokazujemo neke

jednostavnije rezultate.
U iduća dva poglavlja istražujemo modalnu potpunost. Prvo uvodimo ključni alat:

osiguravajuće oznake. Razvijamo općenitu teoriju osiguravajućih oznaka, uključujući kon-
cept Γ-punih osiguravajućih oznaka. Razvijamo i teoriju koja se koristi kasnije u diser-
taciji, ali dokazujemo i rezultate zanimljive same po sebi (poput karakterizacije Γ-punih
skupova).

U četvrtom poglavlju koristimo osiguravajuće oznake kako bismo dokazali potpunost
različitih logika interpretabilnosti u odnosu na generaliziranu Veltmanovu semantiku. De-
finiramo ILX-strukture za X ⊆ {M,P,M0,P0,R} te X ⊆ {W,W∗} i dokazujemo da je
pripadna logika ILX potpuna u odnosu na svoju karakterističnu klasu okvira. Posebno,
dokazujemo da su logike ILP0 i ILR potpune, što su novi rezultati. Također definiramo
problem iteracije oznaka i uvodimo specijalan tip struktura, ILWP-strukture, koje rje-
šavaju ovaj problem u relativno jednostavnom slučaju logike ILP. Motivacija za ovo
istraživanje jest što se problem iteracije oznaka javlja u složenijim logikama poput logike
ILWR, gdje je potpuno rješenje zasad nepoznato. Mi vjerujemo da bi isto rješenje moglo
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biti iskoristivo i za druge složenije logike, ali za to ustvrditi potrebno je riješiti i neke druge
probleme. Ponovno se bavimo potpunošću u finalnom poglavlju ove disertacije gdje se,
između ostalih rezultata, bavimo dokazom potpunosti logike ILWR pod pretpostavkom
postojanja odgovora na neke druge otvorene probleme.

U petom poglavlju koristimo dobivene rezultate o potpunosti i dokazujemo odlučivost
različitih logika. Ovo je još jedna, i možda najkorisnija, primjena generalizirane semantike:
mogućnost uniformne definicije filtracija.

Šesto poglavlje bavi se algoritamskom složenošću; dokazujemo da IL, ILW i ILP
pripadaju klasi složenosti PSPACE-potpunih problema.

Sedmo poglavlje bavi se aritmetičkim aspektima logika interpretabilnosti. Dajemo nov
dokaz aritmetičke adekvatnosti nedavno otkrivenih nizova principa interpretabilnosti.

U posljednjem poglavlju uvodimo još jedan niz principa interpretabilnosti, dokazujemo
mu aritmetičku adekvatnost, i pronalazimo mu Veltmanovu semantiku. Kao što smo već
najavili, dajemo i uvjetne dokaze potpunosti za logike koje se tiču novog niza principa
interpretabilnosti.

x
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Chapter 1

Introduction

This chapter is envisioned as a short and, to the extent that is attainable given the
matter at hand, gentle introduction to the topics of this thesis. In the second chapter,
Preliminaries, we give a technical introduction and lay the groundwork for the remainder
of the thesis.

1.1 Gödel’s theorems and Provability Logic
While the results we obtain in this thesis are not particularly shaped by Gödel’s

theorems and the phenomenon of formal incompleteness, the methods and tools involved
in obtaining these results are still central in the field of formalised interpretability. So let us
say a few words on Gödel’s theorems. In 1920s the mathematician David Hilbert initiated
what is now known as Hilbert’s Program (proposed in [31]). This was a two-fold program;
it called for the axiomatisation of all mathematics, and moreover this axiomatisation
should be such that the resulting theory of mathematics is provably consistent. Thus, the
result of the program would be a theory of mathematics (a combination of axioms and rules
of inference using which one can prove mathematical results), but also a rigorous proof
that this theory is consistent. In this context, consistency means one cannot, starting
only with axioms and inferring their consequences step-by-step using the given rules of
inference, prove a logical contradiction.

The general sentiment among logicians and involved mathematicians is that the goal of
Hilbert’s Program has been shown unattainable by Gödel’s incompleteness theorems. The
first incompleteness theorem, proved by Kurt Gödel in 1930 and published in 1931 ([24]),
is best formulated as the result on incompletability: any reasonable theory is not and, more
importantly, cannot be extended to, a reasonable and formally complete theory—a theory
that proves either A or the negation of A for every possible sentence A. By reasonable
we mean consistent, sufficiently strong (sequential) and presentable in a mechanical way
(recursively enumerable). We will be interested only in reasonable theories, as these cover
the majority of those used and studied in mathematics. From this point on we assume
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that all the theories we mention or quantify over are reasonable, even when we are not
explicit about this.

Gödel proved the second incompleteness theorem in 1930 too. This theorem states
that every reasonable theory is too weak to prove its own consistency. This does not mean
that one cannot prove the consistency of a theory in some other theory. Trivially, one can
prove consistency of a reasonable theory T in a theory T enriched with the axiom asserting
that T is consistent. It should be noted that Gerhard Gentzen showed in 1936 that in
the case of the first-order theory Peano Arithmetic (PA) one can provide a sufficiently
strong consistency-proving extension in a more natural way, by using a strong enough
version of the principle of transfinite induction ([23]). But the sole fact that one can
prove consistency of T in a theory stronger than T , even if the axioms of the stronger
theory are regarded as reasonable or natural, is not surprising in itself. What Hilbert’s
Program aimed for is a consistency proof in a theory that is at most as strong as T . And
by Gödel’s incompleteness theorems, such a proof is not possible. Methodologically, one
may of course doubt about the purpose if it were possible to prove consistency of T in
T itself. Either T is (a) inconsistent and then it will prove its own consistency or it is
(b) consistent but proving consistency will, because of the possibility of (a), not be a
particularly convincing evidence of the consistency.

An intriguing feature of Gödel’s results is the method behind the proofs. The method
Gödel used is also where the connection with this thesis becomes tighter. In order to prove
formal incompleteness of any reasonable theory T , Gödel proved that for every such theory
there exists a sentence, usually denoted by GT , such that neither it nor its negation—in
case T moreover only proves true statements—are provable in T . The amusing feature of
GT is its interpretation. It can be seen as being equivalent to the sentence “This sentence
is not provable in T”. If GT is true, it is true but unprovable, and if it is false, it is provable
but false; neither option being particularly attractive (and the first option being the lesser
evil). This is reminiscent of the liar paradox, but while the liar paradox can be considered
to be, at least in its basic form, a consequence of poor understanding of the way natural
language works and/or unreasonable expectations of the concept of truth, the ‘paradox’
that GT provides has rock-solid formal foundations. Thus, GT is a mathematical sentence
with some degree of self-referentiality.

In what sense can a mathematical sentence, mathematical sentences being sentences
such as “There is no largest prime number.”1, become self-referential? The first step in
constructing self-referential sentences is to code objects we wish to refer to with mathemat-
ical objects. In the case of Peano Arithmetic, we code symbols, formulas, and sequences

1In the standard language of first-order arithmetic,

(∀n)(∃m)(∀k)
(
(∃`)k` = n + m + 1→ k = 1 ∨ k = n + m + 1

)
.

2
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of formulas, with numbers. The properties these syntactical objects may have are coded
as predicates with free variables, with the standard interpretation in the form of various
number-theoretic properties. For example, the property of a formula that it is a theorem
of PA (i.e. that it is provable inside PA) might, had things been (wildly) simpler, cor-
respond to the property of the number coding this formula to be divisible by 1931. A
large part of Gödel’s original proof deals with establishing one such (albeit more complex)
possible connection between number theory and a theory of syntax (a theory of symbols,
formulas and finite sequences of formulas).

In particular, the property that a formula is provable is one of the key ingredients of
Gödel’s original proof of his two celebrated incompleteness theorems. A way to define this
property is to first define a formula with two free variables ProofT (p,A) formalising the
fact that (the finite sequence of formulas coded by the number) p is a proof of (the formula
coded by the number) A. In a certain technical sense, this property really is not that
much more complex than the property of being divisible by 1931. One can then define the
property of being provable, i.e. being a theorem, by letting ProvT (A) := ∃pProofT (p,A).
It is more convenient to speak of formulas and proofs, rather than their codes. In the
remainder of the introduction we will write ppq to refer to the code of a proof p, and
pAq to refer to the code of a formula A. Usually it is clear from the context whether a
symbol represents a formula, a proof, or a similar object, or if we are actually referring to
the code of this object. For example, if A is a sentence, we might write ProvT (A). The
intended reading is that we plug in the code of A, or actually its syntactical representation
(so-called numerals2), into the open formula ProvT (·). Now, one can wonder (and people
have, indeed, wondered) what sort of formulas concerning ProvT are provable in T . For
example, by propositional logic we know ProvT (pAq)∨¬ProvT (pAq) must be provable for
every sentence A.

By Gödel’s first incompleteness theorem, we know that for some A the sentence
ProvT (pAq) ∨ ProvT (p¬Aq) is not provable in T . By Gödels second incompleteness the-
orem, we know that ¬ProvT (pA ∧ ¬Aq) is not provable in T for any A, either. Let us
introduce a shorthand for ProvT (pAq): 2A. What does the set of T -provable formulas
built using only formula-placeholders A,B,C, . . . , propositional logical connectives and
2 look like? Let us call this set PL(T ). Since the sentence GT , whose existence can be
thought of as being responsible for the incompleteness theorems, provably satisfies the
property GT ↔ 2¬GT , one might expect PL(T ) to behave highly erratically. Surpris-
ingly, not only does PL(T ) have a simple axiomatisation (for almost any theory T ), but
PL(T ) is also decidable. That is, there is an algorithm that, given any formula, tells us

2We often need to refer to concrete numbers in formulas. The expressions we do this with are called
numerals. There is of course more than one way to do this; one simple expression that will be interpreted
as the number n (for any fixed n) is the expression S(S(. . . S(0))), with n occurrences of “S”. The symbol
“S” stands for the direct successor of a given number (in the standard model). See Chapter 7 for the
definition of a better variant, efficient numerals.
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whether this formula is contained in PL(T ) or not.
Given a theory T , the set PL(T ) defined in the way just described is called the

provability logic of T . Perhaps surprisingly, almost all theories T have the same provability
logic, known as the Gödel–Löb Provability Logic GL. This set of formulas has many
properties one might expect of a logic, and in fact it is a simple example of a relatively
well-behaved modal logic.

Before moving forward towards interpretability logics, which extend provability logics
in a natural way, let us first say a few words on comparing theories and interpretations.

1.2 Comparing theories
If we have two theories T and U , a natural way to compare them would be to ask

whether T ⊆ U or U ⊆ T . Unfortunately, providing answers to these questions is not
very informative with regard to the question of how different these theories really are.
Suppose U and T are essentially the same theory, but differ in the fact that T uses the
symbol + in all the places where U uses the symbol ×′ and analogously for × in T and
+′ in U . Clearly T * U and U * T , even though T and U are the ‘same’ theory.

Taking into account other such differences between theories, which we may consider
to be only superficial differences, we can obtain some notion of an interpretation of one
theory in another theory. There are different notions of an interpretation in use, but what
they all share is that they involve a structure-preserving mapping; mapping formulas of
the interpreted theory to formulas of the interpreting theory. This mapping is required
to preserve provability to some extent, i.e. if A is a theorem of the interpreted theory,
then the image of A must be provable in the interpreting theory. That the mapping is
structure-preserving means that it at least commutes with logical connectives. Quantified
formulas are allowed to be modified slightly when interpreted; specifically one can bound
the domain of (all) quantified formulas using a fixed predicate called the domain specifier
(i.e. we are interested in relativised interpretability). This enables us to build an inter-
pretation of, e.g., a number theory in a set theory, where (by the usual construction) only
some sets are used to represent numbers. Finally, relational symbols of the interpreted
theory are allowed to become any formula of the same arity in the language of the in-
terpreting theory. We can ask for axioms of the interpreted theory to be provable in the
interpreting theory, but we can also require this to hold for all theorems of the interpreted
theory (this difference matters only when one works in a weak metatheory).

Before interpretability was studied as a subject in its own right, interpretations have
been used to establish results across mathematics. Let us give a few examples. Perhaps
the best-known examples are models of non-Euclidean geometries (for example, hyperbolic
geometry [1]) in Euclidean geometry. To a logician, an even more famous example might
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be the interpretation of number theory in set theory. For example, the interpretation
of first-order Peano Arithmetic in a modification of ZF where the axiom of infinity is
replaced with its negation (in fact, interpretability goes both ways between these two
theories, see [41]). Another example, one we already discussed, is the interpretability
of the theory of syntax in any sufficiently strong theory such as Peano Arithmetic (and
indeed in much weaker theories such as S1

2 and I∆0 + Ω1).
These and other interpretations might be fascinating in their own right. But they have

been put to use to provide more palpable results too. A famous result is another result by
Gödel. In [30] Gödel constructed an interpretation of ZF extended with the continuum
hypothesis (CH), in pure ZF. This implies that if ZF is consistent, then ZF + CH is
consistent. Another example is relative undecidability. In general, if T interprets U and
U is undecidable, T need not be undecidable (unlike the analogous situation with an
inconsistent theory U). However, if U is essentially undecidable, then T is undecidable
(this result is due to Tarski, see [61]).

In the next subsection we shall specify the aspects of interpretability that we are
interested in this thesis. Before doing so, let me embark on a short personal digression
to close this subsection. I first heard of modal logic, and of the provability logic GL
in particular, in a course I attended during my undergraduate study (in Rijeka). My
undergraduate thesis was about an automated search for interesting theorems of GL.
The notion of interestingness was determined by various heuristics, such as “if A is a
theorem, then (B) → (A) is not interesting”. The result of this automated search was a
certain number of theorems of GL that the algorithm deemed sufficiently interesting. I
wanted to present this collection in some organised form, ideally a graph, and was faced
with having to decide what would determine whether there is an arrow between any two
given nodes (where nodes represent interesting theorems of GL). Some options I explored
is to let A point to B if K ` (A) → (B); if K4 ` (A) → (B) (GL ` (A) → (B) is
not a good choice since GL ` B); or if B is a substitution instance of A. In retrospect,
some version of the notion of interpretability is what I was after. At that point I did
not know of interpretability, and in particular that interpretability logics are probably
the best studied extension of provability logics. (An additional curiosity is that when I
started working on my undergraduate thesis, I was not aware that one of the very few
places where interpretability logics are studied is in the same country, in Zagreb, where I
later moved for my master’s degree.)

1.3 Interpretability logics
Interpretability logics describe the behaviour of a specific kind of interpretability. For

a start, we limit our interest to first-order theories. Second, we only concern ourselves
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with the interpretability between finite extensions of some fixed theory T . Third, we are
interested in formalised interpretability, i.e. we do not study the problem of whether T+A
interprets T + B, but rather the problem of whether T can prove that T + A interprets
T +B. Fourth, we are not interested in for which particular A and B we have that T +A

interprets T + B, rather we are interested in those properties that are structural in that
they hold for any choices of A and B. We opt for theorems interpretability in this thesis;
i.e. for T +A to interpret T +B we require that the translation of any theorem of T +B

is provable in T +A. The theory T should be sufficiently strong; i.e. sequential. If such a
theory is axiomatisable, it has a predicate IntT (·, ·), defined in a natural way, expressing
the fact that the extension of T by the first argument of the predicate interprets the
extension of T by the second argument.

The interpretability logic of T is defined in much the same way as the provability logic
of T , but with an additional binary modal operator � whose intended interpretation is
IntT . Thus, the interpretability logic of a theory T is the set of all modal logical formulas
in the modal interpretability logic language that are provable for whatever arithmetical
reading is given to the propositional variables and taking the modal operators to their
intended arithmetisations.

Unlike what might be the case with provability logics, the interpretability logic of T
really depends on T . For example, the interpretability logic of Gödel–Bernays set theory
(which is the logic denoted by ILP), and the interpretability logic of Peano Arithmetic
(which is the logic denoted by ILM), differ.

Given a sequential theory T , there is a certain amount of content, usually denoted by
IL(All), the interpretability logic of T is bound to have. The exact contents of IL(All) is
not known; in fact, improving the lower bound is the question that motivates most of the
research in the field. A simple lower bound is the basic interpretability logic, denoted by
IL. This is an extension of the provability logic GL (in sequential theories, provability of
a formula A can be shown to be equivalent to stating that the negation of A interprets
a contradiction) and contains five additional axioms schemas which in the literature are
referred to as J1–J5. Let us present and give a short of description of each of these
schemas. In the next section on preliminaries we will introduce a few conventions that
will enable us to drop most of the parentheses used in this introduction.

The principle J1 is �(A→ B)→ (A�B). This principle implies that if an extension
T + A is stronger (in the traditional sense) than another extension T + B, then T + A

interprets T + B. If this were not the case, clearly the notion of the interpretability we
picked would have been too weak. However, the fact that this schema is provable means
that not only does it express a true fact, but that the base theory T is in fact ‘aware’ that
this schema holds. There are some true facts expressible in this language, most notably
2A→ A, that are not provable, so one has to be careful even with simple properties.

The principle J2 is ((A�B)∧(B�C))→ (A�C). Essentially this principle expresses
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the transitivity of interpretability, and is proved by composing particular interpretations
witnessing the facts that A�B and B � C.

The principle J3 is ((A � C) ∧ (B � C)) → ((A ∨ B) � C). This principle reflects
the fact that given two interpretations we can construct a third interpretation such that
it translates formulas just like the first interpretation if a certain formula (A) holds, and
just like the second interpretation otherwise.

The principle J4 is (A� B)→ (3A→ 3B). This principle is a formalised version of
the fact that interpretability implies relative consistency.

The principle J5 is (3A) � A and arithmetically, this is the most complex axiom
schema of IL. Essentially this principle claims that from a model of the consistency of
A we can extract a model of A itself. The interpretation is built with the help of the
formalised Henkin construction ([67]).

Getting back to the question of IL(All), there is an interesting and surprising way of
improving the best known lower bounds, i.e. of finding new arithmetically valid principles
of interpretability. The approach is to study modal (Kripke-like) relational semantics for
the logic IL and the extensions thereof. To every extension of IL we can associate a class of
relational frames, the characteristic class. This is the class of those, and only those, frames
which validate all the theorems of the extension in question (we will define frame validity
later in the thesis). The distinguishing property satisfied exactly by the frames within
the characteristic class is called the frame condition. New arithmetically valid principles
of interpretability have been found by taking the frame conditions of already known
principles, modifying them, and then obtaining the modal formula that characterises the
modified frame condition. This does not, of course, guarantee the arithmetical validity
of the thus obtained modal formula, but new arithmetically valid formulas have been
found this way. If for some extension the validity of a formula on all the frames in the
characteristic class implies its provability in the aforementioned extension, we speak of
modal completeness. Another related approach of finding new principles of interpretability
is to try and establish modal completeness of a certain extension of IL. If proving modal
completeness fails for a given extension, extending the extension further, until it becomes
modally complete, might yield new arithmetically valid formulas (this attempt will be
followed in the final chapter of this thesis).

There are two related kinds of modal semantics used for interpretability logics. One
is known as regular Veltman semantics (or ordinary Veltman semantics, or just Velt-
man semantics when there is no risk of ambiguity), introduced by Veltman. The other
is generalised Veltman semantics, introduced by Verbrugge, which combines Kripke-like
semantics with neighbourhood semantics. Regular Veltman semantics can be used to
provide complete semantics to many interpretability logics. However, for more complex
logics, generalised Veltman semantics can be used to provide simpler and much easier
to understand proofs of completeness (this is one of the results of this thesis). In some
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Chapter 1. Introduction

cases, we only know that a logic is complete w.r.t. generalised Veltman semantics. There
are also examples of logics complete w.r.t. generalised Veltman semantics, but incomplete
w.r.t. regular Veltman semantics. All known complexity results (most of which are es-
tablished in this thesis) rely on regular Veltman semantics. As for decidability, it seems
that generalised Veltman semantics is a more appropriate tool, as it allows for a uniform
method of obtaining the finite model property.

In the next chapter, Preliminaries, we give precise definitions of the concepts we use
throughout the thesis. In Section 2.7 we give an overview of the thesis structure.

8



Chapter 2

Preliminaries

This chapter has a few different purposes. The first is to give a more formal introduc-
tion than the one provided in Chapter 1, including additional relevant historical references.
The second purpose is to define the key notions that we use throughout the thesis, such
as the principles of interpretability and Veltman semantics. Finally, this chapter contains
some observations that did not fit other chapters.

2.1 Provability logics
This thesis is concerned with interpretability logics, a class of modal logics that extend

the provability logicGL. Let us first say a few words on provability. We assume the reader
has a certain amount of arithmetical background and refer for further details to [10].

Sufficiently strong formal theories T can reason about their own provability. The
usual way to do this is through a certain Σ1-predicate that formalises provability, usually
denoted by ProvT . For example, the following is provable in T :

ProvT
(⌈
¬ProvT

(
d⊥e

)⌉)
→ ProvT

(
d⊥e

)
,

that is, (the formalised version of) Gödel’s second incompleteness theorem. Gödel noticed
that provability can be viewed as a modal operator (this was briefly mentioned in [25]): if
we let 2 stand for ProvT , Gödel’s second incompleteness theorem can be expressed more
succinctly:

2¬2⊥ → 2⊥.

In the modal language the uses of d·e are implicit. Examples of other properties of ProvT
expressible in a modal language are 2(A→ B)→ (2A→ 2B) and 2A→ 22A (where
A and B are arbitrary sentences).

The provability logic GL (Gödel, Löb) is a modal propositional logic with the single
unary modal operator 2. The axioms of the system GL are all propositional tautologies
(in the new language), and all instances of the schemas K: 2(A→ B)→ (2A→ 2B), and
L: 2(2A → A) → 2A. The inference rules of GL are modus ponens and necessitation

9



Chapter 2. Preliminaries

A/2A.
Solovay [57] proved the arithmetical completeness theorem forGL. This theorem holds

for all Σ1-sound extensions of I∆0+EXP, where EXP is the sentence formalising the totality
of exponentiation (see [17]). This theorem shows that the language of provability logicGL
is too weak to distinguish between most of the theories that are usually considered.1 For
example, whether a theory is finitely axiomatisable does not affect the theory’s provability
logic.

Other formal properties, beside provability, have been explored through modal or
semi-modal systems; in particular, interpretability logics. All interpretability logics we
consider are extensions, both in terms of their language and their theoremhood, of GL.

2.2 Interpretability logics
We consider the usual modal treatment of interpretability: interpretability logics. Let

us briefly describe what is usually meant by “interpretability” in the context of inter-
pretability logics.

Let T1 and T2 be some first-order theories of finite signatures σ1 and σ2, respectively.
For convenience, we may further assume there are no constants and function symbols. An
interpretation of T2 in T1 is a pair (f, U) where U is a formula in the language of T1:

• f maps n-ary relational symbols R ∈ σ2 to formulas with n free variables in the
language of T1;

• f(A→ B) = f(A)→ f(B), similarly for other logical connectives;

• f(∀xF ) = ∀x(U(x)→ f(F )) and similarly for (∃x)F ;

• T1 ` (∃x)U(x);

• for all sentences F in the language of T2:

T2 ` F ⇒ T1 ` f(F ).

The last requirement, that translations of the theorems of T2 are provable in T1, is some-
times modified. The variant we employ is known as theorems interpretability. See e.g.
[37] and [68] for alternative possibilities, and further details concerning interpretations in
general.

In a sufficiently strong formal theory T in the language LT , one can construct a binary
interpretability predicate IntT . This predicate expresses that an extension of T interprets
another extension of T . Both the interpreting and the interpreted theory are assumed

1However, it is possible that the provability logics of theories below I∆0 + EXP differ from GL (see
[3]).

10
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to extend T with a finite number of sentences or, equivalently, with a single sentence.
Interpretability was first explored in [61], in a non-modal setting.

Modal logics for interpretability were first studied by Hájek in 1981 [33] and Švejdar in
1983 [59]. Visser introduced the modal logic IL (interpretability logic), a modal logic with
a binary modal operator � representing interpretability, in 1990 [66]. This operator is the
only addition to the language of propositional logic; i.e. the language of interpretability
logics is given by

A ::= ⊥ | p | A→ A | A� A,

where p ranges over a countable set of propositional variables. Other Boolean connectives
are defined as abbreviations, as usual. In particular, we let > abbreviate ⊥ → ⊥. Since
2B too can be defined (over IL) as an abbreviation (expanded to ¬B � ⊥), we do not
formally include 2 in the language. Similarly, we do not include 3 in the language, where
3B stands for ¬2¬B. We stress that we still wish to use 2 and 3 in our presentation,
but they are to be understood as abbreviations. We treat � as having higher priority than
→, but lower than other logical connectives. For example, A�B → ¬(A�¬C)�2C ∧B
is to be understood as (A�B)→ (¬(A� ¬C)� ((2C) ∧B)).

Let T be a sufficiently strong formal theory in the language of arithmetic. Any mapping
A 7→ A∗, with A a modal formula and A∗ ∈ LT , such that:

• if p is a propositional variable, p∗ is a sentence;

• it commutes with logical connectives;

• ⊥∗ is 0 = 1,

• (A�B)∗ = IntT
(
dA∗e, dB∗e

)
, where dXe is the numeral of the Gödel number of X;

is called an arithmetical realisation.
The interpretability logic of a theory T , denoted by IL(T), is the set of all modal

formulas A such that T ` A∗ for all arithmetical realisations. While there are open
questions regarding interpretability logics of certain theories, it is known that they all
extend the basic system IL. In fact, we know of much better lower bounds, but IL has
simple well-behaved semantics and is traditionally taken as the starting building block.

Definition 2.1 The interpretability logic IL is axiomatised by the following axiom schemas:

• classical tautologies (in the new language);

(K) �(A→ B)→ (�A→ �B);

(L) �(�A→ A)→ �A;

(J1) �(A→ B)→ A�B;

11
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(J2) (A�B) ∧ (B � C)→ A� C;

(J3) (A� C) ∧ (B � C)→ A ∨B � C;

(J4) A�B → (3A→ 3B);

(J5) 3A� A.

Rules of inference are modus ponens and necessitation A/2A.

We say that a modal formula A is valid in a formal theory T if T ` A∗ for every
arithmetical realisation ∗. A modal theory S is arithmetically sound w.r.t. T if all its
theorems are valid in T . The modal theory S is arithmetically complete w.r.t. T if it
proves exactly those formulas that are valid in T . Sometimes we omit “arithmetically”
from “arithmetically sound (complete)”, if there is no risk of confusion with other notions
of soundness and completeness. For the proof that the system IL is sound w.r.t. any
reasonable formal theory, see [66].

The system IL is, unlike GL, arithmetically incomplete w.r.t. any reasonable theory.
For example, IL does not prove all instances of A�B → A�B∧2¬A, which are all valid
in every reasonable theory (see e.g. [66]). To achieve arithmetical completeness, we have
to study extensions of the basic system IL. Extensions are built by adding new axiom
schemas, the so-called principles of interpretability. Two principles and the corresponding
extensions of IL are of particular interest because these extensions are the interpretability
logics of many interesting theories.

Montagna’s principle M: A�B → A ∧2C �B ∧2C is valid in theories proving full
induction. We denote by ILM the system obtained by adding all instances of the principle
M to the system IL as new axioms. Berarducci [2] and Shavrukov [56] independently
proved that IL(T) = ILM, if T is Σ1-sound and proves full induction. The persistence
principle P: A�B → 2(A�B) is valid in finitely axiomatisable theories. Visser [66] proved
the arithmetical completeness of ILP w.r.t. any finitely axiomatisable Σ1-sound theory
containing I∆0 + SUPEXP, where SUPEXP asserts the totality of superexponentiation:
n 7→ 2nn where 2n0 = n and 2nm+1 = 2(2nm). Thus, the interpretability logic ILM of first-
order Peano Arithmetic differs from the interpretability logic ILP of Gödel-Bernays set
theory. It is still an open problem what is the interpretability logic of weaker theories like
I∆0 +EXP, I∆0 +Ω1 and PRA. For I∆0 +Ω1, this question depends on what the provability
logic of I∆0 + Ω1 is, which in turn may depend on very hard problems in computational
complexity—see [3]. For results regarding interpretability in PRA we refer to [12] and
[34].

In particular, one can ask what is the set of principles valid in all reasonable theories.2

This set is usually denoted by IL(All). Note that this does not mean that there has to be
2“Reasonable” usually means “an extension of S1

2 or I∆0 + Ω1”, or “as weak as possible under the
condition that IL(All) remains elegantly axiomatisable, if any”.
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a theory T that attains IL(All) as its interpretability logic, i.e. IL(T) = IL(All). Clearly
IL ⊆ IL(All) ⊆ ILP ∩ ILM. In fact, we know that both inclusions are proper. The
ongoing search for IL(All) is a main motivation behind studying extensions of IL today.
Studying modal properties of lower bounds of IL(All) turns out to be useful for finding
new principles within IL(All). For example, the principle R (we will define this and other
principles later) was discovered while trying to prove modal completeness of ILP0W [28].
See the most recent development [29] for an overview of the progress that has been made
in the search for IL(All). In this thesis (Chapter 8) we define a new series of principles
for which it is an open question whether it extends the currently best known lower bound
of IL(All).

Definitions and further details regarding interpretability and interpretability logics in
general can be found in e.g. [66].

2.3 Semantics for interpretability logics
The most commonly used semantics for the interpretability logic IL and its extensions

is Veltman semantics (or ordinary Veltman semantics).

Definition 2.2 ([18], Definition 1.2) A Veltman frame F is a structure (W,R, {Sw : w ∈
W}), where W is a non-empty set, R is a transitive and converse well-founded binary
relation on W and for all w ∈ W we have:

a) Sw ⊆ R[w]2, where R[w] = {x ∈ W : wRx};

b) Sw is reflexive on R[w];

c) Sw is transitive;

d) if wRuRv then uSwv.

The standard logic of (formalised) provability, the logic GL, is complete w.r.t. the
semantics based on the so-calledGL-frames: pairs (W,R) whereW is non-empty and R is
a transitive and converse well-founded binary relation onW . In the context of GL-frames
we have w 
 2A if and only if: wRx implies x 
 A. The aforementioned completeness
result concerning GL was first proved by Segerberg in [54]. All interpretability logics
that we study here conservatively extend the logic of provability. So, it should not be
surprising that (W,R) in the preceding definition is precisely a GL-frame. For reasons
already explained earlier, we will usually work as if the symbol 2 is not in the language.

A Veltman model is a quadruple M = (W,R, {Sw : w ∈ W},
), where the first three
components form a Veltman frame. The forcing relation 
 is extended as usual in Boolean
cases, and w 
 A�B holds if and only if for all u such that wRu and u 
 A there exists
v such that uSwv and v 
 B.

13
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In this thesis we will mainly use a different semantics, which we will refer to as gener-
alised Veltman semantics. R. Verbrugge [62] defined this specific generalisation of Veltman
semantics. The main purpose of its introduction, and until recently the only use, was to
show that certain extensions of IL are independent, by Verbrugge [62], Švejdar [60], Visser
[67], Vuković [72] and Goris and Joosten [28].

Definition 2.3 A generalised Veltman frame F is a structure (W,R, {Sw : w ∈ W}),
where W is a non-empty set, R is a transitive and converse well-founded binary relation
on W and for all w ∈ W we have:

a) Sw ⊆ R[w]× (P(R[w]) \ {∅});

b) Sw is quasi-reflexive: wRu implies uSw{u};

c) Sw is quasi-transitive: if uSwV and vSwZv for all v ∈ V , then uSw(⋃v∈V Zv);
d) if wRuRv, then uSw{v};

e) monotonicity: if uSwV and V ⊆ Z ⊆ R[w], then uSwZ.

A generalised Veltman model is a quadruple M = (W,R, {Sw : w ∈ W},
), where the
first three components form a generalised Veltman frame. Now w 
 A � B holds if and
only if for all u such that wRu and u 
 A there exists V such that uSwV and V 
 B. By
V 
 B we mean that v 
 B for all v ∈ V .

Given an ordinary or a generalised model M = (W,R, {Sw : w ∈ W},
), we write
M 
 A if w 
 A for all w ∈ W . Similarly, given an ordinary or a generalised frame
F = (W,R, {Sw : w ∈ W}), we write F 
 A if M 
 A for all models M based on F (i.e.
where M = (W,R, {Sw : w ∈ W},
) for some 
).

2.4 Variations of generalised semantics
In a recent collaboration with Jan Mas Rovira and Joost J. Joosten we established

some basic results regarding generalised Veltman semantics and the possible variations
thereof. See [38] or [44] for a longer discussion on possible choices for the condition of
quasi-transitivity. In a sense we show that our choice (Definition 2.3) is the most general
one (i.e. as little restrictive as possible). In this section we will only quote the main
results, and for the full proofs of all results we recommend [44].

Let us give a list of quasi-transitivity conditions considered so far in the literature:
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Nr. Semantic requirement for quasi-transitivity First mention
(1) uSxY ⇒ ∀{Yy}y∈Y

(
(∀ y ∈ Y ySxYy)⇒ ∃Z ⊆

⋃
y∈Y Yy & uSxZ

)
[38]

(2) uSxY ⇒ ∀{Yy}y∈Y
(
(∀ y ∈ Y ySxYy)⇒ uSx

⋃
y∈Y Yy

)
[62]

(3) uSxY ⇒ ∃ y ∈ Y ∀Y ′(ySxY ′ ⇒ ∃Y ′′⊆Y ′ & uSxY ′′) [38]
(4) uSxY ⇒ ∃ y ∈ Y ∀Y ′(ySxY ′ ⇒ uSxY ′) [36]
(5) uSxY ⇒ ∀ y ∈ Y ∀Y ′(ySxY ′ ⇒ ∃Y ′′⊆Y ′ & uSxY ′′) [38]
(6) uSxY ⇒ ∀ y ∈ Y ∀Y ′(ySxY ′ ⇒ uSxY ′) [62]
(7) uSxY ⇒ ∀ y ∈ Y ∀Y ′(ySxY ′ & y /∈ Y ′ ⇒ ∃Y ′′⊆Y ′ uSxY ′′) [38]
(8) uSxY ⇒ ∀ y ∈ Y ∀Y ′(ySxY ′ & y /∈ Y ′ ⇒ uSxY ′) [28]

Note that the monotonicity condition (Definition 2.3) does not affect the definition of
truth, so we could work without it too. More importantly, we can also always perform the
closure under monotonicity and end up with a model whose truth values are preserved.

Proposition 2.4 Let F = (W,R, S) be a generalised Veltman frame with quasi-transitivity
(i) for some i ∈ {1, . . . , 8}. Let F′ = (W,R, S ′) where S ′ is the monotonic closure of S:

S ′ = {(w, x, Y ′) : (w, x, Y ) ∈ S, Y ⊆ Y ′ ⊆ R[w]}.

Then F′ is a generalised Veltman frame satisfying quasi-transitivity Condition (2).
Furthermore, let V be an arbitrary valuation and A an arbitrary formula. Let M = (F, V )
and M′ = (F′, V ). We have that for every world w:

M, w 
 A if and only if M′, w 
 A.

The preceding proposition tells us that Notion (2) of quasi-transitivity is, in a sense,
the most general one: any formula satisfiable with another notion of quasi-transitivity
(out of the notions mentioned here) must be satisfiable in some model in our selected
notion of a model.

It is well known that any ordinary Veltman model corresponds to a generalised Veltman
model, as the following proposition shows.

Proposition 2.5 Let M = (W,R, S, V ) be an ordinary Veltman model. Let

S ′ = {(w, u, V ) : (∃v ∈ W )uSwv ∈ V ⊆ R[w]}.

Then M′ = (W,R, S ′, V ) is a generalised Veltman model for every notion of quasi-
transitivity (i) with i ∈ {1, . . . , 8}. Furthermore, for every world w and formula A:

M, w 
 A if and only if M′, w 
 A.

See e.g. [70], [44] or [38] for a proof. The other direction, transforming a generalised
model to an appropriate ordinary model, is harder, and here we state one transformation
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that works for some notions of quasi-transitivity. The first such transformation was con-
structed by Verbrugge in [62] (Theorem 2), and these two transformations can both be
used (only) for the following notions of quasi-transitivity: (3), (4), (5), (6).

For a generalised frame F = (W,R, S) we let Sw[u] = {V : uSwV }. We collect this
and similar conventions in Section 2.8.

Proposition 2.6 Let M = (W,R, S, V ) be a generalised Veltman model. Let

S ′ = {(w, u, v) : (∃V ∈ Sw[u])v ∈ V }.

Then M′ = (W,R, S ′, V ) is an ordinary Veltman model where the notion of quasi-
transitivity is (3), (4), (5) or (6). Furthermore, for every world w and formula A:

M, w 
 A if and only if M′, w 
 A.

One might wonder what is the relation between the different notions of quasi-transitivity,
apart from the fact that they can all be seen as strengthenings of (2).

Proposition 2.7 ([44]) Let F be a generalised Veltman frame. Let M stand for the
monotonicity condition. The following implications hold.3

1. M & (1)⇒ (2)

2. (2)⇒ (1)

3. M & (3)⇒ (4)

4. (4)⇒ (3)

5. (5)⇒ (1)

6. M & (5)⇒ (2)

7. (5)⇒ (3)

8. M & (5)⇒ (4)

9. M & (5)⇒ (6)

10. (5)⇒ (7)

11. M & (5)⇒ (8)

12. (6)⇒ (1)

13. M & (6)⇒ (2)

14. (6)⇒ (3)

15. (6)⇒ (4)

16. (6)⇒ (5)

17. (6)⇒ (7)

18. (6)⇒ (8)

19. M & (7)⇒ (8)

20. (8)⇒ (7)

Remark 2.8 Suppose we are working with a definition of a Veltman frame which does
not include monotonicity. As we have seen, closing this frame under monotonicity will
not change truth values in any model based on this frame. This fact on its own does
not imply we can safely assume to have monotonicity in the definition. In fact, requiring
monotonicity by definition might change truth values. The problem lies in the fact that

3Note that M & (i) ⇒ (j) means literally “if a frame satisfies monotonicity and quasi-transitivity
in the sense (i), then it satisfies quasi-transitivity in the sense (j) too”. This is very different from the
situation described in Proposition 2.4 where we started with a frame that is quasi-transitive in the sense
(i), closed it under monotonicity and obtained a frame that is quasi-transitive in the sense (j). See
Remark 2.8. Apart from the results already discussed, we did not check what other ‘implications’ arise
when performing a closure.
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the closure under monotonicity might invalidate the selected notion of quasi-transitivity.
If we now perform the closure under quasi-transitivity, this might change the truth values.

Consider the following frame where the selected notion of quasi-transitivity is (8):
wRv0, wRv1, wRv2, wRv3, v0Sw{v1}, v2Sw{v3}.

v1v0
p

v2 v3
q

w

Consider the model based on this frame where p is true exactly at v0 and q is true
exactly at v3. Clearly w 
 ¬(p � q). Once we take the monotonic closure of S we
get v0Sw{v1, v2} and by the closure under quasi-transitivity (8) we get v0Sw{v3}. Now
w 
 p� q, i.e. the truth values are not preserved.

In the remainder of the thesis we will always use Notion (2) of quasi-transitivity, and
we will always assume monotonicity.

2.5 Extensions of IL
When we need to refer to an extension of IL by a single modal formula or a set of

modal formulas X, we will write ILX.
Let (X) (resp. (X)gen) denote a formula of first-order or higher-order logic such that

for all ordinary (resp. generalised) Veltman frames F the following holds:

F 
 X if and only if F |= (X) (resp. F |= (X)gen).

The formulas (X) and (X)gen are called the characteristic properties (or frame conditions)
of the given logic ILX. The class of all ordinary (resp. generalised) Veltman frames F

such that F |= (X) (resp. F |= (X)gen) is called the characteristic class of (resp. generalised)
frames for ILX. If F |= (X)gen we also say that the frame F possesses the property (X)gen.
We say that an ordinary (resp. generalised) Veltman model M = (W,R, {Sw : w ∈ W},
)
is an ILX-model (resp. ILsetX-model), or that model M possesses the property (X) (resp.
(X)gen), if the frame (W,R, {Sw : w ∈ W}) possesses the property (X) (resp. (X)gen).
A logic ILX will be said to be complete with respect to ordinary (resp. generalised)
semantics if for all modal formulas A we have that validity of A over all ILX-frames (resp.
all ILsetX-frames) implies ILX ` A.

We say that ILX has the finite model property (FMP) w.r.t. ordinary (resp. gener-
alised) semantics if for each formula A satisfiable in some ILX-model (resp. ILsetX-model),
A is also satisfiable in some finite ILX-model (resp. ILsetX-model).
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The following table displays the current state of research regarding the principles we
discuss throughout the thesis. Here, o stands for ordinary Veltman semantics, and g for
generalised Veltman semantics. When a logic is complete w.r.t. ordinary semantics, it
is also complete w.r.t. generalised semantics (see Proposition 2.6), and similarly for the
FMP. For the results implied by this fact we do not cite any particular source in the table
below.

principle compl. (o) compl. (g) FMP (o) FMP (g)

M A�B → A ∧�C �B ∧�C + [18] + + [18] +
M0 A�B → 3A ∧�C �B ∧�C + [27] + ? + [53]

P A�B → �(A�B) + [18] + + [18] +
P0 A�3B → �(A�B) − [28] + [50] ? + [50]

R A�B → ¬(A� ¬C)�B ∧�C ? + [50] ? + [50]

W A�B → A�B ∧�¬A + [19] + + [19] +
F A�3A→ 2¬A − [62] ? + [19] +

W∗ A�B → B ∧�C �B ∧�C ∧�¬A + [27] + ? + [49]

De Jongh and Veltman proved the completeness of the logics IL, ILM and ILP w.r.t.
their characteristic classes of ordinary (and finite) Veltman frames in [18]. Goris and
Joosten [27, 28] proved the completeness of ILM0 and ILW∗ w.r.t. ordinary semantics.
Mikec and Vuković [50] proved completeness of ILR and ILP0 w.r.t. generalised Veltman
semantics. A more thorough introduction concerning each topic (completeness, decidabil-
ity, completeness) will be given in the relevant chapter of this thesis.

In addition to these principles, we also discuss three series of principles, namely (Rn),
(Rn) and (Wn). Their definitions are a bit lengthy, so we will postpone defining them
until we discuss them (in the final two chapters of the thesis).

The two series (Rn) and (Rn) have been introduced recently [29] and not much is
known regarding their semantics. See Chapter 7 for the definition. Their frame conditions
w.r.t. ordinary Veltman semantics are defined in [29]. The corresponding conditions w.r.t.
generalised Veltman semantics have been explored by Jan Mas Rovira, Joost J. Joosten,
and the author. The preliminary results were presented in [45] and proofs with more
detail are available in [44]. We quote these results (without proofs) in Chapter 7, as we
define these two series only then. Note that this work on the two series concerns just the
frame conditions; the work on completeness has not started yet. Similarly, the problem
of the finite model property is open for both series.

The third series (Wn) is introduced in the final chapter of this thesis. Some basic
results were already discussed in [46]. Their frame conditions w.r.t. ordinary Veltman
semantics coincide with the conjunction of (W)gen and (R)gen. Their generalised semantics
is discussed in Chapter 8.

Let us also mention that recently Kurahashi and Okawa obtained results concerning
certain natural sublogics of IL, specifically the logics between IL and a logic called IL−
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which is the logic of the class of structures called Veltman prestructures [42]. The authors
prove that twelve of these logics are complete w.r.t. their characteristic classes of Veltman
prestructures, and that further eight are incomplete in this sense, yet complete w.r.t.
their characteristic classes of a generalised form of Veltman prestructures. All twenty
logics they study are proven complete w.r.t. finite structures, and thus decidable.

In the next section we look at the frame conditions (X) and (X)gen of the aforementioned
logics and make some additional observations. We mainly focus on the principle W whose
semantics is more contrived than is the case with other principles.

2.6 Frame conditions
We start this section with some simple observations regarding Veltman semantics. For

a given ordinary or generalised Veltman model M = (W,R, {Sw : w ∈ W},
), a world
w ∈ W and a formula A we define:

[A]w = {x : wRx & x 
 A}.

Definition 2.9 Let R be a binary relation and V an arbitrary set. We say that w is
R-maximal in V if w ∈ V and for all x such that wRx we have x /∈ V .

Let M = (W,R, {Sw : w ∈ W},
) be an ordinary or a generalised Veltman model. Let
V ⊆ W be an arbitrary non-empty set of worlds. Clearly, there has to be an R-maximal
v in V (due to the converse well-foundedness of R). We often use this fact. In particular,
we often use the following lemma.

Lemma 2.10 Let M = (W,R, {Sw : w ∈ W},
) be an ordinary or a generalised Veltman
model. If M, w 
 ¬(A�B) then there is a world x that is R-maximal in [A]w (i.e. x 
 A
and there are no worlds z such that xRz and z 
 A) and for all y: if xSwy then y 1 B.4

Proof. Let V = {x ∈ R[w] : x 
 A & (∀y)(xSwy ⇒ y 1 B)}. Then V is non-empty
and there is a maximal x ∈ V . It remains to see x is R-maximal in [A]w. Assume for a
contradiction there is z such that xRz and z 
 A. Note that for all y we have that zSwy
implies xSwy. Thus, for all y we have that zSwy implies y 1 B (otherwise there is y with
xSwy 
 B, contrary to the definition of V ). However, this contradicts the definition of x;
i.e. x is not maximal in V . a

Recall that for a principle X, we denote by (X) and (X)gen the properties of Veltman
frames, or generalised Veltman frames, respectively, such that the following holds: X is

4The variable y in the statement of this corollary quantifies over worlds in the context of ordinary
Veltman semantics, and otherwise y quantifies over sets of worlds.
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valid on a (generalised) Veltman frame F if and only if F has the property (X), or (X)gen,
respectively.

In the following table we summarise the frame conditions of some principles. In par-
ticular, we tried to include all the principles that are well known, have unusual properties,
or are important in the search for IL(All). Note that the notion of generalised Veltman
semantics that was mainly used in [62] substantially differs from the one used nowadays
(which was also first defined in [62], but explored in more detail only later). However, the
definition of truth has the same form in both cases, the characteristic properties are the
same, and the proofs of characterisation are similar. Thus [62] is cited as the first proof
of (M)gen and (P)gen being the characteristic properties for ILM and ILP. That these are
the characteristic properties with respect to the other notion was verified in [72].

Property cf.
(M) uSwvRz ⇒ uRz [18]

(M)gen uSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ⊆ R[u]) [62]
(M0) wRuRxSwvRz ⇒ uRz [27]

(M0)gen wRuRxSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ⊆ R[u]) [71]
(P) wRw′RuSwv ⇒ uSw′v [18]

(P)gen wRw′RuSwV ⇒ (∃V ′ ⊆ V )(uSw′V ′) [62]
(W) Sw ◦R is converse well-founded for each w [19]

(W)gen uSwV ⇒ (∃U ′ ⊆ U)(uSwU ′ & R[U ′] ∩ S−1
w [U ] = ∅) [28, 49]

(F) (W) [65]
(F)gen See Subsection 2.6.2 [70]
(W∗) (M0) and (W)

(W∗)gen (M0)gen and (W)gen

(P0) wRuRxSwvRz ⇒ xSuz [27]
(P0)gen wRxRuSwV & (∀v ∈ V )R[v] ∩ Z 6= ∅ ⇒ (∃Z ′ ⊆ Z)uSxZ ′ [28]
(R) (P0) [28]

(R)gen See below the table or Section [28]
(Rn) See [29] [29]

(Rn)gen See Chapter 7 for R1 [44, 45]
(Rn) See [29] [29]

(Rn)gen See Chapter 7 [44, 45]
(Wn) See Chapter 8 [46], here

(Wn)gen See Chapter 8 for discussion [46], here

A frame condition for W w.r.t. generalised Veltman semantics was first given in [28],
and the condition given in the table is from [49].
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The condition (R)gen is the following:

wRxRuSwV ⇒ (∀C ∈ C(x, u))(∃U ⊆ V )(xSwU & R[U ] ⊆ C),

where C(x, u) = {C ⊆ R[x] : (∀Z)(uSxZ ⇒ Z ∩ C 6= ∅)} is the family of ‘choice sets’.
As a demonstration, let us look at the frame condition (M)gen.

Proposition 2.11 ([62]) The principle M is valid on a frame if and only if the frame
condition (M)gen holds:

uSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ⊆ R[u]).

Proof. Let M = (W,R, {Sw : w ∈ W},
) be a generalised Veltman model that satisfies
the given condition. Let w, u ∈ W and suppose w 
 A � B, and wRu 
 A ∧ 2C. Then
there is V with uSwV 
 B. The condition implies there is V ′ ⊆ V with uSwV

′ and
R[V ′] ⊆ R[u]. Since V ′ ⊆ V 
 B, clearly V ′ 
 B. Since R[u] 
 C, we have R[V ′] 
 C,
and thus V ′ 
 2C.

In the other direction, suppose the principle M is valid on some frame (W,R, {Sw : w ∈
W}), and uSwV . Define the forcing relation so that [p]w = {u}, [q]w = V , and [r]w = R[u].
Since w 
 p� q → p ∧ 2r � q ∧ 2r, and clearly w 
 p� q, we get w 
 p ∧ 2r � q ∧ 2r.
Since u 
 p ∧ 2r, there must be a set V ′ with uSwV ′ 
 q ∧ 2r. As [q]w = V , we have
V ′ ⊆ V . As [r]w = R[u], we must have R[V ′] ⊆ R[u]. a

2.6.1 Characteristic classes for ILW and ILW∗

The first formulation of (W)gen was published in [28]. Unfortunately this formulation
was overlooked and a different (but, luckily, quite a bit shorter) formulation was published
in [49]. We discuss the second formulation here.

Definition 2.12 ([49]) A generalised Veltman frame F = (W,R, {Sw : w ∈ W}) has the
property (W)gen if the following holds:

uSwV ⇒ (∃V ′ ⊆ V )
(
uSwV

′ & R [V ′] ∩ S−1
w [V ] = ∅

)
.

As is customary, we omit the implicit universal quantifiers: (∀w, u ∈ W )(∀V ⊆ W ). A
generalised Veltman model (F,
) has the property (W)gen if the frame F has the property
(W)gen.

Since we will often use the negation of the property (W)gen, we will denote this negation
as (W)gen. Obviously:

(W)gen ⇔

 (∃w, u ∈ W )(∃V ⊆ W )(
uSwV & (∀V ′ ⊆ V )

(
uSwV

′ ⇒ (R [V ′] ∩ S−1
w [V ] 6= ∅)

))
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Remark 2.13 ([49]) It is known (see table in the previous section) that the principle W
is valid on an ordinary Veltman frame F if and only if F has the property that for each
world w, the relation Sw ◦R is converse well-founded.

It is often the case that for a given principle of interpretability X, the corresponding
properties (X) and (X)gen can be formulated in such a way that they syntactically resemble
each other (some examples of this can be seen in the table in the previous section).

It is easy to check that the negation of the property (W) is equivalent to the following
property:

(∃w, u ∈ W )(∃V ⊆ R [w] , V 6= ∅)(∀v ∈ V )(uSwv & R [v] ∩ S−1
w [V ] 6= ∅).

Here, S−1
w [V ] = {y | ySwz for some z ∈ V }. Indeed, if this property holds, there is an

infinite R ◦ Sw chain starting with u and with worlds alternating between the sets V and
S−1
w [V ]. On the other hand, if there is an infinite R ◦Sw chain u1Swv1Ru2Swv2R . . ., take
V = {v1, . . .} and u = u1.

Lemma 2.14 ([49]) Let F = (W,R, {Sw : w ∈ W}) be a generalised Veltman frame.
Then the principle W is valid on a frame F if and only if F has the property (W)gen.

Proof. Assume that the principle W is not valid on the frame F. Then there exists a
forcing relation 
 on the frame F, a world w ∈ W , and some formulas A and B such that
w 6
 A�B → A�B ∧2¬A. Thus:

(1) w 
 A�B;

(2) w 6
 A�B ∧2¬A.

From (2) it follows that there exists a world u ∈ R [w] such that u 
 A, and

(3) (∀V ′ ⊆ R [w])(uSwV ′ ⇒ V ′ 6
 B ∧2¬A).

Let V = [B]w.
Since u 
 A, the fact labelled by (1) implies, together with the monotonicity, that

uSwV .
We now prove the following:

(∀V ′ ⊆ V )
(
uSwV

′ ⇒ R [V ′] ∩ S−1
w [V ] 6= ∅

)
.

Consider any V ′ ⊆ V such that uSwV ′. Now V 
 B and the fact labelled by (3) imply
that there exists a world v ∈ V ′ such that v 6
 2¬A, i.e. v 
 3A. Thus, there is some
z such that vRz and z 
 A. But now the fact (1) and monotonicity imply zSw[B]w, i.e.
zSwV . So, z ∈ R [V ′] ∩ S−1

w [V ], i.e. R [V ′] ∩ S−1
w [V ] 6= ∅. We have proved that the frame

F does not have the property (W)gen.
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We now prove the other implication from the statement of the lemma. Suppose that
the frame F does not have the property (W)gen, i.e. F has the property (W)gen. Then there
exist worlds w, u ∈ W and a set V ⊆ W such that uSwV and the following holds:

(4) (∀V ′ ⊆ V )
(
uSwV

′ ⇒ R [V ′] ∩ S−1
w [V ] 6= ∅

)
.

We define forcing relation 
 on F so that the following holds:

x 
 p ⇔ xSwV,

x 
 q ⇔ x ∈ V.

We claim that w 1 p� q → p� q ∧2¬p. It is easy to check that w 
 p� q. It remains to
show that w 6
 p� q ∧2¬p. Assume the contrary, i.e. that w 
 p� q ∧2¬p. Now z 
 p

and the assumption w 
 p� q ∧ 2¬p imply that there exists a set V ′ ⊆ R [w] such that
uSwV

′ and V ′ 
 q ∧ 2¬p. In particular, we have V 
 q, thus the definition of 
 implies
that V ′ ⊆ V . Now the fact labelled with (4) implies there is v ∈ V ′ and some z ∈ W such
that vRz and zSwV . But this implies z 
 p, and so v 1 �¬p. This contradicts v ∈ V
and V 
 �¬p. Hence, the assumption w 
 p � q ∧ 2¬p leads to a contradiction. Thus,
the principle W is not valid on the frame F. a

We will use (this formulation of) (W)gen in what follows. We note here that the (W)gen

condition can be formulated in a more informative way.
Given a generalised frame F = (W,R, {Sw : w ∈ W}), we say that (w, u, V ) is a

counterexample in F to (W)gen if

uSwV and (∀V ′ ⊆ V )
(
uSwV

′ ⇒ (R [V ′] ∩ S−1
w [V ] 6= ∅)

)
.

Proposition 2.15 Let F = (W,R, {Sw : w ∈ W}) be a generalised Veltman frame.
Whenever there are w, u and V such that (w, u, V ) is a counterexample in F to (W)gen,
there is U ⊆ V such that:

1. (w, u, U) is a counterexample in F to (W)gen;

2. R[U ] ∩ U = ∅;

3. given the set U = {v ∈ U : R[v] ∩ S−1
w [U ] = ∅} we have the following:

(a) U \ U 6= ∅;

(b) for all v ∈ U we have (∀U ′ ⊆ U)(∀z)
(
vRzSwU

′ ⇒ U ′ ∩ U \ U 6= ∅
)
.

Proof. Let us first show that we can find U with Properties (1) and (2).
For all v ∈ V we define a world uv. Fix v ∈ V . If there exists z ∈ R[v] ∩ V , let uv be

any such R-maximal z. Otherwise, i.e. if R[v]∩V = ∅, let uv = v. Put U = {uv : v ∈ V }.
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Quasi-transitivity implies uSwU , and U has the required property that U ∩ R[U ] = ∅.
It remains to prove Property (1), i.e. that for an arbitrary U ′ ⊆ U with uSwU ′, the set
R[U ′] ∩ S−1

w [U ] is non-empty. Since U ′ ⊆ U ⊆ V and (w, u, V ) is a counterexample to
(W)gen, we have that the set R[U ′] ∩ S−1

w [V ] is non-empty. Thus, there is some x ∈ R[U ′]
such that xSwV . Since for each v ∈ V we have vSw{uv}, by quasi-transitivity we have
xSwU . The set R[U ′] ∩ S−1

w [U ] contains the world x and hence is non-empty. Thus, we
have verified Properties (1) and (2).

We can assume that V already has Properties (1) and (2) and we will find U ⊆ V that
satisfies all three properties (1), (2), and (3).

Let

U1 = {v ∈ V : R[v] ∩ S−1
w [V ] 6= ∅};

U2 = {v ∈ U1 : (∀V ′ ⊆ V )(∀z)(vRzSwV ′ ⇒ V ′ ∩ U1 6= ∅)};

U = (V \ U1) ∪ U2;

U3 = {v ∈ U1 : (∀U ′ ⊆ U)(∀z)(vRzSwU ′ ⇒ U ′ ∩ U2 6= ∅)}.

Clearly U1 is non-empty.
Before proving that we have the required properties (1), (2), and (3), let us show that

U2 = U3, prove an auxiliary claim, and show that U2 ⊆ U \ U . Fix v ∈ U2, U ′ ⊆ U and
z such that vRzSwU ′. Since U ⊆ V and v ∈ U2, we have U ′ ∩ U1 6= ∅. Since U ′ ⊆ U and
U = (V \ U1) ∪ U2, the only part of U1 that U ′ could be intersecting must also be a part
of U2. Thus, U2 ⊆ U3. To show the other direction, fix v ∈ U3, V ′ ⊆ V and z such that
vRzSwV

′. There are two possibilities. One is that V ′ ⊆ U . In this case the definition of
U3 implies V ′ ∩ U2 6= ∅, so, since U2 ⊆ U1, we have V ′ ∩ U1 6= ∅, as required. The other
possibility is that V ′ ∩ (V \ U) 6= ∅, i.e. V ′ ∩ (U1 \ U2) 6= ∅. Again, V ′ ∩ U1 6= ∅. Since in
both cases we have V ′∩U1 6= ∅, we conclude v ∈ U2. Thus, we have proven that U2 = U3.

Next we prove the following auxiliary claim:

for all x ∈ W, xSwV implies xSwU. (2.1)

To prove this claim we first define a set Vv for every v ∈ V . If v ∈ (V \ U1) ∪ U2, let
Vv = {v}. Otherwise, i.e. if v ∈ U1 \U2, there are V ′ and z such that vRzSwV ′ ⊆ V \U1.
Let Vv = V ′. Note that for all v ∈ V we have Vv ⊆ U , so for V0 := ⋃

v∈V Vv we have V0 ⊆ U .
If x is such that xSwV then xSwV0 by quasi-transitivity, and xSwU by monotonicity. This
concludes the proof of the auxiliary claim (2.1).

Finally, let us show that U2 ⊆ U \U . Let v ∈ U2, clearly v ∈ U . Suppose v ∈ U . Since
v ∈ U2 ⊆ U1, there is z such that vRzSwV . Then vRzSwU by (2.1). So, R[v]∩S−1

w [U ] 6= ∅,
and v /∈ U .

Now we are ready to prove (1), (2) and (3) for the triple (w, u, U).

24



Chapter 2. Preliminaries

By (2.1) we have uSwU , so to see that (1) holds let U ′ ⊆ U be such that uSwU ′. Since
Property (1) holds for the triple (w, u, V ) and uSwU ′ ⊆ V , there must be v ∈ U ′ such that
for some z we have vRzSwV . Therefore, vRzSwU by (2.1). Thus, R [U ′] ∩ S−1

w [U ] 6= ∅.
This concludes the proof of Property (1) for the set U .

Since the world v from the preceding argument is contained in U \ U , we also proved
Property (3a).

Property (2) for (w, u, U) holds because it holds for (w, u, V ) and U ⊆ V .
It remains to verify Property (3b).
Suppose U 3 vRzSwU

′ ⊆ U and U ′ ∩ U \ U = ∅ for a contradiction. Since v ∈ U ,
either v ∈ V \ U1 or v ∈ U2. In the first case we would have R[v] ∩ S−1

w [V ] = ∅, which is
not the case (vRzSwU ′ ⊆ U ⊆ V and apply monotonicity). So, v ∈ U2 = U3, and by the
definition of U3, U ′ ∩ U2 6= ∅. Since U2 ⊆ U \ U as we showed earlier, U ′ ∩ U \ U 6= ∅, a
contradiction. a

This new formulation tells us that we can pick a set U and a quasi-partition {U,U \U}
of U such that points in U cannot ‘return’ (via Sw ◦ R) to U , while the points in U \ U
can ‘return’ to U , and have an additional property that every set these points ‘return’ to
intersects (not only U but also) U \ U .

Goris and Joosten emphasised in [27] that the properties (W) and (M0) determine
the characteristic class of Veltman frames for the logic ILW∗ because we have ILW∗

=ILWM0 (see [68]). In the following corollary we conclude the completely analogous fact
w.r.t. generalised semantics.

Corollary 2.16 ([49]) For any generalised Veltman frame F we have that schema W∗ is
valid on F if and only if both conditions (M0)gen and (W)gen hold.

2.6.2 On ILF
The logic ILF is an example of a logic incomplete with respect to ordinary Veltman

semantics. Even though the characteristic classes (w.r.t. ordinary semantics) of ILW and
ILF are the same (see [65]), the logics themselves are not. A straightforward way to see
this is to look at the frame conditions w.r.t. generalised Veltman semantics. In [62] a
generalised Veltman model M is defined such that M 
 F but M 1 W. Hence ILF 0 W.

The condition (F)gen (see [70]) is that Sw ◦ Rw is converse well-founded for each w,
where the relations Sw and Rw are defined as follows:

• for any A ∈ 2R[w] \ {∅} and B ⊆ 2R[w] \ {∅} we define ASwB if and only if (∀a ∈
A)(∃B ∈ B)(aSwB),

• for any C ⊆ 2R[w] \ {∅} and D ∈ 2R[w] \ {∅} we define CRD if and only if (∀C ∈
C)(∀c ∈ C)(∃d ∈ D)(cRd).
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Proposition 2.17 ([49]) If a generalised Veltman frame F = (W,R, {Sw : w ∈ W})
possesses the property (W)gen then the frame F also possesses the property (F)gen.

Proof. Suppose for a contradiction that a generalised Veltman frame F that possesses the
property (W)gen does not have the property (F)gen.

Then there exists a world w ∈ W and sequences of sets (An) and (Bn) such that

A0SwB0RwA1SwB1 . . .

Let V = ⋃
n(⋃Bn). Let u ∈ ⋃nAn be an arbitrary world. Then there exists n ∈ ω such

that u ∈ An. The fact AnSwBn implies that there exists U ∈ Bn such that uSwU . Since
U ⊆ V ⊆ R [w], by monotonicity we have uSwV . We claim the following:

(∀V ′ ⊆ V )
(
uSwV

′ ⇒ R [V ′] ∩ S−1
w [V ] 6= ∅

)
.

Let V ′ ⊆ V be a set such that uSwV ′ and fix an arbitrary v ∈ V ′. There is a number
m ∈ ω such that v ∈ ⋃Bm. Since BmRwAm+1, there is a world z ∈ Am+1 such that vRz.
Obviously we have zSwZ for some Z ∈ Bm+1. By monotonicity, zSwV .

So, we have proved that the frame F possesses the property (W)gen. a

We now give an alternative proof that ILF 6` W, by using only the conditions (F)gen

and (W)gen.

Corollary 2.18 ([49]) The conditions (W)gen and (F)gen are not equivalent. So, the
principle W is not provable in ILF.

Proof. Let F be the smallest generalised Veltman frame (with respect to the definition of
a generalised Veltman frame) such that we have W = {w, x1, x2, z}, wRx1, wRx2, wRz,
and x1Rz, and zSw{x1, x2}.

Let us suppose that the frame F does not satisfy the condition (F)gen. Then there
exists a world u ∈ W and sequences of sets (An) and (Bn) such that

A0SuB0RuA1SuB1 . . .

If u = x2 or u = z then we have R [u] = ∅. So, in this case the relation Su is empty, which
contradicts the fact that A0SuB0.

Let us now consider the case u = x1. Since R [u] = {z}, we have Su = {(z, {z})}.
Since A0SuB0, it is necessary that A0 = {z} and z ∈ ⋃B0. But B0RuA1 then implies that
there exists a world v ∈ A1 such that zRv. This is impossible, because R [z] = ∅.

It remains to check the case u = w. Denote Bn = ⋃Bn for each n ∈ ω. First note
that the set Bn cannot contain the world w for any n ∈ ω. Suppose the contrary. Then
AnSwBn and the definition of Sw implies Bn ⊆ 2R[w] \ {∅}. This implies Bn ⊆ R [w]. But
then we have w ∈ R [w], contrary to the converse well-foundedness of R.
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The setBn also cannot contain the worlds x2 and z. This is because we have BnRuAn+1,
but R [x2] = ∅ and R [z] = ∅.

Let us now prove that the set Bn must be non-empty. We have AnSwBn. The definition
of Sw requires the set An to be non-empty. Thus, there exists a world v ∈ An and a set
V ∈ Bn such that vSwV . But the definition of Sw requires V to be non-empty. Since
V ⊆ Bn, the set Bn is also non-empty.

So, the set Bn does not contain the worlds w, x2 or z, but is non-empty. Therefore,
Bn = {x1}, and thus Bn = {{x1}}. Since BnRwAn+1, and R [x1] = {z}, we have z ∈ An+1.
Hence, for all n ∈ ω we have Bn = {x1} and z ∈ An+1. Choose any n ∈ ω. Now z ∈ An+1,
An+1SwBn+1 and the fact that Bn+1 = Bn = {x1} imply zSw{x1}. This is impossible
because we only have zSw{z}, zSw{z, x1}, zSw{z, x2}, zSw{z, x1, x2} and zSw{x1, x2}.
So, we have proved that the frame F satisfies the condition (F)gen.

Now let us show that the frame F satisfies (W)gen, i.e. does not satisfy the property
(W)gen. Let V = {x1, x2}. Obviously we have V ⊆ R [w] and zSwV . It remains to verify
that the following holds:

(∀V ′ ⊆ v)
(
zSwV ⇒ R [V ′] ∩ S−1

w [V ] 6= ∅
)
.

It is easy to see that the only subset V ′ of V such that zSwV ′ holds is the set V itself (as
we only have zSw{z}, zSw{z, x1}, zSw{z, x2}, zSw{z, x1, x2} and zSw{x1, x2}). Therefore,
we only need to prove that (∃v ∈ {x1, x2})(R [v] ∩ S−1

w [V ] 6= ∅). We indeed have x1Rz

and zSwX. So, the frame F does not satisfy the property (W)gen. a

2.7 Thesis structure
The first topic of this thesis is completeness with respect to generalised Veltman se-

mantics. We explore this topic in the next two chapters. First we introduce the key tool:
assuring labels, and then we employ this tool to obtain various completeness results. We
touch again on completeness in the final chapter of the thesis.

Next, in Chapter 5, we apply completeness results and obtain decidability results.
This is another, and perhaps the most useful, application of generalised semantics: the
ability to define well-behaved filtrations.

Chapter 6 is on complexity; we prove that IL, ILW and ILP are all PSPACE-complete.
We also provide commentary regarding the complexity of other decidable logics.

In Chapter 7 we work with the arithmetical aspect of interpretability logics. Namely,
we give a new soundness proof for the two recently introduced series of principles Rn and
Rn using an extended version of the system AtL presented in [40].

In the final chapter we introduce another series of principles, prove it arithmetically
sound and provide ordinary Veltman semantics for it. We also provide conditions under
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which the resulting logic is modally complete w.r.t. generalised Veltman semantics; the
validity of the conditions themselves remains an open problem.
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2.8 Notation
In this final section we present some notational choices we fix for the remainder of this

thesis.

Notation Meaning Context
R[x] {y : xRy} R ⊆ A× B is a binary relation and x ∈ A
R[X] {y : ∃x ∈ X, xRy} R ⊆ A× B is a binary relation and X ⊆ A
R−1[x] (R−1)[x] R ⊆ A× B is a binary relation and x ∈ B or x ⊆ B
L ` A L proves A L is a logic (possibly implicit) and A is a formula in the

language of L
X 
 A X satisfies A X is a world, a model, or a frame. Depending on the

type of X , satisfaction is satisfaction in a world, global
satisfiability in a model, or validity on a frame

[A]w {x ∈ R[w] : x 
 A} w is a world and A is a modal formula

For example, S−1
w [V ] = {u : uSwV } if we are working with generalised semantics

(where Sw ⊆ W × 2W ).
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Labelling

In this chapter we introduce assuringness, a concept we will use heavily in the re-
mainder of the thesis. In particular, it will be the key ingredient of our completeness
proofs.

The first version of this text, containing some of the content of this chapter (definition
and basic properties of assuring labels and labelling lemmas for W, P, M, M0 and R), has
been published in [37] and [11]. The edited version, where we explore the so-called Γ-full
assuring labels and iterated labelling systems exists as a preprint [26]. The content of this
chapter is largely taken from this preprint.

Introduction
A large part of this thesis is concerned with connections between syntax and semantics.

In order to prove semantic completeness of modal logics with respect to various forms of
relational semantics, the usual approach is to let the set of worlds equal the set of maximal
consistent sets w.r.t. the logic in question. With interpretability logics we sometimes use
more elaborate definitions, for example worlds are sometimes identified with sequences of
sets of formulas. Nevertheless, the key idea is the same: models are built out of maximal
consistent sets.

The next issue, once we defined the set of worlds, is what will relations look like. In
the case of Veltman semantics, the relations that we care about are the binary relation R
and the ternary relation S. Bearing in mind that the set of worlds somehow corresponds
to a set of maximal consistent sets, clearly R and S have to be reflected in some syntactic
relations between maximal consistent sets.

For example, most modal logics with the unary modality 2 admit the usual Kripke-
style semantics with: xRy if and only if2A ∈ x implies A ∈ y. Sometimes this definition is
tweaked, depending on, for example, are the maximal consistent sets truncated (maximal
with respect to some finite set) or we want to eliminate infinite chains. However, again,
the key idea is the same: we want the relations of our model to be as large as possible,
while staying compatible with the definition of truth. Usually it is the case that the less
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restricted the relations, the easier it is find a model for a consistent formula.
Thus, the relations Sw for w ∈ W remain to be defined. This problem is central to

Veltman semantics, and all known completeness proofs have the same general solutions:
labels.

For example, if we are working in IL and wish to prove completeness w.r.t. ordinary
Veltman semantics, we might want to let xSwy hold if and only if x and y have the same
label with respect to w (the approach used in [18]). We distinguish two main kinds of
labels: critical labels and assuring labels. As mathematical objects, critical labels are
single modal formulas and assuring labels are sets of formulas. Both types of labels have
the associated relations of precedence between maximal consistent sets. Namely, given
two maximal consistent sets w and x we can define w ≺L x where L is a label. We
usually don’t think of labels as existing in isolation, but rather in the context of some
such maximal consistent sets w and x.

3.1 Preliminaries
Uppercase Greek, like Γ and ∆, will denote maximal consistent sets (MCS’s). It will

be clear from the context with respect to what logic the consistency will refer. Upper-
case Roman denotes modal interpretability formulas A,B,C, . . . or sets of such formulas
S, T, U, . . .. An exception to this rule is that we might write formulas from a set S as Si,
Sj etc. In particular if S is a set of formulas, then ∨Si denotes a finite disjunction over
some formulas in S. If we talk of logics we mean extensions of IL. As usual, we use �A as
an abbreviation for A∧2A. If S is a set of formulas then we write 2S for {2A | A ∈ S}.

Definition 3.1 For MCS’s Γ and ∆ we define Γ ≺ ∆ if

∀A
(
2A ∈ Γ⇒ A,2A ∈ ∆

)
.

When building models for consistent formulas we are to ensure a truth lemma:

∀∆∀B
(
B ∈ ∆ ⇔ ∆ 
 B

)
. (3.1)

We will now investigate what (3.1) imposes on relations Sw for w ∈ W . In particular,
let us consider the condition for a formula ¬(A�B) to be true in some world x in some
particular model. Recall that x 
 ¬(A � B) if and only if there is some world y so that
xRy, so that y 
 A but for no z for which ySxz will we have z 
 B. In particular, since
ySxy we see that y 
 ¬B. Moreover, since yRu implies ySxu we also see that y 
 2¬A.

Thus, certain transitions ΓR∆ should come with a promise that for any ∆′ with ∆SΓ∆′

we will have ¬B,2¬B ∈ ∆′. Of course, we should also have ¬C,2¬C ∈ ∆′ for any C so
that C �B ∈ Γ. Let us introduce the notion of criticality from [18].
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Definition 3.2 For MCS’s Γ and ∆, and for C a formula, we say that ∆ is a C-critical
successor of Γ whenever

∀B
(
B � C ∈ Γ ⇒ ¬B,2¬B ∈ ∆

)
.

We will write Γ ≺C ∆ in this case.1

It is easy to see that C-criticality naturally extends the ≺ relation as reflected by the
following easy lemma.

Lemma 3.3 For MCS’s Γ and ∆ we have Γ ≺ ∆ if and only if Γ ≺⊥ ∆.

Proof. Immediate since 2A ∈ Γ holds if and only if ¬A�⊥ ∈ Γ. a

We can see C-criticality as a promise that the formula C will be avoided in a strong
sense. All completeness proofs before [11] made essential use of critical successors. When-
ever in a structure of MCS’s a Γ ≺C ∆ was there, the definition of the SΓ relation should
reflect the promise that C should be avoided. This strategy, although successful, resulted
in a need for complicated book-keeping to keep all promises.

An improvement can be made if we can deal with various promises at the same time.
Suppose we wished to define Γ ≺B,C ∆ in such a way that it promises that both B and
C are avoided in ∆ in a strong sense. Requiring that simultaneously both Γ ≺B ∆ and
Γ ≺C ∆ is not sufficient since the promises may interact. In particular

if A�B ∨ C ∈ Γ we should also require that ¬A,2¬A ∈ ∆.

It is this simple idea that adds a lot of power to the notion of criticality. However, there
is one more subtlety to it. It turns out to be fruitful to apply a change of perspective.
Instead of speaking of a promise to avoid certain formulas it turns out to be a very fruitful
perspective to rather speak of assuring certain formulas. If we do so, the set of promises
has certain nice properties. In particular, it can be closed under derivability as proven in
Lemma 3.12. These considerations give rise to the following definition.

Definition 3.4 (Assuring successor) Let S be a set of formulas. We define Γ≺S∆, and
say that ∆ is an S-assuring successor of Γ, if for any finite S ′ ⊆ S we have that A �∨
Sj∈S′ ¬Sj ∈ Γ implies ¬A,2¬A ∈ ∆ and for some 2C ∈ ∆ we have 2C 6∈ Γ. We will

call S a label for Γ and ∆ or simply a label.2

1The usual notation for criticality is Γ ≺C ∆. We write Γ ≺C ∆ for criticality in this chapter in order
to more clearly distinguish it from assuringness, which we denote with Γ ≺S ∆.

2While this definition is more in line with the old notion of criticality, occasionally we will not require
that for some 2C ∈ ∆ we have 2C 6∈ Γ. For example, we work without this condition throughout the
whole chapter concerning modal completeness. The property will still hold one way or the other, it’s just
that sometimes it is convenient not to have this condition be required by the definition.
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In the following lemma we shall see that the notion of assuring successor on sets of
formulas naturally extends the regular successor relation as well as the critical successor
relation.

Lemma 3.5 1. Γ≺∅∆ if and only if Γ ≺ ∆;

2. ∆ is a B-critical successor of Γ if and only if Γ≺{¬B}∆, if and only if Γ ≺B ∆.

Proof. For the first item, we observe that the empty disjunction is per definition equivalent
to ⊥. We have A�⊥ ∈ Γ if and only if 2¬A ∈ Γ. Consequently,

∀A
(
A�⊥ ∈ Γ ⇒ ¬A,2¬A ∈ ∆

)
if and only if ∀A

(
2¬A ∈ Γ ⇒ ¬A,2¬A ∈ ∆

)
.

Since we work in classical logic, the right-hand side is easily seen to be equivalent to
∀A
(
2A ∈ Γ ⇒ A,2A ∈ ∆

)
.

The ⇐ direction of the second item is easy and the other direction follows from the
first item of this lemma: if we take a finite subset of {¬B} this is either the empty
set, or {¬B} itself. Now, the fact that A � ¬¬B ∈ Γ implies ¬A,2¬A ∈ ∆ follows
from the assumption that ∆ is a B-critical successor of Γ and that the fact A � ⊥ ∈ Γ
implies ¬A,2¬A ∈ ∆ follows from the first item since critical successors are in particular
successors. a

3.2 Assuring and full labels
In this section we will expose a general theory of assuring successors. In the next

section we will show how assuring successors can be used to solve, in a uniform way,
certain problematic aspects of modal completeness proofs.

As the name suggests, assuring labels assure certain formulas to be present. The
relation ≺S assures elements in Γ and ∆, and in a sense it is not allowed to “speak” of
consistency formulas, i.e. 3-formulas cannot be contained in a label. This is made explicit
in the following lemma.

Lemma 3.6 We have the following:

1. if Γ≺S∆ then S,2S ⊆ ∆;

2. if Γ≺S∆ then 3S ⊆ Γ;

3. if Γ≺S∆ then the label S does not contain any formula of the form 3A.

Proof. The first item is clear since for any A ∈ S we have that ¬A�¬A is a theorem and
whence in Γ. By the definition of Γ≺S∆ we get that A,2A ∈ ∆.
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The second item follows from the first: since Γ is maximal, for any A ∈ S, either
3A ∈ Γ or 2¬A ∈ Γ. However, the latter would imply ¬A ∈ ∆ contradicting our first
item.

For the last item we reason as follows. Suppose for a contradiction that there is some
3A in S. Then, by the first item we have both 3A ∈ ∆ and 23A ∈ ∆. However, over
GL we have that 23A is equivalent to 2⊥. But 2⊥ ∈ ∆ clearly contradicts 3A ∈ ∆. a

A label S between Γ≺S∆ keeps track of the formulas that are promised to be in ∆ in
virtue of certain interpretability formulas in Γ. The larger the label, the more promises
it stores.

Often we can enlarge the label for free. To see how much we can add we need the
following definition.

Definition 3.7 For any set of formulas T and maximal consistent set ∆ we define

∆2
T = {2¬A | A�

∨
Ti∈T ′

¬Ti ∈ ∆ for some finite T ′ ⊆ T},

∆�
T = {2¬A,¬A | A�

∨
Ti∈T ′

¬Ti ∈ ∆ for some finite T ′ ⊆ T}.

Note that ∆2
∅ = {2¬A | A � ⊥ ∈ ∆}. However, we want to think about this set as

{2C | 2C ∈ ∆}. Clearly the two sets, although not literally equal, behave the same when
used within labels. The next lemma tells us how promises propagate over composition of
successors.

Lemma 3.8 For the relation ≺S we claim the following:

1. if S ⊆ T & Γ≺T∆ then Γ≺S∆;

2. if Γ≺S∆ ≺ ∆′ then Γ≺S∆′.

Proof. The first item is obvious since any finite subset of S is also a finite subset of T
whenever S ⊆ T . For the second item we observe that Γ≺S∆ implies Γ�

S ⊆ ∆ whence by
∆ ≺ ∆′ and 2Γ�

S ⊆ Γ�
S we see that Γ�

S ⊆ ∆′. a

Notation 3.9 Often we shall simply write ∨¬Si to indicate some particular finite disjunc-
tion without really specifying it. If in the same context we will need another particular
but otherwise unspecified big disjunction we will flag this by using a different index.
Thus, ∨¬Si ∨ ∨¬Sj stands for the disjunction of two particular but unspecified finite
disjunctions of negated formulas from some label set S.

Often we will consider a finite collection of formulas Cj such that each Cj will interpret
some finite disjunction of negated formulas from the label S. For each particular formula
Cj we will denote the corresponding disjunction by ∨¬Sjk and thus write Cj �

∨¬Sjk.
Subsequently, we will denote the big disjunction over all k and all corresponding ¬Skj by∨¬Skj so that (with the help of a few applications of axioms of IL) ∨Ck � ∨¬Skj .
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x

y z

S

q, p, �p ¬p

q � ¬p

Figure 3.1: Situation described in Lemma 3.11.

The following lemma gives us a way to extend labels.

Lemma 3.10 For any logic (i.e. extension of IL) we have that Γ≺S∆ implies Γ≺S∪Γ�
S

∆.

Proof. Suppose Γ≺S∆ and C �
∨¬Si ∨ ∨Aj ∨ 3Aj ∈ Γ for some finite collection of

formulas ¬Aj,2¬Aj ∈ Γ�
S . In particular, for each j we have Aj�

∨¬Sjk ∈ Γ for some finite
collection (depending on j) of formulas Sjk from the label S. Then C � ∨¬Si ∨ ∨Aj ∈ Γ
and thus C�∨¬Si∨∨¬Sjk ∈ Γ which implies ¬C,2¬C ∈ ∆ since we assumed Γ≺S∆. a

This lemma tells us in a sense that when we have Γ≺S∆, then certain sentences in
Γ justify that we may extend the label S. Will likewise the occurrence of sentences in
∆ allow us to extend the label S? The next lemma tells us that this is not the case.
In particular, if A � ∨¬Si for some Si ∈ S ′ ⊆fin S, then by definition ¬A,2¬A ∈ ∆.
However, when for some arbitrary A we have ¬A,2¬A ∈ ∆, this does not allow us to
extend our label S.

Lemma 3.11 There are MCS’s Γ and ∆, and a set S such that Γ≺S∆, and for some
propositional variable p we have p,2p ∈ ∆ but Γ 6≺S∪{p} ∆.

Proof. Consider the model consisting of three points x, y and z given in Figure 3.1. Let
Γ = {A : x 
 A} and ∆ = {A : y 
 A}. Since q ∈ ∆ and (q � ¬p) ∈ Γ, whatever we take
for S with Γ≺S∆, we will never have Γ≺S∪{p}∆. a

Thus, via the previous two lemmas we see that the S-assuringness between two sets
Γ≺S∆ can only be automatically extended via Γ. The next lemma tells us that there are
other ways to ‘freely extend’ a label.

Lemma 3.12 For any logic we have

1. Γ≺S∆ and S ` A implies Γ≺S∪{A}∆;

2. Γ≺S∆ implies Γ≺S∪2S∆.

Proof. For the first item—that labels can be closed under derivability—we assume that
S ` A where the notion of derivability depends on the logic in question. Thus, for some
S1, . . . , Sn ∈ S we have S1 ∧ . . . ∧ Sn ` A. Consequently, ` ¬A → ∨¬Sj and also
` 2(¬A → ∨¬Sj). Thus, if Γ≺S∆ and (B � ∨¬Si ∨ ¬A) ∈ Γ, also (B � ∨¬Si) ∈ Γ so
that ¬B,2¬B ∈ ∆ and we conclude Γ≺S∪{A}∆.
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For the second item, we consider (A�∨¬Si ∨∨¬2Sj) ∈ Γ. But since ¬2Sj ≡ 3¬Sj
and 3¬Sj � ¬Sj we conclude (A� ∨¬Si ∨ ∨¬Sj) so that ¬A,2¬A ∈ ∆. a

This Lemma 3.12 tells us that given an extension ILX of the logic IL, we can freely
extend labels to be closed under ILX-derivability (where ILX is an arbitrary extension of
IL) and to be closed under necessitation. Thus, we can identify labels with ILX theories.

Moreover, Lemma 3.10 tells us that we can freely close off a label S for Γ≺S∆ under
Γ�
S . These observations lead us to the definition of Γ-full labels. When the context makes

clear which Γ is meant, we shall simply speak of full labels.

Definition 3.13 For Γ a maximal consistent set we call S a Γ-full label whenever S is a
logic extending Γ�

S .
In concrete, S is a Γ-full label whenever we have the following:

1. A� ∨¬Si ∈ Γ implies ¬A,2¬A ∈ S;

2. in particular 2A ∈ Γ implies A ∈ S;

3. the label S is closed under derivability, that is, if S ` A, then A ∈ S;

4. the label S is closed under necessitation, that is, if B ∈ S, then 2B ∈ S.

If we stick to full labels, there is a close correspondence between theories and labels.
We find this observation so essential that we formulate it explicitly as a lemma:

Lemma 3.14 If Γ≺S∆ and S is a full label, then S is an ILX-theory.

We pose as open question whether for any consistent ILX-theory S we can find MCS’s
Γ and ∆ so that Γ≺S∆. In case this could be answered in the affirmative it would be
interesting to know whether the result can be extended to arbitrary chains of increasing
theories.

Full labels contain as many free promises as possible and posses certain nice closure
properties. In particular, we have the following lemma that justify the name ‘full’.

Lemma 3.15 Given a MCS Γ and a label S, then S is Γ-full if and only if the following
holds:

∀T
(
S ⊆ T ∧ ∀∆

(
Γ≺S∆⇒ Γ≺T∆

)
=⇒ S = T

)
.

The sets of formulas S and T range here over ILX-theories, and ∆ over MCS’s.

Proof. First assume that S is a Γ-full label and S ( T . We want to show there is a
MCS ∆ with Γ≺S∆ but Γ 6≺T ∆. As S ( T , there is some A ∈ T for which we have
A /∈ S, and therefore, by S being Γ-full, A /∈ Γ�

S ⊆ S. Since S is a theory also S 0 A and
Γ�
S 0 A. Then there exists a MCS ∆ containing Γ�

S with A /∈ ∆. Clearly Γ≺S∆, and as
¬A� ¬A ∈ Γ, A ∈ T and A /∈ ∆, we see that Γ 6≺T ∆.
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Γ

∆

∆′ Λ 3 ¬p
Γ

{p}

∅

∅

Figure 3.2: Downward influence

p, q, r
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p p, q, r
u2 v2

q

r � ¬p ∨ ¬q, ¬(r � ¬p), ¬(r � ¬q)

{p} {q}

w

Figure 3.3: Incomparable labels

For the other direction assume Γ�
S 6⊆ S. We want to find a theory T ⊃ S with

∀∆
(
Γ≺S∆ ⇒ Γ≺T∆

)
. Take T to be the theory generated by S ∪ Γ�

S : it certainly is
bigger than S. Now assume Γ≺S∆, but then Γ≺S∪Γ�

S
∆ by Lemma 3.10. a

Full labels can at times simplify matters. In particular, they clearly propagate along
successors as expressed by the following lemma.

Lemma 3.16 If Γ≺S∆≺TΛ, for some full labels S and T , then S ⊆ T .

Proof. For any Si ∈ S we have 2Si ∈ ∆ so, by fullness, Si ∈ T . a

Thus, this Lemma states that full labels accrue information along the top successor
relation. Does information between related full labels also ‘reflect down’? To put it
otherwise, it may be natural to ask if Lemma 3.8, Item 2 (that Γ≺S∆ ≺ ∆′ implies
Γ≺S∆′), can be strengthened. That is to say, suppose we have Γ≺S∆≺T∆′, can we say
something more than just Γ≺S∆′? As we shall see in the next section, it turns out that
for extensions of IL we often can. In general this does not seem to hold, at least if we do
not require our labels to be full. Suppose Γ≺∅∆≺{p}∆′ (see Figure 3.2). If p�¬p ∈ Γ and
p ∈ ∆′, there is an MCS Λ with ¬p ∈ Λ. Clearly, the fact that we have {p} between ∆ and
∆′ did not stop ¬p ∈ Λ. Let us mention a question that we do not have a definite answer
for. Suppose Γ≺S∆≺T∆′ and S and T are full labels. Is there a (non-trivial) notion of a
“T -influenced formula” such that we may put the T -influenced formulas between Γ and
∆′?

Although a label can be full, this does not mean we can always find a maximum among
the possible labels. We shall now exhibit a model that generates maximal consistent sets
Γ and ∆ with two incomparable labels between them.

Lemma 3.17 There are maximal consistent sets Γ and ∆, and labels S and T with Γ≺S∆
and Γ≺T∆ so that Γ 6≺S∪T ∆.

Proof. We let S := {p}, T := {q} and consider the model in Figure 3.3. Let Γ = {A :
w 
 A}, ∆1 = {A : u1 
 A} and ∆2 = {A : u2 
 A}. Clearly, ∆1 = ∆2. However, we do
not have Γ≺{p,q}∆1, since this would imply v1 
 q which is not the case. Similarly for u2,
∆2 and p. a
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When Γ≺S∆, this enforces many formulas of the form ¬(A�B) to be in Γ as we can
see in the next lemma.

Lemma 3.18 Let Γ≺S∆ with A ∈ ∆ and S ′ ⊆fin S. We then have

¬(A�
∨

Si∈S′
¬Si) ∈ Γ.

Proof. Suppose A � ∨
Si∈S′ ¬Si ∈ Γ. Then by Γ≺S∆ we would have ¬A ∈ ∆ which is a

contradiction. Thus, A� ∨Si∈S′ ¬Si /∈ Γ and by maximality ¬(A� ∨Si∈S′ ¬Si) ∈ Γ. a

Conversely, the next lemma will show that given a label S and maximal consistent set
Γ we have: if there are sufficiently many negated interpretability formulas related to S in
Γ, then we can conclude that there exists some MCS ∆ with Γ≺S∆.

Theorem 3.19 Let Γ be an MCS, B a formula and S a set of formulas. If for any choice
of S ′ ⊆ S we have that ¬(B � ∨

Si∈S′ ¬Si) ∈ Γ, then3 there exists an MCS ∆ such that
Γ≺S∆ 3 B,2¬B.

Proof. Suppose for a contradiction there is no such ∆. Then there is a formula4 A such
that for some Si ∈ S we have (A � ∨¬Si) ∈ Γ and B,2¬B,¬A,2¬A ` ⊥. Then
` 2¬B ∧ B � A ∨3A, and we get ` B � A. As (A� ∨¬Si) ∈ Γ, also (B � ∨¬Si) ∈ Γ.
A contradiction. a

The following lemma is sometimes called a “problem-solving lemma” (see [27]).

Lemma 3.20 Let Γ be an MCS such that ¬(B �C) ∈ Γ. Then there is an MCS ∆ such
that Γ≺{¬C}∆ and B,2¬B ∈ ∆.

Proof. Taking S = {¬C} in Theorem 3.19. a

The following lemma is sometimes called a “deficiency solving lemma” (see [27]).

Lemma 3.21 Let Γ and ∆ be MCS’s such that A � B ∈ Γ≺S∆ 3 A. Then there is an
MCS ∆′ such that Γ≺S∆′ 3 B,2¬B.

Proof. First we see that for any choice of Si, ¬(B � ∨¬Si) ∈ Γ. Suppose not. Then for
some Si, (B�∨¬Si) ∈ Γ because Γ is an MCS. But then (A�∨¬Si) ∈ Γ and by Γ≺S∆
we have ¬A ∈ ∆. A contradiction. So ¬(B � ∨¬Si) ∈ Γ for any choice of Si and we can
apply Theorem 3.19. a

3Lemma 3.18 tells us that we actually have if and only if.
4There are finitely many Aj such that there exist some formulas Sj

i ∈ S with (Aj �
∨
¬Sj

i ) ∈ Γ and
2¬B, B,¬Aj ,2¬Aj ` ⊥. We can take A to be

∨
j Aj .
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3.3 Frame conditions and labelling lemmas
In this section we recall what steps there are along the way when constructing a

counter-model to an unprovable formula. We can think of the step-by-step method of
constructing a counter-model used e.g. in [27] for now. In the next chapter we use these
results in order to prove completeness of various systems w.r.t. generalised Veltman se-
mantics. In addition to that, these results have been used in order to prove completeness
and the finite model property for ILW w.r.t. ordinary Veltman semantics. We do not
include the latter here since the author of the thesis did not contribute to it (this proof
first appeared in [11]).

The idea is to build a model from MCS’s and define the R and SΓ accessibility relations
on them, where in particular the R relation is to be defined using ≺. We wish to use
the labels along ≺ to keep track of the promises posed on later added worlds by already
contained interpretability formulas, and, as we shall see, also to be able to ensure we can
“locally satisfy” the frame conditions corresponding to the additional axiom schemas, i.e.
we can close the model under the characteristic property of the schema.

Let W be a multiset of MCS’s used in the model we wish to define. The main points
one has to address are the following three:

1. For each Γ ∈ W with ¬(A� B) ∈ Γ we need to include a {¬B}-assuring successor
∆ in W for which A ∈ ∆.

2. For each Γ,∆ ∈ W with C � D ∈ Γ ≺ ∆ 3 C we need to include a ∆′ in W for
which Γ ≺ ∆′ 3 D. Moreover if ∆ is a T -assuring successor of Γ then we should be
able to choose ∆′ a T -assuring successor of Γ as well (to carry promises along the
SΓ relation).

3. We need to make sure all the appropriate frame conditions are satisfied.

The existence Lemmas 3.20, 3.21 of the previous section ensure existence of MCS’s
required to witness modal formulas as specified in Item 1 and Item 2 above. When working
in IL alone, making sure that the frame conditions are satisfied does not pose any problems
[35], as they are just the basic properties of R and SΓ, but with various extensions of IL
the situation regarding the frame conditions for the additional modal principles becomes
more complicated (cf. [18, 27]). Note that many of these issues disappear when one uses
generalised Veltman semantics, as we shall see in the next chapter. However, ordinary
Veltman semantics is easier to visualise and demonstrate key ideas.

When MCS Σ 3 D is chosen witnessing a formula C � D ∈ Γ ≺ ∆ 3 C by Item 2
(Page 39), we want to be able to do so in a way where not only Γ ≺ Σ (and the same
formulas are assured), but also Λ ≺ Σ. Moreover, if Λ ≺T ∆, it should be possible to
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choose Σ so that Λ ≺T Σ. Only then it is consistent to draw the ∆SΛΣ arrow required
by the frame condition, as depicted in Figure 3.4.

To see such requirements are indeed possible to meet, we will prove, for each principle,
a labeling lemma. Labeling lemmas tell us how to label the ≺ relation in a sufficient
way to ensure we can meet the requirements imposed by frame conditions locally. Note
that we do not require labels to be full in the remainder of this chapter; unless stated
otherwise, labels can be any sets of modal formulas, that is, they do not have to be Γ-full
for any Γ.

Principle P. Let us see how frame conditions locally impose requirements on MCS’s,
taking ILP as the first example. The frame condition for P is the following [18]:

wRw′RuSwv ⇒ uSw′v.

The frame condition for P imposes on MCS’s the following:

Γ ≺ Λ ≺ ∆SΓΣ⇒ ∆SΛΣ.

Lemma 3.22 For logics containing P we have

Γ≺SΛ≺T∆⇒ Γ≺S∪Λ�
T

∆.

Proof. Suppose C �∨¬Si ∨∨Aj ∨3Aj ∈ Γ, where 2¬Aj,¬Aj ∈ Λ�
T . Then C �

∨¬Si ∨∨
Aj ∈ Γ and thus by P we obtain C�∨¬Si∨∨Aj ∈ Λ. Since Γ≺SΛ we have 2∧Si ∈ Λ

so we obtain C �
∨
Aj ∈ Λ. But for each Aj we have Aj �

∨¬Tjk ∈ Λ and thus
C �

∨¬Tjk ∈ Λ. Since Λ ≺T ∆ we conclude ¬C,2¬C ∈ ∆. a

In the case of P, a simpler labelling lemma can be used to ensure the frame condition
locally, provided we consider the labels that are full (S a Γ-full label, and T a Λ-full
label).
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Lemma 3.23 For logics containing P we have

Γ≺SΛ≺T∆⇒ Γ≺T∆

Proof. Assume Γ≺SΛ≺T∆, and C �
∨¬Ti ∈ Γ. Then by P we know C �

∨¬Ti ∈ Λ.
Since Λ ≺T ∆ we conclude ¬C,2¬C ∈ ∆. a

Note that the lemma is true in the case of ordinary labels, but in that case, the previous
lemma gives us more precise labelling information to ensure the frame condition locally.
This is because only for full labels we in fact have S ∪ Λ�

T ⊆ T .

Principle M. The frame condition for M is the following [18]:

wRuSwvRz ⇒ uRz.

The frame condition for M imposes on MCS’s the following:

∆SΓΣ ≺ Ω⇒ ∆ ≺ Ω.

When MCS Σ 3 D is chosen witnessing a formula C � D ∈ Γ ≺ ∆ 3 C by Item 2
(Page 39), we want to do so in such a way that whenever we later need to add a MCS
Ω with Σ ≺ Ω, we can also draw the ∆ ≺ Ω arrow. Therefore, we need to ensure ∆2

∅

along the Γ ≺ Σ arrow (as we remarked previously, one can think of the set ∆2
∅ as simply

{2C | 2C ∈ ∆}), we achieve this by ensuring ∆2
∅ along the Γ ≺ ∆ arrow. The situation

is depicted in Figure 3.5. The corresponding labelling lemma is the following:

Lemma 3.24 For logics containing M we have Γ≺S∆⇒ Γ≺S∪∆2∅∆.

Proof. Assume that for some 2Cj ∈ ∆2
∅ we have (A � ∨¬Si ∨ ∨¬2Cj) ∈ Γ. By M,

(A ∧ ∧2Cj � ∨¬Si) ∈ Γ, whence �¬(A ∧ ∧2Cj) ∈ ∆. As ∧2Cj ∈ ∆, we conclude
¬A,2¬A ∈ ∆. a

In the case of M, we have no simpler labelling lemma in case S is a Γ-full label.

Principle M0. The frame condition for M0 is the following [27]:

wRuRxSwvRz ⇒ uRz.

The frame condition for M0 imposes on MCS the following:

Γ ≺ ∆ ≺ ∆′SΓΣ ≺ Ω⇒ ∆ ≺ Ω.
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When MCS Σ 3 D is chosen to witness a formula C �D ∈ Γ ≺ ∆ ≺ ∆′ 3 C by Item
2 (Page 39), we want to do so in such a way that whenever we later need to add a MCS Ω
with Σ ≺ Ω, we can also draw the ∆ ≺ Ω arrow. Therefore, we again need to ensure ∆2

∅

along the Γ ≺ Σ arrow. The situation is depicted in Figure 3.6, and the corresponding
labelling lemma is the following (as before, we do not have a special lemma in case the
labels are full):

Lemma 3.25 For logics containing M0 we have Γ≺S∆ ≺ ∆′ ⇒ Γ≺S∪∆2∅∆
′.

Proof. Suppose C � ∨¬Si ∨ ∨3Aj ∈ Γ, where 2¬Aj ∈ ∆2
∅ . By M0 we obtain 3C ∧∧

2¬Aj �
∨¬Si ∈ Γ. So, since Γ≺S∆ and ∧2¬Aj ∈ ∆ we obtain 2¬C ∈ ∆ and thus

2¬C,¬C ∈ ∆′. a

Principle R. Last we will look at a more complicated case of ILR.
The frame condition for the principle R is the following [28]:

wRxRySwy
′Rz ⇒ ySxz.

On MCS’s the condition imposes the following:

Γ ≺ Λ ≺ ∆SΓΣ ≺ Ω⇒ ∆SΛΩ.

The frame condition is depicted in Figure 3.7. Assume Σ 3 D was chosen as a witness
for C � D ∈ ΓR∆ 3 C. Since ∆ lies T -assuring above Λ, we should not only make
sure that Σ lies S-assuring above Γ, but also that any successor Ω of Σ lies T -assuring
above Λ. Only then we would be justified to draw the required ∆SΛΩ arrow. One way
to guarantee Λ≺TΩ is to ensure Λ2T along the Γ ≺ Σ arrow: whenever B �∨¬Ti ∈ Λ, we
have 2¬B ∈ Λ2T and this puts 2¬B ∈ ∆ and 2¬B,¬B ∈ Ω as required.

The corresponding labelling lemma is the following:

Lemma 3.26 For logics containing R we have Γ≺SΛ≺T∆⇒ Γ≺S∪Λ2T∆.
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Proof. We consider A such that for some Si ∈ S and some 2¬Aj ∈ Λ2T , we have (A �∨¬Si ∨ ∨3Aj) ∈ Γ. By R we obtain (¬(A � ∨Aj) � ∨¬Si) ∈ Γ, thus by Γ≺SΛ we get
(A � ∨

Aj) ∈ Λ. As (Aj �
∨¬Tkj) ∈ Λ, also (A � ∨¬Tkj) ∈ Λ. By Λ≺T∆ we conclude

�¬A ∈ ∆. a

In the case of R, a simpler labelling lemma can be used to ensure the frame condition
locally if T is Λ-full:

Lemma 3.27 For logics containing R we have Γ≺SΛ≺T∆⇒ Γ≺S∪2T∆.

Proof. Assume A�∨¬Si∨∨¬2Tj ∈ Γ. Then, by R, we obtain ¬(A�∨¬Tj)�∨¬Si ∈ Γ
and by Γ≺SΛ we know �(A� ∨¬Tj) ∈ Λ, and �¬A ∈ Σ as required. a

As before in the case of logics containing P and Lemma 3.23, this lemma ensures the
frame condition locally provided the labels are full: for in this case Λ�

T ⊆ T and therefore,
because T is a theory, Λ2T ⊆ 2T , and consequently S ∪ Λ2T ⊆ S ∪ 2T . Thus, sufficient
information is carried by the composed label.

Principle W. Let us state two existence lemmas for ILW, a logic for which only second-
order frame properties are known ([28], [49]).

We do not know if there is a labelling lemma for this logic in the same sense as before.
However, we know that the following lemmas are sufficiently strong for completeness
proofs w.r.t. both ordinary and generalised semantics (see [11] and the following chapter).

Lemma 3.28 Suppose Γ is an ILW-MCS. Suppose ¬(A � B) ∈ Γ. There exists some
ILW-MCS ∆ with Γ ≺{2¬A,¬B} ∆ and A ∈ ∆.

Proof. Suppose for a contradiction that there is no such ∆. Then there are finitely many
formulas Ei such that (Ei �3A ∨ B) ∈ Γ and A, {¬Ei,2¬Ei}i ` ⊥. Let E = ∨

iEi. By
IL and maximal consistency we have (E � 3A ∨ B) ∈ Γ and A,¬E,2¬E ` ⊥. Thus,
` A � E. Then (A � 3A ∨ B) ∈ Γ and by the principle W we have A � B ∈ Γ. The
contradiction. a

Lemma 3.29 For logics containing W we have that if B � C ∈ Γ≺SΛ 3 B then there
exists ∆ with Γ≺S∪{2¬B}∆ 3 C,2¬C.

Proof. Suppose for a contradiction that no such ∆ exists. Then for some formula A

with (A � ∨¬Si ∨ 3B) ∈ Γ, we get C,2¬C,¬A,2¬A ` ⊥, whence ` C � A. Thus,
B � C � A�

∨¬Si ∨3B ∈ Γ. By W, B � ∨¬Si ∈ Γ which contradicts Γ≺SΛ 3 B. a

In this chapter we introduced the main tool we use in our completeness proof with
respect to generalised Veltman semantics, the assuring labels. There is a bit more to labels
than what has been said here: in particular, at one point we will be needing iterated label
systems. For the most part of the following chapter (on completeness) what we’ve seen
so far will suffice. Thus, we will return to discussing labels near the end of the following
chapter, when a new approach is required.
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Modal completeness

The aim of this chapter is to explore modal completeness with respect to generalised
Veltman semantics. We will first say a few words on the history of modal completeness
proofs concerning interpretability logics.

The content of this chapter, except for the final section, is largely taken from the recent
paper [50]. If not stated otherwise, it is safe to assume that those results and proofs are
taken from [50]. The content of [50] is copyrighted by Cambridge University Press.

The content of the final section is largely taken from the preprint [26].

Introduction
In this chapter, and in fact in the whole thesis, the only notion of semantic com-

pleteness we discuss is that of weak completeness. More precisely, let X be any (possibly
empty) set of modal formulas and ILX the result of extending the base logic IL with
X. Let C(X) be the characteristic class of ILX w.r.t. ordinary Veltman semantics, i.e.
C(X) = {F : F is an ordinary Veltman frame and F 
 X}. We say that ILX is complete
w.r.t. ordinary Veltman semantics if for all formulas A we have that: C(X) 
 A implies
ILX ` A.

We define completeness w.r.t. generalised semantics similarly, by replacing “ordinary”
with “generalised” in the preceding definition.

Note that we do not have any sort of strong completeness result for any conservative
extension of GL (which includes all logics studied in this thesis), since the counterex-
amples for GL (see e.g. [5]) are also counterexamples for such extensions. Since for GL
this issue can be overcome by switching to topological semantics, it is possible that with
topological semantics we have strong completeness for interpretability logics. However, at
the time of writing, topological semantics for interpretability logics has not been studied,
and the formulation of a strongly complete semantics for interpretability logics is an open
problem.

De Jongh and Veltman proved the completeness of IL, ILM and ILP w.r.t. the corre-
sponding characteristic classes of ordinary (and finite) Veltman frames in [18]. As is usual
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for extensions of the provability logicGL, all completeness proofs suffer from compactness-
related issues. One way to go about this is to define a (large enough) adequate set of
formulas and let worlds be maximal consistent subsets of such sets (used e.g. in [18]).
With interpretability logics and ordinary Veltman semantics, worlds have not been iden-
tified with (only) sets of formulas. It seems that with ordinary Veltman semantics it is
sometimes necessary to duplicate worlds (that is, have more than one world correspond
to a single maximal consistent set) in order to build models for certain consistent sets (see
e.g. [18]). In [19], de Jongh and Veltman proved completeness of the logic ILW w.r.t. its
characteristic class of ordinary (and finite) Veltman frames.

Goris and Joosten, inspired by Dick de Jongh, introduced a more robust approach
to proving completeness of interpretability logics, the construction method [27, 28]. In
this type of proofs, one builds models step by step1, and the final model is retrieved as a
union. While closer to the intuition and more informative than the standard proofs, these
proofs are hard to produce and verify due to their size. (They might have been shorter
if assuring labels—see the previous chapter or [11, 26]—have been used from the start.)
For the purpose for which this type of proofs was invented (completeness of ILM0 and
ILW∗ w.r.t. the ordinary semantics), this type of proofs is still the only known approach
that works.

In [50] a very direct type of proofs of completeness is presented; similar to [18] in the
general approach, but this time with respect to generalised Veltman semantics. The so-
called assuring labels from [11, 26] were used as a key step (in this thesis, assuring labels
are studied in the preceding chapter). These completeness proofs are the ones that we aim
to explore here. An example that illustrates benefits of using the generalised semantics
will be given in the subsection dedicated to ILM0. The most interesting of these results
are completeness of ILR and ILP0. The principle R is important because it forms the
basis of the, at the moment, best explicit candidate for IL(All). Results concerning the
principle ILP0 are interesting in a different way; they answer an old question: is there an
unravelling technique that transforms generalised ILX-models to ordinary ILX-models,
that preserves satisfaction of relevant characteristic properties? The answer is no: ILP0

is complete w.r.t. generalised Veltman semantics, but it is known to be incomplete w.r.t.
the ordinary semantics ([28]).

4.1 Preliminaries
In what follows, “formula” will always mean “modal formula”. A maximal consistent

set w.r.t. ILX will be called an ILX-MCS. We require the notion of assuring labels (Def-
inition 3.4) which was originally introduced in [11] (see also [26]). However, here we use

1In [8] the term “step-by-step method” is coined for this type of proofs. Even before that, this was
known as Completeness by construction in a reader from de Jongh and Veltman [20]. See also [7] and
[21].
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a slightly modified version of this notion. The difference is a new strategy of ensuring
converse well-foundedness for the relation R. Instead of asking for the existence of some
3F ∈ w \ u whenever wRu, as is usual in the context of provability (and interpretabil-
ity) logics, we will go for a stronger condition (see Definition 4.6). Since we will later
put R :=≺, this choice of ours is reflected already at this point, in the definition of an
assuring successor.

Definition 4.1 ([11], a slightly modified Definition 3.1) Let w and u be some ILX-MCS’s,
and let S be an arbitrary set of formulas. We write w ≺S u if for any finite S ′ ⊆ S and
any formula A we have that A� ∨G∈S′ ¬G ∈ w implies ¬A,�¬A ∈ u.

We will also require the notation w�S and w�
S (see Definition 3.7). Note that with the

new definition of ≺S, we have the following: w ≺S u if and only if w�
S ⊆ u. Recall that

since w is maximal consistent, use of w2∅ usually amounts to the same as the use of the
set {�A : �A ∈ w}.

We will usually write w ≺ u instead of w ≺∅ u. This should not be confused with the
standard notion of a predecessor/successor that can be found in the literature (in virtually
all sources that deal with the relation between syntax and semantics of interpretability
logics, including the previous chapter of this thesis), which usually requires an additional
property that there is some 3F ∈ w \ u whenever w ≺ u.

We will often require properties stated in lemmas 3.6 and 3.8. Here we emphasise that
these properties hold with the new definition of assuringness. We will use these properties
tacitly in the remainder of this chapter.

Lemma 4.2 ([11], Lemma 3.2) Let w, u and v be some ILX-MCS’s, and let S and T be
some sets of formulas. It follows that:

a) if S ⊆ T and w ≺T u, then w ≺S u;

b) if w ≺S u ≺ v, then w ≺S v;

c) if w ≺S u, then S ⊆ u.

We need two lemmas that can be used to construct (or in our case, find) an MCS with
the required properties. We already discussed them (see lemmas 3.20 and 3.21) in the
previous chapter, but here we stress that they hold with our definition of the relation ≺S:

Lemma 4.3 ([11], Lemma 3.4) Let w be an ILX-MCS, and let ¬(B�C) ∈ w. Then there
is an ILX-MCS u such that w ≺{¬C} u and B,�¬B ∈ u.

Lemma 4.4 ([11], Lemma 3.5) Let w and u be some ILX-MCS’s such that B � C ∈ w,
w ≺S u and B ∈ u. Then there is an ILX-MCS v such that w ≺S v and C,�¬C ∈ v.

We need a notion of adequacy which is mainly used to specify how far we want the
truth lemma to stretch.
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Definition 4.5 We say a set Γ is adequate if it is a finite set of formulas that is closed
under taking subformulas and single negations, and > ∈ Γ.

Any finite set of formulas can be extended to some adequate set.
In the remainder of this chapter, we will assume that D always stands for an adequate

set. The following definition is central to most of the results of this chapter.

Definition 4.6 Let X be a subset of {M, M0, P, P0, R}. We say that M = (W,R, {Sw :
w ∈ W}, V ) is the ILX-structure for a set of formulas D if:

W := {w : w is an ILX-MCS and for some G ∈ D, G ∧�¬G ∈ w};
wRu :⇔ w ≺ u;
uSwV :⇔ wRu and, V ⊆ R[w] and, (∀S)(w ≺S u⇒ (∃v ∈ V )w ≺S v);

w ∈ V (p) :⇔ p ∈ w.

We note that the ILX-structure for D is a unique object. In fact, we could work
with just one “ILX-structure” (that would not depend even on D): the disjoint union of
ILX-structures for all choices of D. We also observe that the definition entails that when
uSwV , then V 6= ∅ since wRu implies w ≺∅ u, so there is v ∈ V with w ≺∅ v.

Notice that worlds in the definition above are somewhat more restricted than what is
usually found in similar proofs: every world is required to be R-maximal with respect to
some formula. That is, for every world w ∈ W we want to have a formula Gw such that
w 
 Gw and for any R-successor u of w, u 1 Gw. This is equivalent to the requirement
that for some formula Gw, w 
 Gw ∧2¬Gw. Of course, before we prove our truth lemma
we can only require that Gw ∧ 2¬Gw ∈ w. Because of this we need the following lemma
whose proof boils down to an instance of Löb’s axiom.

Lemma 4.7 If ILX 0 ¬A then there is an ILX-MCS w such that A ∧�¬A ∈ w.

Proof. We are to show that {A ∧�¬A} is an ILX-consistent set. Suppose A,�¬A ` ⊥.
It follows that ` �¬A→ ¬A. Applying generalisation (necessitation) gives ` �(�¬A→
¬A). The Löb axiom implies ` �¬A. Now, ` �¬A and A,�¬A ` ⊥ imply A ` ⊥, i.e.
` ¬A, a contradiction. a

We are now ready to prove the main lemma of this section, which tells us that the
structure defined in Definition 4.6 really is a generalised Veltman model. Notice that we
do not claim that it is also an ILsetX-model; we prove that later. Recall that if B is a
formula, and w a world in a generalised Veltman model, we write [B]w for {u : wRu and
u 
 B}.

Lemma 4.8 Let X be a subset of {M, M0, P, P0, R}. The ILX-structure M for a set
of formulas D is a generalised Veltman model. Furthermore, the following truth lemma
holds:

M, w 
 G if and only if G ∈ w,
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for all G ∈ D and w ∈ W.

Proof. Let us verify that the ILX-structure M = (W,R, {Sw : w ∈ W},
) for D is a
generalised Veltman model. Since ILX 0 ⊥ and > ∈ D, Lemma 4.7 implies W 6= ∅ .
Transitivity of R is immediate. To see converse well-foundedness, assume there are more
than |D| worlds in an R-chain. Then there are x and y with xRy and for some G ∈ D,
G,�¬G ∈ x, y. However, �¬G ∈ x and G ∈ y obviously contradict the assumption
that xRy (x ≺ y). Next, let us prove the properties of Sw for w ∈ W . Clearly Sw ⊆
R[w]×P(R[w]). If xSwV , then w ≺∅ x implies there is at least one element v in V (with
w ≺∅ v). Quasi-reflexivity and monotonicity are obvious. Next, assume wRxRu and
w ≺S x. Lemma 4.2 and w ≺S x ≺ u imply w ≺S u. Thus, xSw{u}. It remains to prove
quasi-transitivity. Assume xSwV and vSwUv for all v ∈ V . Put U = ⋃

v Uv. We claim
that xSwU . We have U ⊆ R[w]. Assume w ≺S x. This and xSwV imply there is v ∈ V
such that w ≺S v. This and vSwUv imply there is u ∈ Uv (thus also u ∈ U) such that
w ≺S u. Let us prove the truth lemma with respect to the formulas contained in D. The
claim is proved by induction on the complexity of G ∈ D. We will only consider the case
G = B � C. Assume B � C ∈ w, wRu and u 
 B. Induction hypothesis implies B ∈ u.
We claim that uSw[C]w. Clearly [C]w ⊆ R[w]. Assume w ≺S u. Lemma 4.4 implies there
is an ILX-MCS v with w ≺S v and C,�¬C ∈ v (thus also wRv and v ∈ W ). Induction
hypothesis implies M, v 
 C. To prove the converse, assume B � C /∈ w. Lemma 4.3
implies there is u with w ≺{¬C} u and B,�¬B ∈ u (thus u ∈ W ). It is immediate that
wRu and the induction hypothesis implies that u 
 B. Assume uSwV. We are to show
that V 1 C. Since w ≺{¬C} u and uSwV , there is v ∈ V such that w ≺{¬C} v. Lemma
4.2 implies ¬C ∈ v. The induction hypothesis implies v 1 C; thus V 1 C. a

Theorem 4.9 Let X ⊆ {M,M0,P,P0,R}. Assume that for every set D the ILX-structure
for D possesses the property (X)gen. Then ILX is complete w.r.t. ILsetX-models.

Proof. Let A be a formula such that ILX 0 ¬A. Lemma 4.7 implies there is an ILX-
MCS w such that A ∧ �¬A ∈ w. Let D have the usual properties, and contain A. Let
M = (W,R, {Sw : w ∈ W}, V ) be the ILX-structure for D. Since A ∧ �¬A ∈ w and
A ∈ D, we have w ∈ W . Lemma 4.8 implies M, w 1 ¬A. a

The logic IL is the logic of all Veltman frames (both ordinary or generalised). Thus
we immediately have the following:

Corollary 4.10 The logic IL is complete w.r.t. generalised Veltman semantics.

In the next section we comment on the completeness of the following logics w.r.t.
generalised Veltman semantics: ILM, ILM0, ILP, ILP0, ILR, ILW and ILW∗.

In the end we will explore the logic ILWR, and another proof for ILP. The logic
ILWR is explored in more detail in the last chapter of this thesis.
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4.1.1 A note on generalised Veltman semantics and labelling
Labels are primarily a syntactic notion. However, there is an aspect of their interaction

with generalised semantics that is not present when working with ordinary semantics. In
this subsection we comment on this—there are no directly usable implications obtained
here; still, we think it’s an interesting property both of labelling and generalised semantics.

In all studied extensions of IL we have to duplicate maximal consistent sets when
building ordinary Veltman models for consistent sets of formulas. More accurately, no
one seems to have come up with a natural way of assigning just one purpose to every
maximal consistent set of formulas. For example, when building a model where {¬(p �
q),¬(p� r), p� (q∨ r)} is true in some world w, we could try to use the same set/world u
visible from w as a witness for the formulas ¬(p� q) and ¬(p� r) in w. For example, this
may be the set where the only propositional formula is p, and no formula of form ¬(A�B)
is contained. But, due to p� (q ∨ r), in any model where w is present, we do require two
worlds like u within that model. One of these worlds will have an Sw-successor satisfying
q but not r, and the other one an Sw-successor satisfying r but not q.

Generalised Veltman semantics doesn’t share this problem of duplication, at least not
in any known case of a complete extension of IL. A generalised model for the problem
above is simple. Let w = {¬(p � q),¬(p � r), p � (q ∨ r)}, u = {p}, x = {q}, y = {r},
and let wRuSw{x, y}. Unspecified propositional formulas are assumed to be false, and
unspecified �-formulas are assumed to be true.

Now, having in mind this generalised model, what can be said about the wRu transi-
tion in terms of labels? This might be important if we are building a generalised model
step-by-step. Since u has two roles, it would be natural to allow (even with assuringness)
two labels: {¬q} and {¬r}. Note that the Sw from Definition 4.6 indeed takes multiple
labels into account. And these labels are justified, since indeed {x, y} 1 q, r. Both these
labels are expressible without sets (in terms of criticality, for example, the labels would
be formulas q, and r, respectively).

However, there is another bit of label-related information that these facts do not
express: which labels do not hold. Although {¬q} and {¬r} are justified choices, the
label {¬q,¬r} is not a good choice. This label would require ¬p /∈ u, which is clearly
not the case. This is the information the assuringness allows us to express, and criticality
does not. Granted, one might say that the inadequacy of the assuring label {¬q,¬r}
is equivalent to the inadequacy of the critical label q ∨ r. However, expressing this fact
in terms of criticality does not retain structural information of our situation; we see a
disjunction where really we are only interested in disjuncts. Note that such a situation
cannot happen in ordinary semantics: if the label {¬q,¬r} is inappropriate for some wRu
transition, that means there is A ∈ u with A� q ∨ r ∈ w. This, since we are now working
in ordinary semantics, means there should be an Sw-successor of u satisfying q ∨ r. So,
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either this new world satisfies q or r. So, {¬q} or {¬r} had to be inappropriate labels
(for wRu) too.
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4.2 Completeness results
We have seen an easy proof that IL is complete w.r.t. generalised Veltman semantics.

In this section we explore completeness proofs for various extensions of IL.
Note that we can always reuse completeness results for ordinary semantics (when

such result exists), as the following proposition shows. In this proposition we reuse the
construction gen(M) from [73].

Definition 4.11 ([73]) Let M = (W,R, S, V ) be an arbitrary ordinary Veltman model.
We define a generalised model gen(M) = (W,R, S ′, V ) where uS ′wV if and only if V ⊆
R[w] and for some v ∈ V we have uSwv.

Proposition 4.12 Let X be a (possibly empty) set of arbitrary modal formulas. If the
logic ILX is complete w.r.t. ordinary Veltman semantics, it is also complete w.r.t. gener-
alised Veltman semantics.

Proof. Suppose ILX 0 A. Then there is an ILX-model M = (W,R, S, V ) and w ∈ M

such that w 1 A. Let M′ = gen(M). See [70] for the proof that M′ really is a generalised
Veltman model and that the truth values are preserved everywhere.

It remains to check if the frame F′ of M′ is an ILsetX-frame. By definition, this is
the case if and only if for all theorems A of ILX we have F′ 
 A. Note that for all
theorems A of ILX we have F 
 A, where F is the frame of M. Take an arbitrary
valuation U ⊆ W ×Prop (Prop is the set of all propositional variables) and we claim that
(F′, U) 
 A. Clearly (F, U) 
 A. Now, the same construction as above (with U instead
of V ) results in the model (F′, U) (the definition of F′ does not depend on a valuation).
And we have seen that truth values coincide, so (F′, U) 
 A, as required. a

See Subsection 4.2.4 regarding the failure of the converse of the preceding claim.

4.2.1 The logic ILM
Completeness of the logic ILM w.r.t. generalised Veltman semantics is an easy conse-

quence (see Proposition 4.12) of the completeness of ILM w.r.t. the ordinary semantics,
first proved by de Jongh and Veltman ([18]). Another proof of the same result was given
by Goris and Joosten, using the construction method ([28, 36]).

The frame condition wRxSwyRz ⇒ xRz for M is reflected in its labelling lemma,
Lemma 3.24:

R. Verbrugge determined the characteristic property (M)gen in [62]:

uSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ⊆ R[u]).

The following lemma holds for our definition of ≺S too.
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Lemma 4.13 ([11], Lemma 3.7) Let w and u be some ILM-MCS’s, and let S be a set of
formulas. If w ≺S u then w ≺S∪u�∅ u.

When we combine this with the main result of the previous section we get a simple
and succinct completeness proof.

Theorem 4.14 The logic ILM is complete w.r.t. ILsetM-models.

Proof. Given Theorem 4.9, it suffices to show that for any set D, the ILM-structure for
D possesses the property (M)gen: uSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ⊆ R[u]. Let
(W,R, {Sw : w ∈ W}, V ) be the ILM-structure for D.

Let uSwV and take V ′ = {v ∈ V : w ≺u�∅ v}. We claim uSwV
′ and R[V ′] ⊆ R[u].

Suppose w ≺S u. Lemma 4.13 implies w ≺S∪u�∅ u. Since uSwV , by Definition 4.6, there
is v ∈ V with w ≺S∪u�∅ v. So, v ∈ V

′. Thus, uSwV ′.
Now let v ∈ V ′ and z ∈ W be such that vRz. Since v ∈ V ′, we know w ≺u�∅ v. Then

for all �B ∈ u we have �B ∈ v. Since vRz, we have B,�B ∈ z. So, u ≺ z and by
Definition 4.6 uRz. a

4.2.2 The logic ILM0

Modal completeness of ILM0 w.r.t. ordinary Veltman semantics was proved in [27] by
Goris and Joosten. Certain difficulties encountered in this proof were our main motivation
for using generalised Veltman semantics. We will sketch one of these difficulties and show
in what way the generalised semantics overcomes it. Characteristic property (M0)gen (see
[49]):

wRuRxSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ⊆ R[u])).

The frame condition wRxRySwuRz ⇒ xRz for M0 is reflected in its labelling lemma,
Lemma 3.25, which holds for our definition of ≺S too:

Lemma 4.15 ([11], Lemma 3.9) Let w, u and x be ILM0-MCS’s, and S an arbitrary set
of formulas. If w ≺S u ≺ x then w ≺S∪u�∅ x.

To motivate our way of proving completeness (of ILM0, but also in general) w.r.t.
generalised Veltman semantics, let us sketch a situation for which there are clear benefits
in working with generalised Veltman semantics. We do this only now because ILM0 is
sufficiently complex to display some of these benefits. Suppose we are building models
step-by-step (as in the construction method from [27]), and worlds w, u1, u2 and x occur
in the configuration displayed in Figure 4.1. Furthermore, suppose we need to produce
an Sw-successor v of x.

With the ordinary semantics, we need to ensure that for our Sw-successor v, for each
�B1 ∈ u1 and�B2 ∈ u2, we have�B1,�B2 ∈ v. It is not obvious that such a construction
is possible. In case of ILM0, it was successfully solved in [27] by preserving the invariant
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Figure 4.1: Left: extending an ordinary Veltman model. Right: extending a generalised
Veltman model. Straight lines represent R-transitions, while curved lines represent Sw-
transitions. Full lines represent the starting configuration, and dashed lines represent the
transitions that are to be added. This figure is also taken from [50].

that sets of boxed formulas in ui are linearly ordered. This way, finite (quasi-)models can
always be extended by only taking the last ui into consideration.

With generalised Veltman semantics, we need to produce a whole set of worlds V , but
the requirements from the frame condition wRuRxSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ⊆
R[u])) on each particular world are less demanding. For each ui, there has to be a
corresponding Vi ⊆ V with �Bi contained (true) in every world of Vi. Lemma 4.15 gives
a recipe for producing such worlds.

Theorem 4.16 The logic ILM0 is complete w.r.t. ILsetM0-models.

Proof. Given Theorem 4.9, it suffices to show that for any set D, the ILM0-structure for
D possesses the property (M0)gen. Let (W,R, {Sw : w ∈ W},
) be the ILM0-structure
for D. Assume wRuRxSwV and take V ′ = {v ∈ V : w ≺u�∅ v}. We claim that uSwV ′

and R[V ′] ⊆ R[u]. Obviously V ′ ⊆ V ⊆ R[w]. Assume w ≺S u. Lemma 4.15 and
w ≺S u ≺ x imply w ≺S∪u�∅ x. Now xSwV and the definition of Sw imply there is v ∈ V
such that w ≺S∪u�∅ v. Lemma 4.2 implies w ≺u�∅ v. So, v ∈ V

′. It remains to verify that
R[V ′] ⊆ R[u]. Let v ∈ V ′ and z ∈ W be worlds such that vRz. Since w ≺u�∅ v, for all
�B ∈ u we have �B ∈ v, and since vRz, it follows that �B,B ∈ z. Thus, u ≺ z i.e.
uRz. a

4.2.3 The logic ILP
As in the case of the logic ILM, the completeness of ILP w.r.t. the generalised seman-

tics is an easy consequence of the completeness of ILP w.r.t. the ordinary semantics, first
proved by de Jongh and Veltman [18]. Verbrugge determined the characteristic property
(P)gen in [62]:

wRw′RuSwV ⇒ (∃V ′ ⊆ V ) uSw′V ′.

The labelling lemma, Lemma 3.22, holds for our definition of ≺S too.
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Lemma 4.17 ([11] Lemma 3.8) Let w, x and u be some ILP-MCS’s, and let S and T be
arbitrary sets of formulas. If w ≺S x ≺T u then w ≺S∪x�

T
u.

Theorem 4.18 The logic ILP is complete w.r.t. ILsetP-models.

Proof. Given Theorem 4.9, it suffices to show that for any set D, the ILP-structure for D
possesses the property (P)gen. Let (W,R, {Sw : w ∈ W},
) be the ILP-structure for D.
Let wRw′RuSwV and take V ′ = V ∩ R[w′]. We claim uSw′V

′. Let T be arbitrary such
that w′ ≺T u. Lemma 4.17 and w ≺∅ w′ ≺T u imply w ≺w′�T u. Now, uSwV implies that
there is a v ∈ V with w ≺w′�T v. Let A � ¬∧T ′ ∈ w′ for some finite T ′ ⊆ T . Then
¬A,�¬A ∈ w′�T . Lemma 4.2 and w ≺w′�T v imply ¬A,�¬A ∈ v. Thus, w′ ≺T v. Finally,
V ′ ⊆ R[w′] holds by assumption, thus uSw′V ′. a

4.2.4 The logic ILP0

The interpretability principle P0 = A�3B → �(A�B) is introduced in J. Joosten’s
master thesis in 1998. In [28] it is shown that the interpretability logic ILP0 is incomplete
w.r.t. Veltman models. Since we will show that ILP0 is complete w.r.t. the generalised
semantics, this is the first example of an interpretability logic complete w.r.t. the gener-
alised semantics, but incomplete w.r.t. the ordinary semantics. Characteristic property
(P0)gen was determined in [28]. A slightly reformulated version:

wRxRuSwV & (∀v ∈ V )R[v] ∩ Z 6= ∅ ⇒ (∃Z ′ ⊆ Z)uSxZ ′.

The following technical lemma is almost obvious.

Lemma 4.19 Let x be an ILX-MCS, A a formula, and T a finite set of formulas. Let
BG be an arbitrary formula, and TG an arbitrary finite set of formulas, for every G ∈ T .
Furthermore, assume:

a) A� ∨G∈T BG ∈ x;

b) (∀G ∈ T ) BG �
∨
H∈TG ¬H ∈ x.

Then we have A� ∨H∈S′ ¬H ∈ x, where S ′ = ⋃
G∈T TG.

Proof. Let G ∈ T . Since TG ⊆ S ′, clearly ` ∨H∈TG ¬H � ∨H∈S′ ¬H. The requirement b)
and the axiom (J2) imply BG �

∨
H∈S′ ¬H ∈ x. Now |T | − 1 applications of the axiom

(J3) give ∨G∈T BG �
∨
H∈S′ ¬H ∈ x. Finally, apply the requirement a) and the axiom

(J2). a

Next we need a labelling lemma for ILP0. This is where we use the technical lemma
above.
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Lemma 4.20 Let w, x and u be some ILP0-MCS’s, and let S be a set of formulas. If
w ≺ x ≺S u then w ≺x�S u.

Proof. Let A be an arbitrary formula. Let T ⊆ x�S be a finite set such that A�∨G∈T ¬G ∈
w. We will prove that ¬A,�¬A ∈ u. If G ∈ T (⊆ x�S ), then G = �¬BG, for some formula
BG. Thus A � ∨

G∈T ¬�¬BG ∈ w, and by easy inferences and maximal consistency:
A�

∨
G∈T 3BG ∈ w, and A�3

∨
G∈T BG ∈ w. Applying P0 gives �(A� ∨G∈T BG) ∈ w.

The assumption w ≺ x implies A�∨G∈T BG ∈ x. For each G ∈ T (⊆ x�S ) there is a finite
subset TG of S such that BG �

∨
H∈TG ¬H ∈ x. Let S ′ = ⋃

G∈T TG. Clearly S ′ is a finite
subset of S. Lemma 4.19 implies A� ∨H∈S′ ¬H ∈ x. Finally, S ′ ⊆ S and the assumption
x ≺S u imply ¬A,�¬A ∈ u. a

The following simple observation is useful both for ILP0 and ILR.

Lemma 4.21 Let w, x, v and z be some ILX-MCS’s, and let S be a set of formulas. If
w ≺x�S v ≺ z then x ≺S z.

Proof. Let S ′ be a finite subset of S with A �
∨
G∈S′ ¬G ∈ x. Then �¬A ∈ x�S . Now

w ≺x�S v and Lemma 4.2 imply �¬A ∈ v. Since v ≺ z, we have ¬A,�¬A ∈ z. a

Theorem 4.22 The logic ILP0 is complete w.r.t. ILsetP0-frames.

Proof. Given Theorem 4.9, it suffices to show that for any set D, the ILP0-structure for
D possesses the property (P0)gen. Let (W,R, {Sw : w ∈ W},
) be the ILP0-structure for
D. Assume wRxRuSwV and R[v] ∩ Z 6= ∅ for each v ∈ V . We will prove that there is
Z ′ ⊆ Z such that uSxZ ′. Let S be a set of formulas such that w ≺ x ≺S u. Lemma 4.20
implies w ≺x�S u. Since uSwV , there is v ∈ V such that w ≺x�S v. Since R[v] ∩ Z 6= ∅,
choose a world zS ∈ R[v] ∩ Z. Now w ≺x�S v ≺ zS and Lemma 4.21 imply x ≺S zS. Put
Z ′ = {zS : S is a set of formulas such that x ≺S u}. Clearly Z ′ ⊆ Z. So, Z ′ ⊆ R[x], and
since for each set S such that x ≺S u we have x ≺S zS, it follows that uSxZ ′. a

In [62] and [73] a possibility was explored of transforming a generalised Veltman model
to an ordinary Veltman model, such that these two models are bisimilar (in some aptly
defined sense). A natural question is whether such transformation exists if we add the
requirement that characteristic properties are preserved. The example of ILP0 shows that
there are ILsetP0-models with no (bisimilar or otherwise) counterpart ILP0-models.

4.2.5 The logic ILR
Completeness of ILR w.r.t. ordinary Veltman semantics is an open problem (see [11]).

In this subsection we will prove that ILR is complete w.r.t. the generalised semantics.
Characteristic property (R)gen was determined in [28]. A slightly reformulated version:

wRxRuSwV ⇒ (∀C ∈ C(x, u))(∃U ⊆ V )(xSwU & R[U ] ⊆ C),
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where C(x, u) = {C ⊆ R[x] : (∀Z)(uSxZ ⇒ Z ∩ C 6= ∅)} is the family of “choice sets”.
The following lemma holds for our definition of ≺S too.

Lemma 4.23 ([11], Lemma 3.10) Let w, x and u be some ILR-MCS’s, and let S and T
be arbitrary sets of formulas. If w ≺S x ≺T u then w ≺S∪x�T u.

Theorem 4.24 The logic ILR is complete w.r.t. ILsetR-models.

Proof. Given Theorem 4.9, it suffices to show that for any set D, the ILR-structure for D
possesses the property (R)gen. Let (W,R, {Sw : w ∈ W},
) be the ILR-structure for D.
Assume wRxRuSwV and C ∈ C(x, u). We are to show that (∃U ⊆ V )(xSwU & R[U ] ⊆
C). We will first prove an auxiliary claim:

(∀S)
(
w ≺S x ⇒ (∃v ∈ V )(w ≺S∪x�∅ v & R[v] ⊆ C)

)
.

So, let S be arbitrary such that w ≺S x, and suppose (for a contradiction) that for
every v ∈ V with w ≺S∪x�∅ v, we have R[v] * C, that is, there is some zv ∈ R[v] \ C.
Let Z = {zv : v ∈ V,w ≺S∪x�∅ v}. We claim that uSxZ. Let T be arbitrary such
that x ≺T u, and we should prove that there exists z ∈ Z such that x ≺T z. From
w ≺S x ≺T u and Lemma 4.23 it follows that w ≺S∪x�T u. Since uSwV , there is v ∈ V
with w ≺S∪x�T v. Now, x�∅ ⊆ x�T and Lemma 4.2 imply w ≺S∪x�∅ v, so there is a world
zv ∈ Z as defined earlier. Furthermore, w ≺x�T v ≺ zv and Lemma 4.21 imply x ≺T zv.
To prove uSxZ it remains to verify that Z ⊆ R[x]. Let zv ∈ Z be arbitrary and apply
Lemma 4.2 and Lemma 4.21 as before. Now, uSxZ and C ∈ C(x, u) imply C ∩ Z 6= ∅,
contradicting the definition of Z. This concludes the proof of the auxiliary claim. Let
U = {v ∈ V : w ≺x�∅ v and R[v] ⊆ C}. Auxiliary claim implies U 6= ∅. If w ≺S x,
auxiliary claim implies there is v ∈ U such that w ≺S∪x�∅ v and R[v] ⊆ C, so v ∈ U . Thus
xSwU . It is clear that R[U ] ⊆ C. a

4.2.6 The logics ILW and ILW∗

To prove that ILW is complete, one could try to find a sufficiently strong “labelling
lemma” and use Definition 4.6 (ILX-structure). One candidate might be the following
condition:

w ≺S u ⇒ (∃G ∈ D)
(
w ≺S∪{�¬G} u & G ∈ u

)
,

where D is finite, closed under subformulas and such that each w ∈ W contains Aw and
2¬Aw for some Aw ∈ D. If there is such a condition, it would greatly simplify proofs
of completeness for extensions of ILW. Unfortunately, at the moment we do not know if
such a condition can be formulated and proved.

Another approach is to use a modified version of Definition 4.6 to work with ILW and
its extensions. This way we won’t require a labelling lemma, but we lose generality in the
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following sense. To prove the completeness of ILXW, for some X, it no longer suffices to
simply show that the structure defined in Definition 4.6 has the required characteristic
property (when each world is an ILX-MCS). Instead, the characteristic property of ILX
has to be shown to hold on the modified structure. So, to improve compatibility with
proofs based on Definition 4.6, we should prove the completeness of ILW with a definition
as similar to Definition 4.6 as possible. That is what we do in the remainder of this section.
This approach turns out to be good enough for ILW∗ (ILWM0). We didn’t succeed in
using it to prove the completeness of ILWR. However, to the best of our knowledge,
ILWR might not be complete at all.

We use the following condition (W)gen (the “positive” version):

(W)gen := uSwV ⇒ (∃V ′ ⊆ V )
(
uSwV

′ & R[V ′] ∩ S−1
w [V ] = ∅

)
.

In what follows, ILWX denotes an arbitrary extension of ILW.
We will use the following two lemmas, which we already discussed near the end of

the previous chapter (lemmas 3.28 and 3.29). Here we emphasise that they hold for our
definition of ≺S too.

Lemma 4.25 ([11], Lemma 3.12) Let w be an ILWX-MCS, and B and C formulas such
that ¬(B � C) ∈ w. Then there is an ILWX-MCS u such that w≺{�¬B,¬C}u and B ∈ u.

Lemma 4.26 ([11], Lemma 3.13) Let w and u be some ILWX-MCS, B and C some
formulas, and S a set of formulas such that B � C ∈ w, w ≺S u and B ∈ u. Then there
is an ILWX-MCS v such that w ≺S∪{�¬B} v and C,�¬C ∈ v.

Given a binary relation R, let Ṙ[x] = R[x] ∪ {x}.
When defining Sw we have to take care to make it compatible with the properties of a

generalised Veltman model, in particular, the property that wRu implies uSw{u} and the
property that wRuRv implies uSw{v}. So, if we fix w and u, we should have uSw{v} for
all v ∈ Ṙ[u](= R[u] ∪ {u}). However, because of monotonicity, we want not only uSw{v}
in such cases, but also uSwV for all V ⊆ R[v] that contain v. This is why we add the
condition (a) in the definition below (within the definition of Sw).

If the set Ṙ[x] contains maximal consistent sets (which it usually does in this section),
then ⋃ Ṙ[x] is a set of formulas. If satisfaction coincides with formulas contained, then it
is useful to think of ⋃ Ṙ[x] as the set of formulas B such that either B or 3B is satisfied
in x (however, one has to be careful with such an interpretation, since we do not claim
our truth lemma to hold for all formulas).

Definition 4.27 Let X be W or W∗. We say that M = (W,R, {Sw : w ∈ W}, V ) is the
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ILX-structure for a set of formulas D if:

W := {w : w is an ILX-MCS and for some G ∈ D, G ∧�¬G ∈ w};
wRu :⇔ w ≺ u;
uSwV :⇔ wRu and, V ⊆ R[w] and, one of the following holds:

(a) V ∩ Ṙ[u] 6= ∅;
(b) (∀S)

(
w ≺S u⇒ (∃v ∈ V )

(
∃G ∈ D ∩ ⋃ Ṙ[u]

)
w ≺S∪{�¬G} v

)
;

w ∈ V (p) :⇔ p ∈ w.

With this definition, we can now prove a truth lemma.

Lemma 4.28 Let X be W or W*. The ILX-structure M for D is a generalised Veltman
model. Furthermore, the following holds:

M, w 
 G if and only if G ∈ w,

for each G ∈ D and w ∈ W.

Proof. Let us first verify that the ILX-structure M = (W,R, {Sw : w ∈ W},
) for D is
a generalised Veltman model. All the properties, except for quasi-transitivity, have easy
proofs (see the proof of Lemma 4.8). Let us prove the quasi-transitivity. Assume uSwV ,
and vSwUv for all v ∈ V . Put U = ⋃

v∈V Uv. We claim that uSwU . Clearly U ⊆ R[w]. To
prove uSwU we will distinguish the cases (a) and (b) from the definition of the relation
Sw for uSwV. In the case (a), we have v0 ∈ V for some v0 ∈ Ṙ[u]. We will next distinguish
two cases from the definition of v0SwUv0 . In the case (aa) we have x ∈ Uv0 for some
x ∈ Ṙ[v0]. Since v0 ∈ Ṙ[u], we then have x ∈ Ṙ[u]. Since x ∈ Uv0 ⊆ U , then U ∩ Ṙ[u] 6= ∅.
So, we have uSwU , as required. In the case (ab) we have:

(∀S)(w ≺S v0 ⇒ (∃x ∈ Uv0)(∃G ∈ D ∩
⋃
Ṙ[v0]) w ≺S∪{�¬G} x).

To prove uSwU in this case, we will use the case (b) from the definition of the relation
Sw. Assume w ≺S u. Then we have w ≺S u ≺ v0 or w ≺S u = v0. Either way, possibly
using Lemma 4.2, we have w ≺S v0, and so there are x ∈ Uv0 and G ∈ D ∩ ⋃ Ṙ[v0] with
w ≺S∪{�¬G} x. Since uRv0 or u = v0, we have Ṙ[v0] ⊆ Ṙ[u]. So, the claim follows. In the
case (b), we have:

(∀S)(w ≺S u⇒ (∃v ∈ V )(∃G ∈ D ∩
⋃
Ṙ[u]) w ≺S∪{�¬G} v).

To prove uSwU we will use the case (b) from the definition of the relation Sw. Assume
w ≺S u. Then there are v0 ∈ V and G ∈ D ∩ ⋃ Ṙ[u] such that w ≺S∪{�¬G} v0. From
v0 ∈ V it follows that v0SwUv0 . We will next distinguish between the possible cases in
the definition of v0SwUv0 . In the first case (ba) we have Uv0 ∩ Ṙ[v0] 6= ∅, i.e. there is
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x ∈ Uv0 ∩ Ṙ[v0]. Then w ≺S∪{�¬G} v0 = x or w ≺S∪{�¬G} v0 ≺ x. In both cases (possibly
using Lemma 4.2) we have w ≺S∪{�¬G} x. In the case (bb):

(∀S ′)(w ≺S′ v0 ⇒ (∃x ∈ Uv0)(∃G′ ∈ D ∩
⋃
Ṙ[v0]) w ≺S′∪{�¬G′} x).

From w ≺S∪{�¬G} v0 it follows that there are some x ∈ Uv0 and G′ ∈ D ∩ ⋃ Ṙ[v0] such
that w ≺S∪{�¬G,�¬G′} x. Lemma 4.2 implies w ≺S∪{�¬G} x, as required. We claim that
for each formula G ∈ D and each world w ∈ W the following holds:

M, w 
 G if and only if G ∈ w.

The claim is proved by induction on the complexity of G. The only non-trivial case is
when G = B � C. Assume B � C ∈ w, wRu and u 
 B. Induction hypothesis implies
B ∈ u. We claim that uSw[C]w. Clearly [C]w ⊆ R[w]. Assume w ≺S u. Lemma 4.26
implies that there is an ILX-MCS v with w ≺S∪{�¬B} v and C,�¬C ∈ v (thus v ∈ W ).
Since C ∈ v, the induction hypothesis implies v 
 C. Since w ≺ v, i.e. wRv, then v ∈ [C]w.
Now, B ∈ D and B ∈ u imply B ∈ D ∩ ⋃ Ṙ[u]. Thus, uSw[C]w holds by the clause (b)
from the definition. To prove the converse, assume B � C /∈ w. Since w is an ILX-MCS,
¬(B�C) ∈ w. Lemma 4.25 implies there is u with w ≺{�¬B,¬C} u and B ∈ u. Lemma 4.2
implies �¬B ∈ u. So, B∧�¬B ∈ u; thus u ∈ W. The induction hypothesis implies u 
 B.
Let V ⊆ R[w] be such that uSwV . We will find a world v ∈ V such that w ≺{¬C} v. We
will distinguish the cases (a) and (b) from the definition of the relation Sw. Consider the
case (a). Let v be an arbitrary node in V ∩ Ṙ[u]. If v = u, clearly w ≺{�¬B,¬C} v. If
uRv, then we have w ≺{�¬B,¬C} u ≺ v. Lemma 4.2 implies w ≺{�¬B,¬C} v. Consider the
case (b). From w ≺{�¬B,¬C} u and the definition of Sw it follows that there is v ∈ V and
a formula D ∈ D such that w ≺{�¬B,¬C,�¬D} v. In both cases we have w ≺{¬C} v; thus
C /∈ v. Induction hypothesis implies v 1 C; whence V 1 C, as required. a

This lemma brings us one step away from a completeness proof.

Theorem 4.29 The logic ILW is complete w.r.t. ILsetW-models.

Proof. In the light of Lemma 4.28, it suffices to show that the ILW-structure M for D
possesses the property (W)gen. Recall the characteristic property (W)gen:

uSwV ⇒ (∃V ′ ⊆ V )(uSwV ′ & R[V ′] ∩ S−1
w [V ] = ∅).

Suppose for a contradiction that there are w, u and V such that:

uSwV & (∀V ′ ⊆ V )(uSwV ′ ⇒ R[V ′] ∩ S−1
w [V ] 6= ∅). (4.1)

Let V denote all such sets V (we keep w and u fixed). Let n = 2|D|. Fix any enumeration
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D0, . . . ,Dn−1 of P(D) that satisfies D0 = ∅. We define a new relation Siw for all 0 ≤ i < n,
y ∈ W and U ⊆ W as follows:

ySiwU ⇐⇒ ySwU, Di ⊆
⋃
Ṙ[y], U ⊆

 ∨
G∈Di

�¬G


w

.

Let y ∈ W and U ⊆ R[w] be arbitrary. Let us prove that ySwU implies the following:

(∃U ′ ⊆ U)(∃i < n) ySiwU ′. (4.2)

If ySwU holds by (a) from the definition of Sw, the set U ∩ Ṙ[y] is non-empty. Pick
arbitrary z ∈ U ∩ Ṙ[y] and put U ′ = {z}. We have either wRyRz or y = z. If wRyRz,
we have ySw{z}. Otherwise, y = z. Now quasi-reflexivity implies ySw{z}. Since y ∈ W ,
there is a formula G ∈ D such that G∧�¬G ∈ y. Fix i < n such that Di = {G}. Clearly
Di ⊆

⋃
Ṙ[y]. Since z ∈ U and ySwU , clearly U ′ ⊆ R[w]. Since y = z or yRz, we also have

�¬G ∈ z. Truth lemma implies U ′ 
 �¬G; since if zRt, G /∈ t, (truth lemma is applied
here) t 1 G, so z 
 �¬G. Thus U ′ ⊆ [�¬G]w, and ySiwU ′. If ySwU holds by (b) from
the definition of Sw, take:

U ′ = {z ∈ U : (∃G ∈ D ∩
⋃
Ṙ[y]) w ≺{�¬G} z};

Di = {G ∈ D ∩
⋃
Ṙ[y] : (∃z ∈ U) w ≺{�¬G} z}.

In other words, U ′ is the image of the mapping that is implicitly present in the definition
of the relation Sw (clause (b)): for each S, pick a world vS (to be included in U ′), and
a formula GS (to be included in Di). Let m < n be maximal such that there are U ∈ V
and U ′ ⊆ U with the following properties:

(i) (∀x ∈ U)[(∃y ∈ R[x])(∃Z ⊆ U)(∃i ≤ m) ySiwZ ⇒ x /∈ U ′];

(ii) (∀x ∈ W )(xSwU ⇒ xSwU
′).

Since D0 = ∅, we have [∨G∈D0 �¬G]w = [⊥]w = ∅. So there are no Z ⊆ [∨G∈D0 �¬G]w
such that ySwZ for some y ∈ W . So, if we take m = 0 and U ′ = U for any U ∈ V , (i)
and (ii) are trivially satisfied. Since n is finite and conditions (i) and (ii) are satisfied for
at least one value m, there must be a maximal m < n with the required properties. Let
us first prove that m < n − 1. Assume the opposite, that is (since m < n), m = n − 1.
Then there are U ∈ V and U ′ ⊆ U such that the conditions (i) and (ii) are satisfied for
m = n − 1. Since U ∈ V , we have uSwU. The condition (ii) implies uSwU ′. Now U ∈ V ,
U ′ ⊆ U and uSwU ′ imply R[U ′] ∩ S−1

w [U ] 6= ∅. Thus there are x ∈ U ′ and y ∈ R[x] such
that ySwU . Now (ii) implies ySwU ′. The earlier remark (4.2) implies that there is Z ⊆ U ′

and i < n such that ySiwZ. Since m = n − 1, it follows that i ≤ m. The condition (i)
implies x 6∈ U ′, a contradiction. Thus, m < n− 1. Let us now prove that m is, contrary
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to the assumption, not maximal, by showing that m + 1 satisfies (i) and (ii). Let U ∈ V
and U ′ ⊆ U be some sets such that the conditions (i) and (ii) are satisfied for m. Denote:

Y = {x ∈ U ′ : (∃y ∈ R[x])(∃Z ⊆ U ′) ySm+1
w Z}.

Let us prove that m + 1 also satisfies (i) and (ii) with U ′ instead of U , and U ′ \ Y
instead of U ′. We should first show that U ′ ∈ V . So, suppose that uSwT ⊆ U ′. Now,
T ⊆ U ′ ⊆ U and U ∈ V imply that there are some v ∈ T and z ∈ R[v] such that zSwU .
The property (ii) for m (with sets U and U ′) implies zSwU ′. So, R[T ] ∩ S−1

w [U ′] 6= ∅, as
required. Now let us verify the property (i) for the newly defined sets (U ′ and U ′ \ Y ).
Let x ∈ U ′, y ∈ R[x], Z ⊆ U ′, i ≤ m + 1 be arbitrary such that ySiwZ. If i ≤ m, the
property (i) for m implies x /∈ U ′, so in particular, x /∈ U ′ \ Y . If i = m+ 1, then x ∈ Y .
Thus x /∈ U ′ \ Y and the condition (i) is satisfied.

It remains to prove (ii). Take arbitrary x ∈ W such that xSwU ′. For every y ∈ Y , the
definition of Y implies the existence of some zy ∈ R[y] and Uy ⊆ U ′ such that zySm+1

w Uy.
From the definition of the relation Sm+1

w we have Dm+1 ⊆
⋃
Ṙ[zy]. Now, yRzy and the

truth lemma imply y 
 3G, for each G ∈ Dm+1. From the definition of the relation Sm+1
w

and zySm+1
w Uy we have Uy ⊆ [∨G∈Dm+1 �¬G]w. So, the following holds:

Y 

∧

G∈Dm+1

3G and Uy 

∨

G∈Dm+1

�¬G,

for all y ∈ Y . Thus, Uy ∩ Y = ∅, for every y ∈ Y. For every y ∈ U ′ \ Y put Uy = {y}.
Again, Uy∩Y = ∅. Note that ⋃y∈U ′ Uy = U ′ \Y . Now xSwU

′ and quasi-transitivity imply
xSwU

′ \ Y . The fact that (i) and (ii) hold for m+ 1 contradicts the maximality of m. a

We could have proven completeness of ILW through simpler arguments if the com-
pleteness of ILW was our ultimate goal, and one way is through the following proposition.
However, we need the format of the argument above when proving completeness of ex-
tensions of ILW.

Proposition 4.30 Let M = (W,R, {Sw ∈ W},
) be a Veltman model with the property
(W). Then gen(M) = (W,R, {S ′w ∈ W},
) is a generalised Veltman model with the
property (W)gen.

Proof. Assume the opposite, i.e. gen(M) has the property (W)gen. We will obtain an
infinite chain z0Swx0Rz1Swx1R . . . , which contradicts (W). Choose a world w, a non–
empty set X ⊆ R [w] and z0 ∈ W such that z0S

′
wX and:

(∀V ⊆ X)
(
z0S

′
wV ⇒ (∃v ∈ V )(R [v] ∩ (S ′w)−1 [X] 6= ∅)

)
.

We have defined the first element, z0, of our sequence. We will define the remainder
of the sequence recursively. Suppose we have defined worlds z0, x0, z1, x1, . . . up to some
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world zi for i ∈ ω such that the following is true:

(∀V ⊆ X)
(
ziS
′
wV ⇒ (∃v ∈ V )(R [v] ∩ (S ′w)−1 [X] 6= ∅)

)
.

We will now construct worlds xi and zi+1. Note that the world z0 satisfies this property.
The fact that ziS ′wX and the definition of model gen(M) imply ziSwxi for some xi ∈ X.

Hence ziS ′w{xi}, so the property that by assumption holds for zi implies that there is zi+1

such that xiRzi+1 and zi+1S
′
wX.

Assume there is a set V ⊆ X such that:

zi+1S
′
wV & (∀v ∈ V )(R [v] ∩ (S ′w)−1 [X] = ∅).

Since wRxiRzi+1, we have xiS ′w{zi+1}. Now, ziS ′w{xi}, xiS ′w{zi+1}, zi+1S
′
wV and quasi-

transitivity of the relation S ′w imply ziS ′wV . But this, together with the fact that (∀v ∈
V )(R [v] ∩ (S ′w)−1 [X] = ∅), contradicts the property that, by assumption, holds for zi.
Hence, for the world zi+1 the following holds:

(∀V ⊆ X)
(
zi+1S

′
wV ⇒ (∃v ∈ V )(R [v] ∩ Z 6= ∅)

)
.

a

Goris and Joosten proved in [27] the completeness of ILW∗ (recall that this is equiv-
alent to ILWM0) w.r.t. ordinary Veltman semantics. One way to obtain completeness
w.r.t. generalised Veltman semantics would be to use Proposition 4.12. We proceed to
prove completeness directly, without referring to ordinary semantics. The benefit is, as
always, in the possibility that this approach might be used for the extension of ILW (and
ILW∗) which may not be complete with respect to ordinary Veltman semantics.

Theorem 4.31 The logic ILW∗ is complete w.r.t. ILsetW ∗-models.

Proof. With Lemma 4.28, it suffices to prove that the ILW∗-structure for D possesses
the properties (W)gen and (M0)gen, for each appropriate D. So, let M = (W,R, {Sw : w ∈
W},
) be the ILW *-structure for D. Theorem 4.29 shows that the model M possesses
the property (W)gen. It remains to show that it possesses the property (M0)gen. Assume
wRuRxSwV . We claim that there is V ′ ⊆ V such that uSwV ′ and R[V ′] ⊆ R[u]. First,
consider the case when xSwV holds by the clause (a) from the definition of Sw. So there
is v ∈ V such that x = v or xRv. In both cases, wRuRv, and so uSw{v}. It is clear
that R[v] ⊆ R[x] ⊆ R[u]. So it suffices to take V ′ = {v}. Otherwise, xSwV holds by the
clause (b). Take V ′ = {v ∈ V : w ≺u�∅ v}. Clearly, V ′ ⊆ V ⊆ R[w]. Assume w ≺S u.
Now w ≺S u ≺ x and Lemma 4.15 imply w ≺S∪u�∅ x. The definition of xSwV (clause (b))
implies there is G ∈ D∩⋃ Ṙ[x] (so G ∈ D∩⋃ Ṙ[u]) and v ∈ V such that w ≺S∪u�∅ ∪{�¬G} v,
thus also v ∈ V ′. In particular, w ≺S∪{�¬G} v. Since S was arbitrary, uSwV ′. It remains
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to verify that R[V ′] ⊆ R[u]. Assume V ′ 3 vRz. Since w ≺u�∅ v, for all �B ∈ u we have
�B ∈ v, and since vRz, it follows that �B,B ∈ z. Thus, u ≺ z i.e. uRz. a

In [49] it is shown that ILW∗ possesses the finite model property w.r.t. generalised
Veltman semantics. To show decidability, (stronger) completeness w.r.t. ordinary Veltman
models was used in [49]. However, we observe that Theorem 4.31 above suffices for the
mere purpose of decidability.

4.2.7 The logic ILWR
In previous subsections we saw that the completeness of ILR can be proven using

ILR-structures, and that the completeness of ILW can be proven using ILW-structures.
These two types of structures have non-trivial differences (they differ by more than just
the notion of ILX-consistency used). However, we saw that ILW∗-structures have the
same form as ILW-structures. So, one may hope to prove completeness of ILWR with
the help of the same form of structures.

Unfortunately, it seems that ILWR-structures, if by an ILWR-structure we mean
an ILW-structure with the notion of ILW-consistency replaced with that of ILWR-
consistency, does not possess the characteristic property (R)gen. In the remainder of
this chapter (based on [26]) we call the type of the problem that emerges “the label iter-
ation problem”. We will demonstrate how to overcome this problem for a simpler logic.
As for the logic ILWR itself, we return to it in the closing chapter of the thesis. We
decided to postpone the discussion because (1) we do not obtain an answer to the main
problem of whether ILWR is complete or not; (2) we need some arithmetical background
for that chapter; and (3) the discussion will be lengthy, and is more naturally presented
as a separate chapter.
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4.3 Generalising ILX-structures
The labelling that was considered so far was concerned with two or three worlds at a

time. Due to the transitivity of R, labelling longer sequences often simplifies to labelling
pairs or triples of worlds.

In this section, we first show that labelling sequences in ILR-models indeed reduces to
labelling triples of worlds. The completeness of the logic ILR w.r.t. the ordinary Veltman
semantics is still an open problem. The fact that labels for this logic are compatible with
transitive closures makes our labelling a good candidate for the step-by-step completeness
proofs such as the construction method [27].

In the remainder of the section we deal with logics whose labelling does not trivially
reduce to labelling pairs or triples of worlds. At the moment, the only logics falling into
this category that we know of are various extensions of ILW. An example is ILWR, which
may also be the most interesting example since it is the simplest logic among those whose
(in)completeness status is currently open.

There is an easily identifiable problem in taking transitive closures when working with
assuringness. Suppose we are working in ILR. Let us recall that for ILR we have that
Γ≺S∆≺T∆′ implies Γ≺S∪∆2T∆′ (Lemma 3.26).

Consider the following situation that might occur while iteratively building a model in
a step-by-step completeness proof: x ≺U Γ ≺S ∆ ≺T y, where U , S and T are arbitrary
sets of formulas, while x,Γ,∆, y are MCS’s and at the same time the worlds in the model
we are building. If we wish to compute the label between x and y it does make a difference
whether we first compute the label for the transitive transition between x and ∆ or the
label for the transitive transition between Γ and y. In the first case we get U ∪ Γ2S ∪∆2

T

as the label between x and y, and otherwise we get U ∪ Γ2S∪∆2T
. Lemma 4.32 implies that

the following is the case:
U ∪ Γ2S∪∆2T

⊆ U ∪ Γ2S ∪∆2
T .

This determines which way should the closure procedure proceed when faced with a choice,
i.e. we should go with the first choice since it results in a more informative label.

Lemma 4.32 For logics containing R we have that Γ≺S∆ implies Γ2S∪∆2T
⊆ ∆2

T .

Proof. Consider 2¬A ∈ Γ2S∪∆2T
, that is, for some Si ∈ S and 2¬Bj ∈ ∆2

T , A �
∨¬Si ∨∨¬2¬Bj ∈ Γ. By R, ¬(A�∨Bj)�

∨¬Si ∈ Γ, whence by Γ≺S∆, we get A�∨Bj ∈ ∆.
But for each Bj there is Tjk ∈ T with Bj �

∨¬Tjk ∈ ∆, whence A � ∨¬Tjk ∈ ∆ and
2¬A ∈ ∆2

T . a

4.3.1 Motivation for labelling systems
We will now present an issue concerning labelling in ILWR. Both ILW [19] and ILR

[50] are known to be complete, but this question remains open for ILWR.
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w x u

v z

S T

S ∪ x2
T ∪ {2¬C}

w x

T

C

Figure 4.2: Labels for ILWR

We first discuss this problem, and then see how a more elaborate labelling system
can help. At the moment we do not know if the labelling systems will lead to a full
completeness proof of ILWR (see the final chapter of this thesis).

The plan for the remainder of the section, and indeed the chapter, is to illustrate
labelling systems and how they help. To accomplish this we will work with ILP, another
logic exhibiting the same issue (if we wish to prove completeness with respect to ILW-
structure-like objects). With ILP we can give a full completeness proof together with a
to-the-point presentation on how to deal with logics with non-trivial labelling of sequences.
Thus, the above mentioned elaborate labelling systems should at least be an ingredient,
if not the whole solution, in proving the more interesting completeness results (such as,
possibly, the one for ILWR).

Suppose2 we are building a model step-by-step (as in the construction method [27])
and we have A � B ∈ w ≺S x ≺T u 3 A. So, we need to find some v with B ∈ v and a
sufficiently strong label for wRv; and then declare uSwv. Using the labelling lemmas for
W and R, it is easy to find v with w ≺S∪x2T∪{2¬C} v for some C contained either in u or
in a world R-accessible from u. Let us for the moment suppose that any such v fits our
purposes.

Now, assume that at some later point during the construction, a world z appears with
vRz. By the frame condition of the principle R, we should have uSxz. If we were building
an ILR-model (and not an ILWR-model), we would have to ensure just that z has the
same assuringness as u with respect to x, that is, xRz should be labelled with T . Since
we are building an ILWR-model and in order to ensure the frame condition for W, in
addition to that we are to find a formula C ′ with x ≺T∪{2¬C′} z. An obvious candidate
for C ′ is C. However, from w ≺S∪x2T∪{2¬C} v ≺ z we only get x ≺T z (Lemma 4.21),
and what we would like is to have x ≺T∪{2¬C} z. Let us refer to this phenomenon as the
problem of label iteration.

One way to try to solve this problem is to simply require 2¬C to appear at the right
2This paragraph describes the situation represented in Figure 4.2. The triangle in the top-right corner

represents the set Ṙ[u]. Some world in this set has to contain the formula C.
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place in the original label, i.e., instead of asking for w ≺S∪x2T∪{2¬C} v, we ask for

w ≺S∪x2
T∪{2¬C}∪{2¬C} v. (4.3)

If we are proving completeness w.r.t. generalised semantics using the approach from earlier
sections, this means that we should add a new condition in the definition of Sw (Definition
4.6). However, similar to how the original condition concerning two worlds requires us to
add the new condition concerning three worlds that we just described, this condition itself
requires us to add another condition, this time concerning four worlds. Let us illustrate
this.

Suppose we chose the world v and occur the following situation later in the construction
process (see Figure 4.2):

A�B ∈ w ≺S x ≺T u 3 A and v ≺ z.

We would like to show uSxz. With the new condition added in the definition of Sw, we now
have to show that if x ≺S′ x′ ≺T ′ u, then the world v satisfies x ≺S′∪{2¬A}∪x′2

T ′∪{2¬A}
v 3 B.

It would be convenient if we were able to prove

w ≺x2
S′∪{2¬A}∪x′2

T ′∪{2¬A}
∪{2¬A} v, (4.4)

since from this we can conclude x ≺S′∪{2¬A}∪x′2
T ′∪{2¬A}

v 3 B. However, to be able to
conclude (4.4) we need to have a new case in the definition of Sw, one that concerns not
just w, x and u; but w, x, x′ and u. So, the choice of v that fits earlier requirements
might not be good enough. Analogous reasoning applies for longer sequences of worlds,
i.e. any finite amount of requirements will not suffice.

It turns out the problem of label iteration, that, as we just saw, occurs with ILWR,
also occurs when trying to prove that ILP is complete w.r.t. the class of generalised
ILP-frames where an additional requirement which ensures (W)gen is present.3 In the
remainder of this section we will give a detailed exposition on how to handle this problem
in the case of ILP. The same general approach should be useful for any other extension
of ILW that exhibits the problem of label iteration.

3(W)gen is the following condition: uSwV =⇒ (∃V ′ ⊆ V )uSwV ′ & R[V ′] ∩ S−1
w [V ] = ∅.

The requirement we mention is that whenever w ≺S u and we are making an Sw-successor v of u, that
w ≺S∪{2¬B} v for some B ∈ D∩

⋃
Ṙ[u] where Ṙ[u] = R[u]∪{u}. Since it is well known that ILP, which

is a complete logic [18], contains ILW (see e.g. [66]), we already know that ILP is complete w.r.t. the
class of generalised ILP-frames that satisfy (W)gen. We do not, however, know in general if the models
obtained by the standard completeness argument also satisfy this specific requirement (which is, at least
a priori, stronger than (W)gen).
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4.3.2 Test case: ILWP-structures
We will now introduce the labelling system for ILP and prove the completeness of ILP

w.r.t. the class of generalised ILP-frames where an additional requirement which ensures
(W)gen is present.

(P)gen:
wRw′RuSwV ⇒ (∃V ′ ⊆ V ) uSw′V ′.

Recall the labelling lemma for ILP (Lemma 3.22)

w ≺S x ≺T u⇒ w ≺S∪x�
T
u.

The actual labelling that we use is an iterated generalisation of this property. Thus,
instead of defining labels between pairs of MCS’s, we consider tuples of MCS’s with labels
between them: wn ≺Sn wn−1 ≺Sn−1 · · · ≺S1 w0. We wish to define labels for ILP similar
to the ones for ILWR between w and v in (4.3) and (4.4). We will first define these labels,
and then prove the appropriate labelling lemma.

Definition 4.33 For n ∈ ω\{0}, let {w0, . . . , wn} be a finite sequence of ILP-MCS’s, let
{S1, . . . , Sn} be a finite sequence of sets of formulas and B be a formula. We recursively
define n sets of formulas, one for every j ∈ {1, . . . , n}:

Q({w0, . . . , wn}, {S1, . . . , Sn}, B, j).

Usually the MCS’s {w0, . . . , wn} and the sets of formulas {S1, . . . , Sn} will be clear from
the context, so we will write Qj(B) for Q({w0, . . . , wn}, {S1, . . . , Sn}, B, j). We now re-
cursively define the elements of our sequence:

Q1(B) := S1 ∪ {2¬B};

Qj+1(B) := Sj+1 ∪ {2¬B} ∪ wj�Qj(B).

Note that the preceding definition amounts to the following:

Qj(B) = Sj ∪ {2¬B} ∪ wj−1
�
Sj−1∪{2¬B}∪wj−2

�
Sj−2∪{2¬B}∪...···∪w1

�
S1∪{2¬B}

.

Lemma 4.34 Let n ∈ ω\{0} be arbitrary, {w0, . . . , wn} be a finite sequence of ILP-
MCS’s, {S1, . . . , Sn} a finite sequence of sets of formulas and B �C a formula such that:

B � C ∈ wn ≺Sn wn−1 ≺Sn−1 · · · ≺S1 w0 3 B.

Then there is an ILP-MCS v such that wn ≺Qn(B) v and C,2¬C ∈ v.
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Proof. We prove the claim by induction on n. In the base case we are to find v such that
w1 ≺S1∪{2¬B} v. But this is just Lemma 3.29.

Let us prove the claim for n+1. Fix MCS’s {w0, . . . , wn+1}, labels {S1, . . . , Sn+1} and
a formula B � C. Assume

B � C ∈ wn+1 ≺Sn+1 wn ≺Sn · · · ≺S1 w0 3 B.

The goal is to find v with wn+1 ≺Qn+1(B) v 3 C,2¬C, i.e.

wn+1 ≺Sn+1∪{2¬B}∪wn�
Qn(B)

v 3 C,2¬C.

From wn+1 ≺ wn and the axiom P we have B � C ∈ wn. By the induction hypothesis,
there is v with wn ≺Qn(B) v 3 C,2¬C. From wn+1 ≺Sn+1 wn ≺Qn(B) v and the labelling
lemma for ILP (Lemma 3.22) we have:

wn+1 ≺Sn+1∪wn�
Qn(B)

v.

Since {2¬B} ⊆ Qn(B) ⊆ wn
�
Qn(B), we have Sn+1∪wn�

Qn(B) = Sn+1∪{2¬B}∪wn�
Qn(B). a

Note that the last line shows that a simpler definition of Qj+1(B) would suffice:
Qj+1(B) := Sj+1 ∪ wj�Qj(B) instead of Qj+1(B) := Sj+1 ∪ {2¬B} ∪ wj�Qj(B). However,
the purpose of this section is to introduce a method for dealing with arbitrary extensions
of ILW. We do not think it is likely that such a simplification could be made in the case
of more interesting logics, such as ILWR.

Recall that in this chapter, the set D is always assumed to be a finite set of formulas
closed under taking subformulas and single negations, and > ∈ D.

Next we define the structures w.r.t. which we later prove completeness. Note that in
the definition below, worlds are sets of formulas. Because of this, the operation ⋃ Ṙ[u]
makes sense and defines a set of formulas.

Definition 4.35 We say that M = (W,R, {Sw : w ∈ W},
) is the ILWP-structure for a
set of formulas D if:

• W = {w : w is an ILP-MCS and for some B ∈ D, B ∧�¬B ∈ w};

• wRu⇔ w ≺ u;

• uSwV ⇔ wRu and V ⊆ R[w] and, moreover, one of the following holds:

(a) V ∩ Ṙ[u] 6= ∅;

(b) we have for all n ∈ ω\{0}, all {w0, . . . , wn}, and all {S1, . . . , Sn}:

w = wn ≺Sn · · · ≺S1 w0 = u⇒ (∃v ∈ V )(∃B ∈ D ∩
⋃
Ṙ[u]) w ≺Qn(B) v;

• w 
 p⇔ p ∈ w.
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Lemma 4.36 The ILWP-structure M for D is a generalised Veltman model. Further-
more, the following holds for each w ∈ W and G ∈ D:

M, w 
 G if and only if G ∈ w,

Proof. Let us first verify that the ILWP-structure M = (W,R, {Sw : w ∈ W},
) for D is
a generalised Veltman model. All the properties, except for quasi-transitivity, have easy
proofs (see Lemma 4.28).

Let us prove quasi-transitivity. Thus, we assume uSwV , and vSwUv for all v ∈ V .
We put U = ⋃

v∈V Uv and claim that uSwU . Clearly U ⊆ R[w]. To prove uSwU we will
distinguish cases from the definition of the relation Sw for uSwV.

In Case (a), there exists an MCS v0 ∈ V for some v0 ∈ Ṙ[u]. We will next distinguish
two Cases from the definition of v0SwUv0 .

In Case (aa) we can find x ∈ Uv0 for some x ∈ Ṙ[v0]. Since v0 ∈ Ṙ[u], also x ∈ Ṙ[u].
And since x ∈ Uv0 ⊆ U , we have U ∩ Ṙ[u] 6= ∅. So, we have uSwU as required.

In Case (ab):

For all n ∈ ω\{0}, all {w0, . . . , wn}, and all {S1, . . . , Sn} we have: (4.5)

w = wn ≺Sn · · · ≺S1 w0 = v0 ⇒ (∃x ∈ Uv0)(∃B ∈ D ∩
⋃
Ṙ[v0]) w ≺Qn(B) x.

To prove uSwU in this case, we will use Case (b) from the definition of the relation Sw.
Let n ∈ ω\{0} be arbitrary and let {w0, . . . , wn} and {S1, . . . , Sn} be arbitrary such that
w = wn ≺Sn · · · ≺S1 w0 = u. If u = v0, applying (4.5) with the worlds {w0, . . . , wn} and
the labels {S1, . . . , Sn} produces the required x ∈ Uv0 and B ∈ D ∩ ⋃ Ṙ[v0]. Otherwise,
i.e. if uRv0, let w′0 = v0, w′i+1 = wi, S ′1 = ∅, S ′i+1 = Si and apply the formula above with
n + 1, the sequence {w′0, . . . , w′n+1} and the labels {S ′1, . . . , S ′n+1}. This gives us a world
x ∈ Uv0 and a formula B ∈ D ∩ ⋃ Ṙ[v0] with:

w ≺Sn∪{2¬B}∪wn−1
�
Sn−1∪......w1

�
S1∪{2¬B}∪u

�
∅∪{2¬B}

x.

Weakening this fact by Lemma 3.8 with removing u�
∅∪{2¬B}, we have the required property.

Since uRv0 or u = v0, we have Ṙ[v0] ⊆ Ṙ[u]. Thus, we can reuse B for this Sw transition.

In Case (b):

For all n ∈ ω\{0}, all {w0, . . . , wn}, and all {S1, . . . , Sn} we have:

w = wn ≺Sn · · · ≺S1 w0 = u⇒ (∃v ∈ V )(∃B ∈ D ∩
⋃
Ṙ[u]) w ≺Qn(B) v.

To prove uSwU we will use Case (b) from the definition of the relation Sw. So, let
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n ∈ ω\{0} be arbitrary and let {w0, . . . , wn} and {S1, . . . , Sn} be arbitrary such that
w = wn ≺Sn · · · ≺S1 w0 = u.

By the assumption of this case, there are v0 ∈ V and B ∈ D ∩ ⋃ Ṙ[u] such that
w ≺Qn(B) v0. From v0 ∈ V we have v0SwUv0 . We will next distinguish the possible cases
in the definition for v0SwUv0 .

In the first Case (ba) we have Uv0 ∩ Ṙ[v0] 6= ∅, i.e. there is x ∈ Uv0 such that either
v0 = x or v0Rx. In both cases we have w ≺Qn(B) x.

In Case (bb), we have (Case (b) for v0SwUv0 applied to n = 1 and S1 = Qn(B)) that
there are some x ∈ Uv0 and B′ ∈ D∩⋃ Ṙ[v0] such that w ≺Qn(B)∪{�¬B′} x. By weakening,
w ≺Qn(B) x, as required.

We claim that for each formula G ∈ D and each world w ∈ W the following holds:

M, w 
 G if and only if G ∈ w.

The proof is by induction on the complexity of G. The only non-trivial case is when
G = B � C.

Assume B �C ∈ w, wRu and u 
 B. Induction hypothesis implies B ∈ u. We claim
that uSw[C]w by Case (b) from the definition of Sw. Clearly wRu and [C]w ⊆ R[w].

Fix n ∈ ω\{0}, {w0, . . . , wn} and {S1, . . . , Sn}. Assume w = wn ≺Sn · · · ≺S1 w0 = u.
Since B � C ∈ wn and B ∈ w0, Lemma 4.36 implies that there is an ILP-MCS v with
wn ≺Qn(B) v and C,2¬C ∈ v (thus v ∈ W ). Since C ∈ v, the induction hypothesis
implies v 
 C. Since w ≺ v, i.e. wRv, then v ∈ [C]w. Finally, B ∈ D and B ∈ u imply
B ∈ D ∩ ⋃ Ṙ[u].

To prove the converse, assume B � C /∈ w. Since w is an ILP-MCS, ¬(B � C) ∈ w.
Lemma 3.28 implies there is u with w ≺{�¬B,¬C} u and B ∈ u. Since w ≺{�¬B} u, we
have in particular that �¬B ∈ u. So, u ∈ W. The induction hypothesis implies u 
 B.
Let V ⊆ R[w] be such that uSwV . We will find a world v ∈ V such that w ≺{¬C} v. We
will distinguish Cases (a) and (b) from the definition of the relation Sw. Consider Case
(a). Let v be an arbitrary world in V ∩ Ṙ[u]. If v = u, clearly w ≺{�¬B,¬C} v. If uRv,
then we have w ≺{�¬B,¬C} u ≺ v. This implies w ≺{�¬B,¬C} v. Consider Case (b). From
w ≺{�¬B,¬C} u and the definition of Sw it follows that there is v ∈ V such that (for some
formula D) w ≺{�¬B,¬C,�¬D} v. In both cases we have w ≺{¬C} v; thus C /∈ v. Induction
hypothesis implies v 1 C; whence V 1 C, as required. a

Theorem 4.37 ILP is complete w.r.t. the class of all generalised Veltman frames satis-
fying (P)gen. In particular, ILP is complete w.r.t. the class of ILWP-structures generated
by all adequate sets D.

Proof. In the light of Lemma 4.36, it suffices to show that the ILWP-structure M for D
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possesses the property (P)gen.4

Let us prove (P)gen. Let wRw′RuSwV and take V ′ = V ∩R[w′]. We claim uSw′V
′.

We distinguish two possible cases for uSwV . If it holds by Case (a), there is v ∈ V
such that either u = v or uRv. In both cases w′Rv. Let U = {v}. Clearly U ⊆ V . Since
w′RuRv, uSw′{v}, i.e. uSw′U . The remainder of the proof deals with the case when uSwV
holds by Case (b) from the definition of Sw.

Fix n ∈ ω\{0}, the worlds {w0, . . . , wn} and the labels {S1, . . . , Sn}. Assume w′ =
wn ≺Sn · · · ≺S1 w0 = u. We have w ≺∅ wn ≺Sn · · · ≺S1 w0. Now the definition of uSwV
implies there is v ∈ V with:

w ≺∅∪{2¬B}∪wn�
Qn(B)

v.

We claim that wn ≺Qn(B) v. Assume A � ∨¬Fi ∈ wn with Fi ∈ Qn(B) (we are to show
that ¬A,2¬A ∈ v). Clearly ¬A,2¬A ∈ wn�

Qn(B). Since a ≺S b implies S ⊆ b, we have
¬A,2¬A ∈ v. a

So, we have a strategy to tackle less well-behaved logics. In the final chapter of the
thesis we will see what happens when we apply this approach to ILWR.

4In general, for example with the logic ILWR, we would want to verify if (W)gen holds. The proof
would be the same as the proof of Theorem 4.29. In this case it is a consequence of (P)gen.

71



Chapter 5

Decidability

The content of this chapter is based on the published papers [49] and [50].
Both papers [49] and [50] use tools introduced in an earlier paper [53]. Throughout

these three papers several inconvenient choices stacked up, culminating in an awkward
notion of an “adequate set ΓD for an appropriate set D” in [50]. Unfortunately such
inconveniences were unavoidable if we wanted, as we did, to use results from the previously
published papers without modifying the original proofs. We will use this chapter as an
opportunity to fix these issues. We will first prove a slightly modified version of the key
result of [53]. We will then use this modified framework to present the results of [49] and
[50].

Introduction
For IL, ILM, ILP and ILW, the original completeness proofs were proofs of com-

pleteness w.r.t. the appropriate finite models [18], [19]. For these logics, the finite model
property (FMP) w.r.t. ordinary Veltman semantics, as well as their decidability, is thus
immediate (and completeness and the FMP w.r.t. generalised Veltman semantics are eas-
ily shown to follow from these results). These completeness proofs use truncated maximal
consistent sets, that is, sets that are maximal consistent with respect to the so-called
adequate set. The principal requirement of adequacy is that the set is finite. The exact
requirements vary with the logic at hand. Already with ILM, defining adequacy is not
trivial (see [18]).

For more complex logics, not much is known about the FMP w.r.t. ordinary Veltman
semantics. The filtration method can be used with generalised models to obtain finite
models. This approach was successfully used to prove the FMP of ILM0 and ILW∗ w.r.t.
generalised Veltman semantics [53], [49], and similarly with ILP0 and ILR [50].

A drawback of this approach is in that the FMP w.r.t. ordinary Veltman semantics
does not follow from the FMP w.r.t. generalised Veltman semantics. So, if that is what we
are interested it, we do not provide an easy way for such results. However, decidability
can be obtained from the FMP w.r.t. either semantics (unless the logic in question is
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incomplete w.r.t. ordinary Veltman semantics, as is the case with ILP0, in which case
we actually need the FMP w.r.t. generalised semantics). At the moment it is not clear
whether the choice of semantics would affect our ability to produce results regarding
computational complexity of provability and consistency of the logic at hand (see the
next chapter).

A filtration is often generated by logical equivalence over some appropriate set of
formulas. Here we use bisimilarity instead, i.e. we merge two worlds if they are bisimilar
according to at least one bisimulation. We will later see that such construction makes
sense. Applying this construction yields finite models.

5.1 Preliminaries
Let us overview basic notions and results of [53]. As we announced, we will not follow

the content presented there faithfully; but we will give proofs of our statements whenever
we diverge from the original papers.

A note on notation: given some relation R, in this chapter we write R
[
x
]
to denote

the set {y : xRy}. In this chapter we often need to write R
[
[x]
]
and wish to avoid writing

R[[x]]; so we increased the font size for the outer brackets.
Let A be a formula. If A equals ¬B for some B, then ∼A is B, otherwise ∼A is ¬B.

This is the “single negation” operation which we already met in the chapter concerning
completeness.

We need a notion of adequacy, i.e. when is a set of formulas Γ “adequate”.1 Our
filtration will start with a (possibly infinite) model and an adequate set we are in-
terested in. Based on these choices obtain a finite model. Already in GL, the set
{3p,33p,333p, . . . } has no finite models. Thus, the desired notion of equivalence
has to be restricted somehow, and this is why we need adequacy. The notion of seman-
tic equivalence between the starting model and the finite model we obtain later will be
precisely the equivalence w.r.t. this adequate set. Notice that we choose the adequate set
beforehand, and this set affects the content of the obtained finite model. Our operation
is an operation on models, and not frames. In general this fact may be undesirable since
dependence on a valuation may lead to the loss of the appropriate frame condition (char-
acteristic property). As it turns out, the construction we use preserves the characteristic
property in all known cases despite its dependence on the forcing relation.

Visser [66] defined the notion of bisimulation between Veltman models. Vrgoč and
Vuković [69] extended this definition to generalised Veltman models. Here we explicate
that the notion of a bisimulation depends on a set of propositional variables, which need

1Note that this is a different notion of adequacy than the one used for completeness proofs in [18],
[19], and [27]. In this chapter we deal with, and only with, semantics. This eliminates most or all of the
hassle usually present when one has to take syntax into account.
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not be the set of all propositional variables.2

Definition 5.1 ([69]) Let Prop be a (possibly finite) subset of the set of all propositional
variables. A bisimulation between generalised Veltman models M = (W,R, {Sw : w ∈
W},
) and M′ = (W ′, R′, {S ′w′ : w′ ∈ W ′},
) w.r.t. Prop is a non-empty relation Z ⊆
W ×W ′ such that:

(at) if wZw′, then w 
 p if and only if w′ 
 p, for all p ∈ Prop;

(forth) if wZw′ and wRu, then there is u′ ∈ W ′ such that w′R′u′, uZu′ and for all V ′ ⊆ W ′

such that u′S ′w′V ′ there is V ⊆ W such that uSwV and for all v ∈ V there is v′ ∈ V ′

with vZv′;

(back) if wZw′ and w′R′u′, then there is u ∈ W such that wRu, uZu′ and for all V ⊆ W

such that uSwV there is V ′ ⊆ W ′ such that u′S ′w′V ′ and for all v′ ∈ V ′ there is
v ∈ V with vZv′.

The contents of Prop will usually be left unspecified, since we expect its value to be
fixed and constant in all contexts. Ultimately we aim to use bisimulations with Prop
equalling the set of all propositional variables occurring in Γ.

Definition 5.2 LetM andM′ be arbitrary generalised Veltman models. We write w ≡Prop
n

w′ if w ∈ W and w′ ∈ W ′, and for all modal formulas A whose modal depth is at most n
and whose propositional variables are contained in the set Prop we have

w 
 A if and only if w′ 
 A.

If Prop is unspecified, we assume quantification over all propositional variables; similarly
if n is unspecified, we assume quantification over formulas of all modal depths.

Given a generalised Veltman model M, the union of all bisimulations on M, denoted
by ∼, is the largest bisimulation on M, and ∼ is an equivalence relation [69]:

Lemma 5.3 ([69]) Let M, M′ and M′′ be generalised Veltman models.
(1) If w ∈ W and w′ ∈ W ′ are bisimilar w.r.t. some set Prop, then w ≡Prop w′.
(2) The identity {(w,w) : w ∈ W} ⊆ W ×W is a bisimulation.
(3) The inverse of a bisimulation between M and M′ is a bisimulation between M′

and M.
(4) The composition of bisimulations Z ⊆ W×W ′ and Z ′ ⊆ W ′×W ′′ is a bisimulation

between M and M′′.
2On the topic of bisimulations, it may be interesting that in [14], Čačić and Vrgoč defined the notion

of a game for Veltman models and proved that a winning strategy for the defender in such a game is
equivalent to picking out a bisimulation between two models.
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(5) The union of a family of bisimulations between M and M′ is also a bisimulation
between M and M′. Thus there exists the largest bisimulation between models M and
M′.

Fix any set of propositional variables Prop. Fact (5) of the preceding lemma implies
that there is the largest bisimulation ∼ on M. Facts (2), (3) and (4) of the previous
lemma imply that ∼ is an equivalence relation, while (1) tells us that bisimilarity implies
modal equivalence. From now on, we will only need this largest bisimulation ∼. Again,
we won’t make the dependence Prop 7→ ∼ explicit since we never work with more than
one set of propositional variables in any context.

A ∼-equivalence class of w ∈ W will be denoted by [w]. For any set of worlds V , put
Ṽ = {[w] : w ∈ V }.

Definition 5.4 A filtration of M through Γ, ∼ is any generalised Veltman model M̃ =
(W̃ , R̃, {S̃[w] : w ∈ W},
) such that for all w ∈ W and A ∈ Γ we have w 
 A if and only
if [w] 
 A (we denote both forcing relations as 
, as there is no risk of confusion).

Before describing in what way is our particular filtration constructed, let us first
introduce a tool we will use to prove finiteness.

Definition 5.5 An n-bisimulation between generalised Veltman models (W,R, {Sw : w ∈
W},
) and (W ′, R′, {S ′w′ : w′ ∈ W ′},
) w.r.t. a set Prop is any sequence Zn ⊆ · · · ⊆
Z0 ⊆ W ×W ′:

(at) if wZ0w
′ then w 
 p if and only if w′ 
 p for all p ∈ Prop;

(forth) if wZnw′ and wRu, then there exists u′ ∈ R′
[
w′
]
with uZn−1u

′ and for all V ′ ∈
S ′w′

[
u′
]
there is V ∈ Sw

[
u
]
such that for all v ∈ V there is v′ ∈ V ′ with vZn−1v

′;

(back) if wZnw′ and w′R′u′, then there exists u ∈ R
[
w
]
such that uZn−1u

′ and for all
V ∈ Sw

[
u
]
there is V ′ ∈ S ′w′

[
u′
]
such that for all v′ ∈ V ′ there is v ∈ V with

vZn−1v
′.

We will use the same notion of adequacy for filtrations that we use for completeness
(Definition 4.5).

Note 5.6 Note that the definition of adequacy we use for filtrations is not compatible
with published papers [53], [49], and [50]. The way results are proven in those papers
requires much more involved definitions of adequacy. The incompatibility affects most of
the remaining content in this chapter too, so we will not stress particular incompatibilities
in the remainder of the chapter.

If we restrict the class of models for which our filtration method is applicable to a
special sort of models, and we will call these models maximal models, then the results of

75



Chapter 5. Decidability

[53], [49] and [50] can be proved in a slightly more succinct form. In particular, with this
kind of models we only need to apply the filtration once in order to obtain a finite model.
We already met such models in the previous chapter; all our completeness results were
proven with respect to this restricted class of models (see Definition 4.6 and Definition
4.27).

Definition 5.7 Let Γ be an adequate set and M = (W,R, {Sw : w ∈ W},
) a generalised
model. We say that M is maximal w.r.t. Γ if for each w ∈ W there is Aw ∈ Γ such that
w 
 Aw and R[w] 
 ¬Aw.

Lemma 5.8 ([53], Lemma 3.1.2) Let M be a generalised Veltman model, Prop a finite
set of propositional variables and w,w′ ∈M. Then w and w′ are n-bisimilar w.r.t. Prop
if and only if w ≡Prop

n w′.

Note that given some finite adequate set Γ and a subset Prop of the set of all proposi-
tional variables, the height of a maximal model M is bounded by |Γ|. Due to this, worlds
in M are |Γ|-bisimilar w.r.t. Prop if and only if they are bisimilar w.r.t. Prop. Thus, worlds
w and w′ in M are bisimilar w.r.t. Prop if and only if w ≡Prop

|Γ| w′ .
The following lemma combines the key results of [53] (Lemma 2.3, Theorem 2.4.,

Theorem 3.2).

Lemma 5.9 Let Γ be an adequate set and M = (W,R, {Sw : w ∈ W},
) a model that
is maximal w.r.t. Γ. Let ∼ denote the largest bisimulation on M. Define:3

(1) [w] R̃
[
u
]
if and only if for some w′ ∈ [w] and u′ ∈ [u] we have w′Ru′.

(2) [u] S̃[w]Ṽ if and only if [w] R̃
[
u
]
, Ṽ ⊆ R̃

[
[w]
]
, and for all w′ ∈ [w] and u′ ∈ [u] such

that w′Ru′ we have u′Sw′V ′ for some V ′ such that Ṽ ′ ⊆ Ṽ ;
(3) for all propositional variables p ∈ Γ put [w] 
 p if and only if w 
 p, and for all

propositional variables q 6∈ Γ put [w] 1 q for all [w] ∈ W̃ .
Then M̃ = (W̃ , R̃, {S̃[w] : w ∈ W},
) is a model and a filtration of M through Γ,∼.

Furthermore, M̃ is maximal w.r.t. Γ and finite.

Proof. We first prove that M̃ is a model.
1. It is easy to see that R̃ is a binary relation on W̃ , and S̃[w] ⊆ W̃ × 2W̃ \ {∅} for all

w ∈ W .
2. Transitivity of R̃. Assume [w] R̃ [u] R̃ [v]. For some w′ ∈ [w], u′, u′′ ∈ [u] and

v′′ ∈ [v] we have w′Ru′ ∼ u′′Rv′′. Thus, there is v′ ∼ v′′ with u′Rv′. By the transitivity
of R we have w′Rv′, so [w] R̃ [v].

3. Converse well-foundedness of R̃. Assume [w1] R̃ [w2] R̃ [w3] R̃ . . . We prove by in-
duction that for every wi there is w′i ∼ wi and w′1Rw′2R . . . Rw′i. Base case is i = 1, and

3The set of worlds of the new model is W̃ , that is, the set {[w] : w ∈W}. Unlike W̃ , relations R̃ and
S̃[w] are not the product of applying the (previously introduced) operation V 7→ Ṽ , but rather completely
new entities which we now define.
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here we can let w′1 = w1. Suppose the claim holds for all values strictly smaller than
i, and let us prove the claim for i. Since w′i−1 ∼ wi−1 and [wi−1]R [wi], there is some
w′i ∼ wi such that w′i−1Rw

′
i. By induction hypothesis we know that w′1Rw′2R . . . Rw′i−1.

Thus, w′1Rw′2R . . . Rw′i−1Rw
′
i, as required.

4. Quasi-reflexivity of S̃[w], for all w ∈ W . Assume [w] R̃ [u]. To prove [u] S̃[w]{[u]} let
w′ ∈ [w] and u′ ∈ [u] be arbitrary such that w′Ru′. By the quasi-reflexivity of Sw′ , we
have u′Sw′{u′}, and clearly {̃u′} ⊆ {[u]} (the two sets are equal).

5. Quasi-transitivity of S̃[w], for all w ∈ W . Assume [u] S̃[w]Ṽ and for all v ∈ V ,
[v] S̃[w]Z̃v. We claim that [u] S̃[w]

⋃̃
v∈V Zv. So, take w′ ∈ [w] and u′ ∈ [u] such that w′Ru′.

Since [u] S̃[w]Ṽ , there is Vw′,u′ such that u′Sw′Vw′,u′ and Ṽw′,u′ ⊆ Ṽ . Let v′ ∈ Vw′,u′ be
arbitrary, and let v ∈ V be the element such that v′ ∼ v. Since [v] S̃[w]Z̃v, there is Tw′,u′,v′
such that v′Sw′Tw′,u′,v′ and T̃w′,u′,v′ ⊆ Z̃v. Define Tw′,u′ = ⋃

v′∈Vw′,u′ Tw′,u′,v′ . By the quasi-
transitivity of Sw′ , we have u′Sw′Tw′,u′ . Since v′ ∈ Vw′,u′ was arbitrary in the definition of
Tw′,u′,v′ , clearly T̃w′,u′ ⊆

⋃̃
v∈V Zv.

6. The property that [w] R̃ [u] R̃ [v] implies [u] S̃[w]{[v]}. Let w′ ∈ [w], u′, u′′ ∈ [u] and
v′′ ∈ [v] be the worlds such that w′Ru′ ∼ u′′Rv′′. Then there is v′ ∼ v′′ such that u′Rv′.
So, u′Sw′{v′}. Clearly {̃v′} ⊆ {[v]}.

7. Monotonicity is immediate.
8. The forcing relation 
 is well-defined since it does not depend on a representative

of the class [w].
Next we prove that the model M̃ is a filtration of M through Γ,∼.
We need to check if all truth values coincide, i.e. w 
 A if and only if [w] 
 A. We

prove this by induction on the complexity, and as usual we focus on the formulas of the
form A�B.

Assume w 1 A�B. Then there is [u] ∈ [A]w such that if uSwV , then V 1 B.
Let Ṽ be arbitrary such that [u] S̃[w]Ṽ . Then uSwV ′ for some Ṽ ′ ⊆ Ṽ . Since V ′ 1 B,

we get Ṽ ′ 1 B by the induction hypothesis. Therefore, Ṽ 1 B.
For the other direction, assume w 
 A � B. Assume [w] R̃ [u] 
 A. We construct

Ṽ such that [u] S̃[w]Ṽ 
 B. Let w′ ∈ [w] and u′ ∈ [u] be arbitrary such that wRu.
Since w′ ∼ w, w′ 
 A� B, and therefore for some V (w′, u′) we have u′Sw′V (w′, u′) 
 B.
Put V := ⋃

w′∈[w],u′∈[u],w′Ru′ V (w′, u′). By the induction hypothesis, Ṽ 
 B. To obtain
[u] S̃[w]Ṽ 
 B it remains to show that Ṽ ⊆ R([w]). Obviously, if [v] ∈ Ṽ , then for some
w′, u′, and v′ we have u′Sw′V (w′, u′) 3 v′, for some v′ ∼ v. Clearly w′Rv′, so [w] R̃ [v], as
required.

Now we prove that the model M̃ is maximal w.r.t. Γ.
Suppose that for some w ∈ W there is no A ∈ Γ such that [w] 
 A and R̃

[
[w]
]

 ¬A.

Since M is maximal, there is Aw ∈ Γ such that w 
 Aw and R[w] 
 ¬Aw. Since M̃

is a filtration, [w] 
 Aw. Since R̃
[
[w]
]
1 ¬Aw by assumption, there must be u such

that [w] R̃ [u] 
 Aw. Since M̃ is a filtration, u 
 Aw. This contradicts the fact that
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R[w] 
 ¬Aw.
Finally, we prove that the model M̃ is finite.
Recall that worlds w and w′ in a maximal model are bisimilar w.r.t. Prop if and only

if w ≡Prop
|Γ| w′. We have just seen that M̃ is maximal w.r.t. Γ. Thus, every world [w] ∈ M̃

corresponds to an ≡Prop
|Γ| -class. There are only finitely many formulas of modal depth

bounded by |Γ| and containing a finite number of variables, up to equivalence. Thus, the
number of worlds in M̃ is finite.

a

Lemma 5.9 implies that IL has the FMP w.r.t. generalised Veltman semantics. To
prove that a specific extension has the FMP, it remains to show that filtration preserves
its characteristic property.

Since we are going to use ILX-structures (see Definition 4.6 and Definition 4.27) as
the starting models M, we can use the fact that they are maximal (see Chapter 4).

5.2 The finite model property of ILW and ILW∗
In this section we prove that if a generalised Veltman model M possesses the property

(W)gen then the filtration M̃ also possesses the property (W)gen. As a result we obtain
not only the finite model property of ILW, but also the finite model property of ILW∗

(when combining with the results of [53]).
The results of this section together with the completeness of ILW w.r.t. generalised

Veltman models, imply decidability of ILW. We will discuss this in more detail in the
next section; here we only deal with the finite model property.

Note that de Jongh and Veltman [19] already proved the completeness of the system
ILW w.r.t. finite Veltman models, which implies the finite model property of ILW. How-
ever, the ultimate goal here is to prove the finite model property of ILW∗. To obtain this
result we cannot reuse the existing proofs that ILW has the finite model property. Since
ILW∗ = ILWM0 (see [68]) and we know that the filtration preserves the property (M0)gen,
we need to show that it preserves (W)gen too. For this reason the well-known fact that
ILW has the finite model property is not directly applicable.

Lemma 5.10 Let Γ be an adequate set of formulas. Let M = (W,R, {Sw : w ∈ W},
)
be a generalised Veltman model that is maximal w.r.t. Γ and also satisfies (W)gen. Let ∼
be the largest bisimulation on M. Then the generalised model M̃ = (W̃ , R̃, {S̃[w] : w ∈
W},
) (Lemma 5.9) satisfies the condition (W)gen.

Proof. Let w ∈ W be a world and X a non–empty set such that X̃ ⊆ R̃
[
[w]
]
. For each

world u ∈ [w] we define sets Xu and Zu as follows:

Xu = {x ∈
⋃
X̃ | uRx} and Zu = {z ∈

⋃
S̃−1

[w]

[
X̃
]
| uRz}.
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First we prove that for each u ∈ [w] the set Xu is non–empty. Let x ∈ ⋃
X̃ be a

world. By assumption, we have X̃ ⊆ R̃
[
[w]
]
, so in particular [w] R̃ [x]. The definition of

the relation R̃ implies there are worlds w′ ∈ [w] and x′ ∈ [x] such that w′Rx′ holds. Now
u ∼ w′, w′Rx′ and the property (back) of the bisimulation ∼ imply that there exists a
world u′ ∈ W such that x′ ∼ u′ and uRu′. Obviously we have u′ ∈ ⋃ X̃, and thus also
u′ ∈ Xu. Hence, the set Xu is non–empty. The proof that the set Zu is non–empty for
every u ∈ [w] is completely analogous.

We intend to apply the property (W)gen to all u ∈ [w], to the set Xu and all y ∈ Zu.
First we prove that for every world u ∈ [w] we have Zu ⊆ S−1

u

[
Xu

]
. Consider any

world u ∈ [w]. Assume that there exists a world z ∈ Zu such that z /∈ S−1
u

[
Xu

]
holds, i.e.

zSuXu does not hold. By the definition of the set Zu we have uRz. Since z ∈ ⋃ S̃−1
[w]

[
X̃
]

we also have [z] S̃[w]X̃. Now uRz, u ∈ [w] and the definition of S̃[w] imply that there exists
a set V such that zSuV and Ṽ ⊆ X̃. We now prove that V ⊆ Xu. Let x be an element
of the set V . From Ṽ ⊆ X̃ we have in particular that [x] ∈ X̃, and thus also x ∈ ⋃ X̃.
From zSuV we have in particular that V ⊆ R

[
u
]
, so uRx. Hence, x ∈ Xu.

Now zSuV , V ⊆ Xu ⊆ R
[
u
]
, and the monotonicity of the relation Su imply zSuXu,

which contradicts the assumption. We have now proved that for each u ∈ [w] we have
Zu ⊆ S−1

u

[
Xu

]
, i.e. for each y ∈ Zu we have ySuXu.

By applying the assumption that the model M has the property (W)gen to any u ∈ [w],
Xu and any y ∈ Zu we get:

(5) (∃Vy,u ⊆ Xu)
(
ySuVy,u & (∀v ∈ Vy,u)(R

[
v
]
∩ S−1

u

[
Xu

]
= ∅)).

Recall that we have chosen a world w ∈ W and a set X ⊆ W such that X̃ ⊆ R̃
[
[w]
]
.

So, to prove that the model M̃ possesses the property (W)gen, we will prove the following:

(∀ [z] ∈ W̃ )
(

[z] S̃[w]X̃ ⇒ (∃Ṽz ⊆ X̃)([z] S̃[w]Ṽz &
(∀v ∈ Vz)(R̃

[
[v]
]
∩ S̃−1

[w]

[
X̃
]

= ∅))
)
.

In order to prove the preceding claim, consider any world z ∈ ⋃ W̃ with [z] S̃[w]X̃. For
every u ∈ [w] let Yz,u = {y ∈ Zu | y ∼ z}. We first prove that for each u ∈ [w] the set Yz,u
is non–empty. Since [z] S̃[w]X̃, we have in particular that [w] R̃ [z]. By the definition of
the relation R̃ it follows that there are worlds w′ ∈ [w] and z′ ∈ [z] such that w′Rz′. Facts
u ∼ w′, w′Rz′, and the property (back) of the bisimulation ∼ imply that there exists a
world u′ ∈ W such that u′ ∼ z′ and uRu′. Obviously we have u′ ∈ [z], and thus u′ ∈ Yz,u,
so the set Yz,u is non–empty for every u ∈ [w].

In order to define the set Ṽz with the desired properties we first define certain sets for
every world u ∈ [w]. Consider any worlds u ∈ [w] and y ∈ Yz,u. From the definition of
the set Yz,u we have y ∈ Zu. From the fact labelled with (5) we have that there exists a
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set Vy,u ⊆ Xu with the following property:

(6) ySuVy,u & (∀v ∈ Vy,u)(R
[
v
]
∩ S−1

u

[
Xu

]
= ∅).

Now we define the set Vz as follows:

Vz =
⋃

u∈[w], y∈Yz,u
Vy,u.

We now proceed to prove that the set Ṽz has the desired property, i.e. that the following
holds:

Ṽz ⊆ X̃ & [z] S̃[w]Ṽz & (∀v ∈ Vz)(R̃
[
[v]
]
∩ S̃−1

[w]

[
X̃
]

= ∅).

We have Vy,u ⊆ Xu for every u ∈ [w] and y ∈ Yz,u; therefore Ṽz ⊆
⋃
u∈[w] X̃u ⊆ X̃.

We now prove that [z] S̃[w]Ṽz. Consider any worlds u and y such that u ∈ [w], y ∈ [z],
and uRy. From the definition of the set Yz,u it follows that y ∈ Yz,u. From the fact
labelled with (6) we have in particular that ySuVy,u. From the definition of the set Vz we
have Ṽy,u ⊆ Ṽz. We have already shown that [w] R̃ [z]. Since Ṽz ⊆ X̃, and X̃ ⊆ R̃

[
[w]
]
by

the assumption, we also have Ṽz ⊆ R̃
[
[w]
]
. From the definition of S̃[w] we now have that

[z] S̃[w]Ṽz.
It remains to show that R̃

[
[v]
]
∩ S̃−1

[w]

[
X̃
]

= ∅, for every v ∈ Vz. Suppose the contrary.
Then there are worlds v ∈ Vz and s ∈ W such that [s] ∈ R̃

[
[v]
]
∩ S̃−1

[w]

[
X̃
]
. From here it

follows in particular that [v] R̃
[
s
]
and [s] S̃[w]X̃. The fact that v ∈ Vz and the definition

of the set Vz imply that there are worlds u ∈ [w] and y ∈ Yz,u such that v ∈ Vy,u. From
the fact that [v] R̃

[
s
]
, and by the definition of the relation R̃, it follows that there are

worlds v′ ∈ [v] and s′ ∈ [s] such that v′Rs′. Now v ∼ v′, v′Rs′ and the property (back)
of the bisimulation ∼ imply that there exists a world s′′ such that vRs′′ and s′′ ∼ s′.
From s′′ ∼ s′ ∼ s and [s] S̃[w]X̃ it follows that s′′ ∈ ⋃ S̃−1

[w]

[
X̃
]
. From the fact labelled

with (6) we know that ySuVy,u, and so in particular we have Vy,u ⊆ R
[
u
]
. Since we have

v ∈ Vy,u, we also have v ∈ R
[
u
]
, i.e. uRv. Now uRv and vRs′′, and the transitivity of

the relation R imply that uRs′′. Hence s′′ ∈ ⋃ S̃−1
[w]

[
X̃
]
and uRs′′. By the definition of

the set Zu we have s′′ ∈ Zu. This contradicts the fact labelled with (6), i.e. the fact that
R
[
v
]
∩ Zu = ∅. a

Corollary 5.11 The logic ILW∗ has the finite model property with respect to generalised
Veltman models which satisfy conditions (W)gen and (M0)gen.

5.3 Decidability of ILW and ILW∗
In [53] it was proved that ILM0 has the finite model property with respect to gener-

alised Veltman models which satisfy the condition (M0)gen. Together with the complete-
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ness of ILM0 with respect to (maximal) generalised Veltman models, this suffices to prove
that ILM0 is decidable, by a standard argument (cf. [4], p. 341):

• the set of theorems of ILM0 is recursively enumerable,

• the set (up to isomorphism) of finite generalised Veltman models with the property
(M0)gen is recursively enumerable,

• we construct an algorithm which simultaneously enumerates theorems of ILM0,
which are compared to a given formula A, and generalised Veltman models with the
property (M0)gen, on which the truth of ¬A is tested.

The finite model property implies that the algorithm will either find the generalised
Veltman model with the property (M0)gen in which ¬A is satisfied, or establish that the
formula A is a theorem of ILM0, in finitely many steps.

By an analogous argument, the finite model property and completeness of ILW∗ w.r.t.
generalised semantics implies the decidability of ILW∗. Thus, we have proved the following
theorem.

Theorem 5.12 The systems ILM0, ILW and ILW∗ are decidable.

5.4 The FMP and decidability for ILP0 and ILR
In this final section we repeat our construction, this time for ILP0 and ILR. A small

difference is that here we don’t have completeness w.r.t. ordinary semantics (ILP0), or
completeness w.r.t. generalised semantics is still an open question (ILR). For present
purposes this simply means that there is only one way of proving decidability: through
generalised semantics. So, here we rely on results of Chapter 4.

Lemma 5.13 Let Γ be an adequate set of formulas. Let M = (W,R, {Sw : w ∈ W},
)
be a generalised Veltman model that is maximal w.r.t. Γ and also satisfies (P0)gen. Let ∼
be the largest bisimulation on M. Then the generalised model M̃ = (W̃ , R̃, {S̃[w] : w ∈
W},
) (Lemma 5.9) satisfies the condition (P0)gen.

Proof. Assume [w] R̃ [x] R̃ [u] S̃[w]V and R̃
[
[v]
]
∩ Z 6= ∅ for each [v] ∈ V . We claim that

there exists Z ′ ⊆ Z such that [u] S̃[x]Z
′.

Since [w] R̃ [x], there are w0 ∈ [w] and x0 ∈ [x] such that w0Rx0. Let x′ ∈ [x] and
u′ ∈ [u] be any worlds such that x′Ru′. The condition (back) implies that there is a world
ux′,u′ such that x0Rux′,u′ and ux′,u′ ∼M u′. Now, [u] S̃[w]V , ux′,u′ ∈ [u] and w0Rux′,u′ imply
there is a set Vx′,u′ such that ux′,u′Sw0Vx′,u′ and Ṽx′,u′ ⊆ V . Since R̃

[
[v]
]
∩ Z 6= ∅ for each

[v] ∈ V , we have R̃
[
[v]
]
∩ Z 6= ∅ for each v ∈ Vx′,u′ . For each v ∈ Vx′,u′ , choose a world

zv such that [zv] ∈ R̃
[
[v]
]
∩ Z. Now [v] R̃ [zv] implies that there are some v′ ∈ [v] and
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z′v ∈ [zv] such that v′Rz′v. Applying (back), we can find a world z′′v such that vRz′′v and
z′v ∼ z′′v . Put Zx′,u′ = {z′′v : v ∈ Vx′,u′}. Note that we have R

[
v
]
∩ Zx′,u′ 6= ∅ for each

v ∈ Vx′,u′ .
Applying (P0)gen gives ux′,u′Sx0Z

′
x′,u′ for some Z ′x′,u′ ⊆ Zx′,u′ . Clearly Z̃ ′x′,u′ ⊆ Z̃x′,u′ ⊆

Z. Continuing our first application of (back), there is a set Z ′′x′,u′ such that u′Sx′Z ′′x′,u′ ,
and for each z′′ ∈ Z ′′x′,u′ there is z′ ∈ Z ′x′,u′ such that z′ ∼ z′′. This implies Z̃ ′′x′,u′ ⊆ Z̃ ′x′,u′ .
Let T = ⋃

x′∈[x],u′∈[u],x′Ru′ Z
′′
x′,u′ and Z ′ = T̃ . It is easy to see that Z ′ ⊆ Z and Z ′ ⊆ R̃

[
[x]
]
.

We have u′Sx′Z ′′x′,u′ with Z̃ ′′x′,u′ ⊆ Z ′ for all x′ ∈ [x] and u′ ∈ [u] with x′Ru′. Thus,
[u] S̃[x]Z

′. a

Corollary 5.14 ILP0 is decidable.

Proof. Since ILP0 is complete, it remains to show that it has the finite model property.
Let M = (W,R, {Sw : w ∈ W},
) be the ILP0-structure for an appropriate D, and apply
Lemma 5.13. As the resulting model M̃ itself also satisfies the conditions of Lemma 5.13,
we can apply Lemma 5.13 once more, and by Lemma 5.9 obtain a finite model. a

Let us prove the same for ILR.

Lemma 5.15 Let Γ be an adequate set of formulas. LetM = (W,R, {Sw : w ∈ W},
) be
a generalised Veltman model that is maximal w.r.t. Γ and also satisfies (R)gen. Let∼ be the
largest bisimulation on M. Then the generalised model M̃ = (W̃ , R̃, {S̃[w] : w ∈ W},
)
(Lemma 5.9) satisfies the condition (R)gen.

Proof. Assume [w] R̃ [x] R̃ [u] S̃[w]V , and let C ∈ C([x] , [u]) be an arbitrary choice set. We
are to prove that there is a set U such that Ũ ⊆ V , [x] S̃[w]Ũ and R̃

[
Ũ
]
⊆ C.

Put Cx′ = {c ∈ R
[
x′
]

: [c] ∈ C} for all x′ ∈ [x].
Let us first prove that for some x0 ∈ [x] , u0 ∈ [u] with x0Ru0 we have Cx0 ∈ C(x0, u0).

Suppose not. Then for all x′ ∈ [x] , u′ ∈ [u] with x′Ru′, there is a set Zx′,u′ such that
u′Sx′Zx′,u′ with Zx′,u′ ∩ Cx′ = ∅. Put Z = ⋃

x′∈[x],u′∈[u],x′Ru′ Zx′,u′ . Thus Z̃ ⊆ R̃
[
[x]
]
. Thus

[u] S̃[x]Z̃. Since C ∈ C([x] , [u]), there is z ∈ Z such that [z] ∈ C ∩ Z̃. Thus z ∈ Zx′,u′

for some x′ ∈ [x] , u′ ∈ [u] and x′Ru′. The definition of Cx′ implies z ∈ Cx′ . Thus,
Zx′,u′ ∩ Cx′ 6= ∅, a contradiction.

Now we claim that for all y ∈ [x] there is uy ∼ u0 with yRuy and Cy ∈ C(y, uy).
Since y ∼ x0 and x0Ru0, the (back) condition implies that there is a world uy such that
uy ∼ u0 and yRuy (and other properties that we will return to later). We will show
that Cy ∈ C(y, uy). Let Z ′ be such that uySyZ ′, and we are to prove that Cy ∩ Z ′ 6= ∅.
The earlier instance of (back) condition for uy further implies that there is a set Z with
u0Sx0Z, and for all z ∈ Z there is z′ ∈ Z ′ with z ∼ z′. Let z ∈ Z ∩ Cx0 be an arbitrary
element (which exists because, as we proved, Cx0 is a choice set). Then there is z′ ∈ Z ′

such that z′ ∼ z. Since [z] ∈ C, i.e. [z′] ∈ C, we have z′ ∈ Cy. In particular, Z ′ ∩Cy 6= ∅.
Thus, Cy ∈ C(y, uy).
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Let us prove that there is a set U such that Ũ ⊆ V , [x] S̃[w]Ũ and R̃
[
Ũ
]
⊆ C. Let

w′ ∈ [w] and y ∈ [x] be such that w′Ry. Since [u] S̃[w]V , there is a set Vw′,y such that
uySw′Vw′,y and Ṽw′,y ⊆ V . Applying (R)gen with Cy, there is Uw′,y ⊆ Vw′,y such that
ySw′Uw′,y and R

[
Uw′,y

]
⊆ Cy. Let U = ⋃

w′∈[w],y∈[x],w′Ry Uw′,y. Clearly Ũ ⊆ V . Thus
Ũ ⊆ R̃

[
[w]
]
. The definition of S̃[w] implies [x] S̃[w]Ũ .

It remains to verify that R̃
[
Ũ
]
⊆ C. Let t ∈ U and z ∈ W be such that [t] R̃ [z].

Then we have t ∈ Uw′,y for some w′ ∈ [w] and y ∈ [x]. Since [t] R̃ [z], there are t′ ∈ [t]
and z′ ∈ [z] with t′Rz′. The condition (forth) implies that there is z′′ such that tRz′′ and
z′ ∼ z′′. Since R

[
Uw′,y

]
⊆ Cy and z′′ ∈ R

[
Uw′,y

]
, we have z′′ ∈ Cy. The definition of Cy

implies [z′′] ∈ C, or equivalently, [z] ∈ C. a

Corollary 5.16 ILR is decidable.

Future work
The “natural order of things” regarding the exploration of basic modal properties of

interpretability logics is to first obtain completeness result(s), then see if they are decid-
able, and finally classify them in terms of computational complexity. The queue of logics
waiting for their decidability to be determined is currently empty: all interpretability
logics known to be complete w.r.t. at least one semantics are also known to be decidable.
Taking a step back, the best known candidates for a complete logic, whose completeness is
still an open question, are logics whose axioms are among those in two recently introduced
series of arithmetically sound principles [29]. Another candidate is the logic ILWω which
we explore in Chapter 8.
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Chapter 6

Complexity

In this chapter, which is for the most part self-contained, we prove the PSPACE-
completeness of IL, ILW and ILP.

The first part of this chapter (the part that concerns the logic IL) is based on the
published paper [47].

Introduction
Computational complexity of modal logics was first studied by Ladner [43]. Various

tableau-based methods were used in proofs of PSPACE-decidability of a number of modal
logics (like K, K4, S4 etc; see [43] and [58]).

Chagrov and Rybakov [16] prove the PSPACE-completeness of the closed fragments of
modal systems K and K4 (and in fact any logic L such that K ⊆ L ⊆ K4), while for
logics Grz and GL they establish PSPACE-completeness of their one-variable fragments.

Shapirovsky [55] proved the PSPACE-decidability of propositional polymodal provabil-
ity logicGLP. PSPACE-completeness of the closed fragment of the systemGLP is proved
by Pakhomov in [51].

In this chapter we explore complexity of interpretability logics. Bou and Joosten
proved in [6] that the decidability problem for the closed fragment of IL is PSPACE-hard.1

This implies in particular that IL is PSPACE-hard. The fact that IL is PSPACE-hard also
follows from the fact that already GL is PSPACE-hard, and IL conservatively extends
GL.

In [63] (the final two chapters) another interesting topic regarding complexity and
interpretability is studied: feasible interpretability. In that version of interpretability
(which is a type of axioms interpretability), the length of a proof of an axiom’s translation
is polynomially bounded. In this chapter we will study classical theorems interpretability.
The modal interpretability logic of feasible (and, of course, classical) interpretability of
PA is ILM (as shown in [63]). Unfortunately, we did not succeed in determining the

1Čačić and Vuković [15] proved normal forms exist for a wide class of closed IL formulas. Čačić and
Kovač [13] quantified asymptotically how wide those classes are asymptotically.
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complexity class of ILM. See the concluding sections for some comments regarding our
attempts.

We first consider the complexity problem for the interpretability logic IL and prove
that it is PSPACE-complete [47]. Our constructions can be seen as generalisations of the
constructions by Boolos presented in [5] (Chapter 10). If we restrict our work to GL, the
resulting method is very similar to the one given by Boolos, up to the terminology. Our
method can also be seen as extending the method presented in [55], of proving PSPACE-
completeness (monomodal case), and other similar proofs where one constructs a tree-like
structure in a space-efficient manner.

Since this method extends the methods available for GL, let us briefly describe the
way we can efficiently check GL-satisfiability, without going into too much detail. A very
brief description is that for GL a certain depth-first search through irreflexive transitive
trees of depth bounded by the complexity of a formula suffices [64]. We will not present
any particular algorithm in full (see e.g. [5] or [55]). Suppose we start with some set
of GL-formulas ∆ ⊆ Γ where Γ is finite and closed under subformulas. Let us suppose
that in the language of GL there is only one modal operator: 3 (this choice makes our
description shorter). If ∆ is satisfiable, there are some M and w ∈M such that w 
 ∆.
In general, ∆ needn’t fully determine the modal theory of the world that satisfies ∆. For
example, if ∆ = {p ∨ q} where p and q are propositional variables, we can take a model
satisfying p or a model satisfying q to demonstrate that ∆ is satisfiable. So the first step
is to determine what other formulas should be satisfied in the world (or one of the worlds)
where ∆ is satisfied.2 So, the satisfiability of ∆ is reduced to the satisfiability of some set
Σ which fully determines the truth of formulas contained in Γ. For example, if w 
 ∆,
then the set {A ∈ Γ : w 
 A} is a good candidate for Σ. We can iterate through all the
sets Σ such that ∆ ⊆ Σ ⊆ Γ, and check if they are satisfiable. We next describe how to
perform this check for a particular set Σ such that ∆ ⊆ Σ ⊆ Γ. Fix some such Σ. Let us
first describe what does it mean for some set Q to be propositionally satisfiable. We first
describe an operation on the set Q. Assign to every formula X of the form 3A (or A�B
in case we are talking about propositional satisfiability in the context of interpretability
logics) that appears (either as such, or as a subformula) in Q a fresh propositional letter
pX . Now uniformly substitute all occurrences of formulas X of the form 3A or A � B

that appear in Q with the assigned variables pX .
We say the set Q is propositionally satisfiable if the thus obtained set of (propositional)

formulas is satisfiable.
First we check if Σ is propositionally satisfiable. Continuing the description of how

to check GL-satisfiability, if Σ is propositionally satisfiable, we look at all 3-formulas
2Strictly speaking this is not a necessary step; we could get by with just specifying which propositional

variables and formulas of the form 3B should be true, while ensuring the choice is coherent with the
contents of ∆.
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3A1, . . . ,3Ak in Σ. For each 3Ai, we need to check if Ai is satisfiable. For this, we can
use our GL-satisfiability algorithm again; this time with a set containing Ai. If checks
return a positive answer for all i (i.e. for all i there are some Mi and wi ∈ Mi with
wi 
 Ai), we can make a model for Σ by prepending a fresh world w to the disjoint union
of models Mi. Clearly w 
 3A1, . . . ,3Ak. In this case we stop our search: we found a
satisfiable set Σ ⊇ ∆. Otherwise, we try the next set Σ, ∆ ⊆ Σ ⊆ Γ. If we don’t find a
satisfiable superset Σ of the set ∆, the algorithm determines that ∆ is not satisfiable.

There are two important aspects we did not specify in the preceding description of
how to check the GL-satisfiability of a given set of formulas. First, there is the issue
of 3-formulas that are not present in Σ. We must ensure these formulas are false in
the remainder of the model. A simple way to do this is to parameterise the algorithm
with a set of “banned formulas” (which is, just like ∆, a subset of Γ). Returning to the
appropriate step of our description, before checking if Ai is satisfiable for 3Ai ∈ Σ we look
at the set of all Bj such that 3Bj ∈ Γ \Σ. Such formulas Bj must not be the satisfied in
the model the algorithm builds for Ai (because we later wish to obtain the truth lemma,
so the set of the contained formulas must correspond to the set of true formulas). So,
we add all such formulas Bj to the set of “banned formulas” when we recursively call the
algorithm to check if Ai is satisfiable.

Another aspect we did not cover is termination. How do we ensure the recursion
stops? A way to achieve this is to utilise the fact that GL ` 3A ↔ 3(A ∧ 2¬A). So,
instead of trying to build a model for Ai, we try and build a model for Ai (a model Mi

with wi ∈ Mi such that wi 
 Ai) where for all worlds x except for wi we have x 1 Ai.
This property can be ensured with another parameter: “delayed banned formulas”. To
put it shortly, we need to tell the next call which formula within ∆ is the formula Ai.

In this chapter we work with ordinary Veltman models. Our methods extend the
approach used for GL, which we sketched above. Generally speaking, there are two new
conceptual issues that have to be dealt with. One is that we have to deal with Sw relations
(which did not exist in GL-models), so the concept of a model defined by a particular
run of an algorithm is more complex than is the case with GL. With GL it sufficed to
let the accessibility relation R equal the execution tree of a successful run, where each
node represents a (successful) check if a particular set of formulas is satisfiable. Another
but related issue is that the structure of the model can no longer be made dependent
solely on the formulas we’d like to satisfy in its root (together with the sets of “banned”
and “delayed banned” formulas). That is, in addition to formulas we’d like to be shown
(un)satisfiable, there is additional information to carry between recursive calls of our
algorithm.
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6.1 Preliminaries
Recall that in this thesis, unless stated otherwise, we assume the language of inter-

pretability logics contains only the symbols ⊥, →, �, and countably many symbols for
propositional variables. The results of this section can be easily extended to include other
symbols such as 2. In particular, we know that 2A is equivalent to (A → ⊥) � ⊥, so
given a PSPACE algorithm P for the basic language we can construct a PSPACE algorithm
P+ for the extended language: it consists of a linear-space preprocessing stage together
with P .

A rooted Veltman model (M, w) is a pair consisting of a Veltman modelM = (W,R, {Sx :
x ∈ W}) and a world w such that all other worlds are R-accessible from w; we say that
(M, w) is a model of a formula B (a set of formulas Φ) if M, w 
 B (M, w 
 B, for each
B ∈ Φ).

For a Veltman model M and a world x, the rooted submodel generated by x is the
rooted model (N, x), where N is the restriction of M to the set of all worlds that are
either x itself or are R-accessible from x.

Let us denote by Sub(A) the set of subformulas of a formula A. For a given formula
A we define Γ = Sub(A) ∪ {⊥}. We assume that the formula A and the corresponding
set Γ are fixed and available in all contexts. In other words, we will assume that these
objects are available to our algorithm even though we don’t mention them explicitly as
input parameters.

In the paper [47] the set Γ also contained negations of subformulas of A. Here we
change the approach slightly. We add two additional inputs to our algorithm: B ⊆ Γ
which stands for banned formulas, and D ⊆ Γ which stands for delayed banned formulas.
The original algorithm ([47]) solved the problem of satisfiability, i.e. “given some set
∆ ⊆ Γ, is there a rooted model (M, w) such that w 
 ∆?” The new algorithm presented
here solves a slightly more general problem: given some sets ∆,B,D ⊆ Γ, is there a
rooted model (M, w) such that w 
 ∆, such that Ṙ[w] 
 ¬B, and R[w] 
 ¬D. Clearly,
the difference is only superficial since the old algorithm can answer this question too,
given ∆ ∪ ¬B ∪2¬B ∪2¬D as input.

Because of these newly added inputs (compared to IL), we do not need additional
negated formulas in the set Γ. We believe this approach is more elegant than the one
used in our published paper.

Given S ⊆ Γ, we define Full(S) := S ∪ {¬B : B ∈ Γ \ S}. We will say that S ⊆
Γ is Boolean satisfiable (w.r.t. Γ) if Full(S) is a propositionally satisfiable set (see the
introduction for a precise description of propositional satisfiability). In general, it can
happen that Full(S) * Γ, but this won’t be an issue. Let us briefly describe the purpose
of Full(S). When the algorithm attempts the construction of a world satisfying ∆, it first
has to decide the truth values of formulas not determined by ∆. A way to implement this
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choice is to iterate through all subsets S of Γ, and try to make exactly the formulas of S
satisfied. This implies we want all B for B ∈ Γ \ S to be falsified.

6.2 The logic IL
We will present a PSPACE-algorithm that given a modal formula A checks whether

there is a rooted Veltman model (M, w) of A (and additionally, given parameters B and
D, the model has to satisfy Ṙ[w] 
 ¬B, and R[w] 
 ¬D). In order to prove that IL is
in PSPACE, given a modal formula A we will apply this algorithm to the set {A}, with
the sets B = ∅ and D = {A} (alternatively, we can take both sets B and D to be empty,
which might result in a slightly larger model). The execution with these parameters will
take a polynomial amount of space in |A|, thus demonstrating that IL is in PSPACE.

We will present our algorithm as the main Algorithm (1) and supplementary algorithms
(2) and (3) that can make recursive calls of each other and return either a positive or a
negative answer ((1) makes only calls of (2), (2) makes only calls of (3), and (3) makes
only calls of (1)). First we will give a full description of the computation process (the
algorithms (1), (2) and (3)) and specify what we are computing, but we will prove our
claims about what we are computing only later.

First we pick the formula A whose satisfiability we’re testing.

Note 6.1 In the remainder of the section we assume that the formula A and the corre-
sponding set Γ = Sub(A) ∪ {⊥} are fixed. Thus, all our statements and algorithms are
implicitly parametrised with A.

Algorithm (1) takes sets ∆,B,D ⊆ Γ as its input. Algorithm (2) takes sets ∆,D ⊆ Γ
as its input. Algorithm (3) takes as input a formula C �D ∈ Γ, a set ∆ ⊆ Γ \ {C �D}
of formulas of the form E � G; and a set D ⊆ Γ. All three algorithms return a single
value which is either a positive or a negative answer (i.e. yes or no). When we need to
refer to an input parameter X of an algorithm (i) we will sometimes write X(i) if “X” is
otherwise ambiguous in the given context.

Algorithm (1) computes whether there is a rooted model (M, w) such that w 
 ∆,
such that Ṙ[w] 
 ¬B and R[w] 
 ¬D. It does this by enumerating all (if any) Boolean
satisfiable extensions ∆′ ⊇ ∆ such that Full(∆′) ∪ ¬B is propositionally satisfiable. Al-
gorithm (1) returns a positive answer if and only if for at least one such extension ∆′,
Algorithm (2) returns a positive answer with ∆(2) = ∆′, and D(2) = B ∪ D.

Algorithm (2) takes sets ∆,D ⊆ Γ as input, where ∆ is assumed to be Boolean
satisfiable. Algorithm (2) computes whether there is a rooted model (M, w) such that
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w 
 Full(∆) and R[w] 
 ¬D. This is accomplished by examining the sets ∆+ and ∆−:

∆+ = {C �D ∈ Γ : C �D ∈ ∆}; (6.1)

∆− = {C �D ∈ Γ : C �D /∈ ∆}. (6.2)

For each formula C � D ∈ ∆−, we check whether there is a rooted Veltman model
(MC�D, wC�D) of {¬(C � D)} ∪ ∆+, such that R[wC�D] 
 ¬D. This is done through
the call of Algorithm (3) which is parametrised with (C � D)(3) = C � D, ∆(3) = ∆+,
and D(3) = D. Algorithm (2) returns a positive answer if and only if all these checks are
positive.

Let us give a brief informal description of what Algorithm (3) computes. Suppose we
are constructing a rooted model (M, w) of ∆ where C�D ∈ ∆−. Algorithm (3) is trying
to build the part of R[w] that should witness the falsity of C �D, i.e. there should be a
world satisfying C without an Sw transition to a world satisfying D. Let us denote the
aforementioned part of R[w] (that witnesses the falsity of C � D) as U . Algorithm (3)
first chooses which formulas in Γ will be satisfied somewhere in U . We can denote the set
of such formulas as P (“positive”) and let N = Γ \ P . The formulas in the set N are the
ones we want to be false everywhere in U . Later we will make U closed under Sw. So in
particular, if E �G is to be true in w, either we have a world satisfying G somewhere in
U , or E must be false everywhere in U (if E was true somewhere in U , we would need G
true somewhere in U).

Let us resume with the formal description of Algorithm (3). First we need an auxiliary
notion.

We will say that a pair of sets of formulas (N,P ) is a (∆, C �D)-pair if:

• N,P ⊆ Γ;

• C ∈ P , D ∈ N , ⊥ 6∈ P ;

• for each E �G ∈ ∆, either E ∈ N or G ∈ P .

Algorithm (3) takes a single formula C �D ∈ Γ as input, a set ∆ ⊆ Γ \ {C �D} of
formulas of the form E � G; and a set of formulas D ⊆ Γ. We return a positive answer
if there is a (∆, C �D)-pair (N,P ) such that for every G ∈ P there is a rooted Veltman
model (MG, wG) of G such that:

1. Ṙ[wG] 
 ¬D,¬N ;

2. R[wG] 
 ¬G.

Note that these checks can be computed with Algorithm (1) if we provide the following
input values: ∆(1) = {G}, B(1) = D ∪N , and D(1) = {G}.
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We will now proceed to prove that this algorithm has the required properties. To do
so, let us first verify that algorithms (1), (2) and (3) do what we described.

Lemma 6.2 Given ∆,B,D ⊆ Γ, the following statements are equivalent:

1. there exists a rooted model (M, w) such that w 
 ∆, such that Ṙ[w] 
 ¬B and
R[w] 
 ¬D;

2. there is a set ∆′ ⊆ Γ and a rooted model (M, w) such that w 
 Full(∆′), such that
R[w] 
 ¬B,¬D, the set ∆′ is a Boolean satisfiable extension of ∆, and Full(∆′)∪¬B
is propositionally satisfiable.

Proof. For (1.) to (2.), note that if there is a rooted model (M, w) such that w 
 ∆,
such that Ṙ[w] 
 ¬B and R[w] 
 ¬D, the same structure is a model of Full(∆′) where
∆′ = {A ∈ Γ : w 
 A}. This extension is satisfiable, and in particular propositionally
satisfiable, with ¬B. Conditions involving R[w] are clearly preserved.

For the other direction, we reuse the model whose existence is known. The only non-
obvious property to check is whether w 
 ¬B. Suppose w 
 B and ¬B ∈ ¬B for some
formula B ∈ Γ. Since ∆′ is Boolean satisfiable, B ∈ ∆′ (otherwise ¬B ∈ Full(∆′) and
then w 
 ¬B). Since w 
 ∆′, it follows that w 
 ¬B, a contradiction. a

Lemma 6.3 Let ∆ be a Boolean satisfiable subset of Γ, and B,D ⊆ Γ. The sets ∆+ and
∆− are given by (6.1) and (6.2). The following are equivalent:

1. there exists a rooted model (M, w) such that w 
 Full(∆) and R[w] 
 ¬D;

2. for all C �D ∈ ∆−, there is a rooted Veltman model (MC�D, wC�D) of {¬(C �
D)} ∪∆+, such that R[wC�D] 
 ¬D.

Proof. First assume that there is a rooted Veltman model (M, w) of Full(∆). It is easy
to see that we can put (MC�D, wC�D) = (M, w), for each C �D ∈ ∆−.

In the other direction, suppose we have rooted Veltman models (MC�D, wC�D) with
the described properties for each C �D ∈ ∆−. Denote (WC�D, RC�D, {SC�Dx : x ∈
WC�D},
C�D) = MC�D. In order to construct a rooted Veltman model (M, w) of ∆, we
take the disjoint union of the models MC�D, and then “merge” the worlds wC�D in one
world w. More formally, we suppose the models MC�D are disjoint, the world w is fresh
and then define:

W = {w} ∪
⋃

C�D∈∆−
WC�D \ {wC�D};

R = {(w, x) ∈ W 2 : x 6= w} ∪
⋃

C�D∈∆−
RC�D ∩W 2;

Sw =
⋃

C�D∈∆−
SwC�D ;

for x ∈ WC�D \ {wC�D}, Sx = SC�Dx .
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In the last line, the superscript C � D (SC�Dx ) is added since otherwise it would be
ambiguous if we are referring to one of the initial models MC�D or the final model M.
We omit this superscript if there is no danger of confusion (e.g. the world wC�D exists only
in MC�D, so we will write SwC�D instead of SC�DwC�D

.) We put satisfaction of proposition
variables in w according to the set Full(∆).

It is easy to prove by induction on the complexity of a formula B ∈ Γ that we have
the following: M, w 
 B if and only if B ∈ ∆. Let us consider the case B = C � D.
Suppose M, w 
 C �D. Assume C �D 6∈ ∆ for a contradiction. Clearly C �D ∈ ∆−.
By assumption, C � D fails in MC�D, so there is some x, such that wC�DRC�Dx, with
MC�D, x 
 C and for no y such that xSwC�Dy do we have MC�D, y 
 D. By the
construction of the model M we have M, x 
 C and for no y such that xSwy do we have
M, y 
 D. Since wRx and the set Sw[x] equals SwC�D [x], this contradicts the assumption
that M, w 
 C �D.

In the other direction, suppose C � D ∈ ∆ and wRx. Since C � D ∈ ∆, we have
C �D ∈ ∆+. Since wRx, by construction, x is in ME�G for exactly one formula E �G.
Since ME�G is a model of ∆+, there is y such that xSwE�Gy and ME�G, y 
 D. But y is
included in M, and we have xSwy 
 D. Thus w 
 C �D. a

Lemma 6.4 Let ∆,D ⊆ Γ where ∆ is a set of formulas of the form E �G, and assume
C �D ∈ Γ \∆. The following are equivalent:

1. there exists a rooted model (M, w) of {¬(C �D)} ∪∆, such that R[w] 
 ¬D;

2. there is a (∆, C � D)-pair (N,P ) such that for every G ∈ P there is a rooted
Veltman model (MG, wG) of G such that:

(a) Ṙ[wG] 
 ¬D,¬N ;

(b) R[wG] 
 ¬G.

Proof. (1.) to (2.) Fix the model (M, w) of {¬(C �D)} ∪∆ such that R[w] 
 ¬D, and
we are to find the required (∆, C � D)-pair (N,P ). Since w 1 C � D, there is a world
wC�D with wRwC�D 
 C and for all x, if wC�DSwx, then x 1 D. W.l.o.g. we can assume
that wC�D is an R-maximal3 world with this property. In particular, if wC�DRx, then
x 1 C (otherwise, since wRwC�D implies Sw[x] ⊆ Sw[wC�D], the world wC�D would not
be R-maximal in the set in question). Let P = {G ∈ Γ : [G]w ∩ Sw[wC�D] 6= ∅} and
N = Γ \ P .

For every G ∈ P let wC�D,G denote any world that is R-maximal in the set [G]w ∩
Sw[wC�D]. Put (MG, wG) := (M[wC�D,G], wC�D,G) where M[wC�D,G] is the submodel
generated by wC�D,G.

3A world x is R-maximal in a set S if x is in S and no R-successor of x is in S.

91



Chapter 6. Complexity

It is easy to check we have Properties (2a) and (2b). For instance, let us first verify
Ṙ[wC�D,G] 
 ¬N . Assume otherwise, i.e. for some E ∈ N and x ∈ Ṙ[wC�D,G] we have
x 
 E. Since E ∈ N , we have [E]w ∩ Sw[wC�D] = ∅. Since x ∈ Ṙ[wC�D,G], certainly
x ∈ Sw[wC�D,G] ⊆ Sw[wC�D], a contradiction.

In the other direction we know there is a (∆, C �D)-pair (N,P ) such that for every
G ∈ P there is a rooted Veltman model (MG, wG) of G such that (2a) and (2b) hold.
We construct M as follows. First take the disjoint union U of the models (MG, wG) for
G ∈ P . Prepend a new world w as an R-predecessor of every world in U . Make all the
worlds other than w pairwise Sw-accessible. The forcing relation of the new model should
inherit the ones from the building blocks, and for w it can be chosen arbitrarily.

It remains to prove that w 
 ¬(C � D),∆ and R[w] 
 ¬D. It is easy to see that
R[w] 
 ¬D. To see that w 
 ¬(C � D), note that wRwC 
 C (since C ∈ P ) and
that, since D ∈ N , all the models MG validate ¬D. Finally, let us check if w 
 ∆. Let
E � G ∈ ∆ be an arbitrary formula, and x ∈ R[w] an arbitrary world such that x 
 E.
Since x 
 E, we have G ∈ P (otherwise E ∈ N , contradicting wRx 
 E). Thus, the
world wG exists and by the definition of Sw, we have xSwwG.

a

Recall that we fixed a formula A which we would wish to decide if it has an IL-model
or not. We also fixed the corresponding set Γ = Sub(A) ∪ {⊥} (see Note 6.1).

Theorem 6.5 The logic IL is PSPACE-decidable.

Proof. First we show that the recursion depth is bounded by |Γ| + 1. Suppose that for
some initial input parameter ∆ ⊆ Γ (with B = D = ∅) we have a chain of calls

c
(1)
0 , c

(2)
0 , c

(3)
0 , c

(1)
1 , c

(2)
1 , c

(3)
1 , . . . , c(1)

n , c(2)
n , c(3)

n , c
(1)
n+1, c

(2)
n+1, c

(3)
n+1

of the Algorithms (1), (2) and (3) where n = |Γ|. It is possible that c(3)
n+1 makes further

calls of Algorithm (1), at the moment we are not assuming anything with regard to that.
Let Gi for 0 ≤ i ≤ n be the formula from the set P in c(3)

i , for which c(3)
i made the call

c
(1)
i+1.

Let the index i ≤ n− 1 be arbitrary. The sets D in c(1)
i+1, c

(2)
i+1 and c(3)

i+1 contain Gi, so
the set ∆ in c(2)

i+2 cannot contain Gi. Since we never remove elements from the sets D in
subsequent calls, for j ≥ i + 2 we have that ∆ in c(2)

j cannot contain Gi. Since ∆ in c(2)
j

is a superset of ∆ in c(1)
j , and the latter contains Gj−1, we have Gj 6= Gi for j ≥ i + 1.

Thus, the set {G0, G1, . . . , Gn} ⊆ Γ contains n+ 1 different elements, which is impossible
since |Γ| = n. This contradicts the existence of our chain, which is of length n+ 2.

Thus, our algorithm terminates. Next we see that the space reserved by our algorithm
is at most polynomial in |A| in any given instant. To see this, we first note that the
recursion depth has an upper bound which is linear in |A|. At any given moment we keep
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only one branch in memory. So, it remains to convince ourselves that each particular
execution of Algorithms (1), (2) and (3) takes at most a polynomial amount of space.

Algorithm (1) iterates through all Σ such that ∆ ⊆ Σ ⊆ Γ. This iteration requires n
bits, and thus is linear in |A|. For each Σ we check if it is Boolean satisfiable (which is a
PTIME preprocessing stage followed by an NP propositional satisfiability check). Finally,
Algorithm (1) makes a call of Algorithm (2).

Algorithm (2) is computationally very simple; it makes a small number of calls of
Algorithm (3). The number of calls made is bounded by |Γ|, but since we are not making
these (or any other) calls in parallel, even this detail is irrelevant.

Algorithm (3) iterates through all candidates (N,P ) for a (∆, C �D)-pair. Thus, it
suffices to iterate through pairs of subsets of Γ (this requires 2n bits), and then perform
a simple PTIME check of all the conditions (C ∈ P , D ∈ N , ⊥ /∈ P , for all E � G ∈ ∆
either E ∈ N or G ∈ P ). If some pair (N,P ) passes these checks, we call Algorithm (1)
for this pair. If one of the checks failed or Algorithm (1) returned a negative answer, we
proceed to the next candidate pair.

We see that a particular execution of Algorithms (1), (2) and (3) takes a polynomial
(in fact, linear) amount of space. So the whole Algorithm (1) (together with the recursive
calls) is at most quadratic in |A|, and thus it belongs to PSPACE.

Now the only thing left to verify is that the descriptions of what we are computing in
our algorithm are indeed correct. Since we already know that our computation terminates,
it is enough to show that our algorithm works locally correct, i.e. that assuming that
further calls do what we describe that they are doing, the call under consideration also
computes what we want it to compute. Formally, we prove the correctness of descriptions
by induction on the depth of the recursion (the base case are terminal calls, i.e. leaf calls
in the execution tree).

The fact that the description of Algorithm (1) is correct follows from Lemma 6.2,
that the description of Algorithm (2) is correct follows from Lemma 6.3, and that the
description of Algorithm (3) is correct follows from Lemma 6.4.

Thus, there is a model of A if and only if Algorithm (1) returns a positive answer
given the input ∆ = {A} and B = D = ∅. a

Bou and Joosten [6] proved that the decidability problem for the closed fragment of
IL is PSPACE-hard. Together with the previous theorem, this implies the following.

Corollary 6.6 The validity and decidability problems of the logic IL are PSPACE-
complete.

6.3 The logic ILW
Let us now extend results of the previous section to the logic ILW. The characteristic

property, (W), is the following:
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for all w ∈ W , the relation Sw ◦R is converse well-founded.

Assume we wish to know if the following set is ILW-satisfiable: {3p, p�3q∨3r, q�p}.
The algorithm for IL would have to produce a witness for, among other formulas, the
formula 3q ∨ 3r. To do this it has to iterate through propositionally satisfiable sets
containing 3q ∨3r. Disregarding the irrelevant formulas for the moment, there are two
options to go with: either 3q or 3r. Which option is picked depends on the order the
algorithm uses for iteration. If 3q comes first, it will be picked and the final model might
look like this (all worlds are assumed to be R-accessible from w):

p 3q

q

And this is clearly not a good choice: we have an infinite (R ◦Sw)-loop, so this model
is not an ILW-model. Thus, we have to build a different algorithm that will prevent
(R ◦ Sw)-loops. However, we have to allow certain non-problematic and non-trivial Sw-
loops. Assume we want to satisfy 3p, p� q and q � p. We might build a model like this
one:

p q

Unlike the previous model, this model is fine, and might even be the only solution (e.g. if
ILW ` ¬(p ∧ q)). So, preventing (R ◦ Sw)-loops cannot be reduced to simply preventing
Sw-loops; we really have to take the relation R into account. This time we can’t make Sw
total as we did for IL (see Lemma 6.4).

We first show (Lemma 6.7) that ILW-satisfiable formulas have a particular kind of
uniform models. For example, we can assume that if p�q ∈ ∆+ and we have a number of
R-successors of w that satisfy p, then there is a particular R-successor of w that satisfies
q which is both Sw-accessible from all the aforementioned worlds that satisfy p, and also
(Sw ◦ R ◦ Sw)-maximal in the set of worlds satisfying q. This is shown in the leftmost
picture below. The other two images sketch the main part of the proof of Lemma 6.7.
This is the part where we show that any model can be transformed to a model with the
desired properties, but that we do not lose the characteristic property (W) in the process.
It boils down to the fact that if there is a loop introduced in the process (caused by the
addition of an Sw-transition, pictured dashed), then the world we selected as supposedly
(Sw ◦ R ◦ Sw)-maximal actually had an (Sw ◦ R ◦ Sw)-successor (see the proof of Lemma
6.7).
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p

q

p

q

p

q (max)

p q (max) p q (max)

q

Once the Lemma 6.7 convinces us that there are uniformly-structured models for all
ILW-satisfiable formulas, we can limit our search space to that class of models.

The main modification of our algorithm will be the part that for each C � D ∈ ∆−

iterates through (Sw-) “visibility” graphs of witnesses of formulas from the “P” component
of an (∆, C �D)-pair (N,P ). This graph tells us which witness is allowed to Sw-access
which other witness. With this information, we will avoid introducing loops, since every
node will be aware of formulas that would cause a loop to appear. For example, if
P = {q0, q1, q2, q3, . . . }:

q0

q1

q2

q3

.
.
.

On this graph the existence of an arrow p → q means that the witness of p can Sw-
access the witness of q. The non-existence, however, means that the witness of p can’t
Sw-access any world satisfying q (not only the one particular chosen witness).

Let A be the formula whose satisfiability we are interested in, and Γ := Sub(A)∪{⊥}.
As in the previous section, A and Γ are fixed throughout the remainder of this section
(see Note 6.1). In this section, “model” will always mean “ILW-model”.

Given a set of formulas Γ, a model M and a world x ∈M, denote

Ix = {C �D ∈ Γ : x 
 C �D};

Nx = {C �D ∈ Γ : x 1 C �D}.

These sets, of course, depend not only on x but also on Γ, however the notation doesn’t
explicate this since the choice of Γ is fixed (Γ = Sub(A)∪ {⊥}), as was the case with IL.

Lemma 6.7 If (M, x) is a rooted ILW-model, then there is another rooted ILW-model
(N, y) such that:

1. (M, x) ≡Γ (N, y) and {B ∈ Γ : R[x] 
 B} = {B ∈ Γ : R[y] 
 B};

2. for all C � D ∈ Nx there is a set PC�D ⊆ Γ containing C such that for every
G ∈ PC�D there is a world yC�D,G, and:

(a) PC�D = {B ∈ Γ : [B]y ∩ Sy[yC�D,C ] 6= ∅};
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(b) yC�D,G 
 G;

(c) yC�D,G is (Sy ◦R ◦ Sy)-maximal in the set [G]y;

(d) whenever for someH ∈ PC�D and E such that E�G ∈ Ix we have yC�D,HSyz 

E, we also have zSyyC�D,G;

(e) Sy[yC�D,G] 
 ¬D.

Sometimes we will refer to the worlds yC�D,C as yC�D.

Proof. Note that the portions of R[x] witnessing falsity of different C � D ∈ Nx in the
rooted model (M, x) can be assumed to be mutually disjoint w.r.t. the relation S. More
precisely, if Ci � Di ∈ Nx, we can assume that there are corresponding worlds xi such
that xi 
 Ci, such that Sx[xi] 
 ¬Di and the sets Sz[xi]∪S−1

z [xi] and Sz[xj]∪S−1
z [xj] are

mutually disjoint (for all z ∈ M) when i 6= j. A way to achieve this is to replicate R[x]
in |Nx| copies and pick each xi from a different copy of the original R[x].

We will construct N by modifying M. Using the assumption of disjointness that was
just described, and the fact that our modifications will happen completely inside the sets
Sx[xi], we only need to show that we can achieve the statement of this lemma for a fixed
C �D ∈ Nx.

So, fix C � D ∈ Nx. Since x 1 C � D, the set V := [C]x \ S−1
x [[D]x] is non-empty.

At least one u ∈ V is (Sx ◦ R ◦ Sx)-maximal in V , otherwise we have an (R ◦ Sx)-loop4

infinitely revisiting V . Pick any such (Sx ◦R◦Sx)-maximal u ∈ V and let xC�D := u. We
claim that xC�D is also (Sx ◦R ◦Sx)-maximal in [C]x. Assume xC�D(Sx ◦R ◦Sx)v ∈ [C]x
(thus also xC�DSxv). Suppose that v /∈ V , i.e., vSxz for some z 
 D. By the transitivity
of Sx we have xC�DSxz which implies xC�D /∈ V , a contradiction. Thus, v ∈ V . But this
contradicts (Sx ◦R ◦ Sx)-maximality of xC�D w.r.t. V .

Let PC�D = {B ∈ Γ : [B]x ∩ Sx[xC�D] 6= ∅} and xC�D,C := xC�D. We will now
define xC�D,G for all other G ∈ PC�D (G = C has just been dealt with). First put V :=
Sx[xC�D]∩ [G]x. Clearly this set is not empty. As before, pick u ∈ V that is (Sx ◦R ◦Sx)-
maximal in V and let xC�D,G := u. Since (Sx ◦R◦Sx)[xC�D,G] ⊆ Sx[xC�D,G] ⊆ Sx[xC�D],
clearly xC�D,G is also (Sx ◦R ◦ Sx)-maximal in [G]x.

Thus, if we take y := x, we have properties (2a), (2b), and (2c), and it is easy to
see we have (2e) too. We would now like to ensure the property (2d): whenever there is
H ∈ PC�D such that xC�D,HSxz 
 E with some E�G ∈ Ix, we then have zSxxC�D,G. We
will do this by iterating through the set Z = {z ∈ ⋃E�G∈Ix [E]x : xC�DSxz} and including
(z, xC�D,G) in Sx. The set Z, and in fact the set Sx[xC�D] too, clearly remains constant
in this process. This process may invalidate the transitivity of Sx and also the property

4By an “(R ◦ Sx)-loop” we really mean an infinite (R ◦ Sx)-chain. Unless stated otherwise, we do
not assume that there is any repetition going on, despite the name. However, the results of this section
could be formulated in terms of finite models (for example, by replacing every occurrence of “model”
with “finite model”), in which case the loop would, of course, imply there is some repetition.
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(2c). Furthermore, it is not obvious that it preserves converse well-foundedness of R ◦Sx.
Let us first show the converse well-foundedness of R ◦ (Sx)+.5 After that, we will close Sx
under transitivity, and converse well-foundedness of R ◦ Sx will be immediate.

Suppose for a contradiction that we obtain an (R◦(Sx)+)-loop at some point during the
iterative process. We had converse well-foundedness before inserting some pair, denote it
as (z, xC�D,G), in Sx. Thus, the loop we obtained must contain occurrences of zSxxC�D,G
between infinitely many occurrences of R-transitions. We will first show that a loop of a
specific form must exist.

In the aforementioned (R ◦ (Sx)+)-loop, take the last occurrence of zSxxC�D,G that
appears before some arbitrarily chosen R-transition bRa. The relation Sx is transitive
on the segment of Sx-transitions between xC�D,G and b, so xC�D,GSxb. Similarly, take
the first occurrence of zSxxC�D,G after bRa. Since transitivity holds on the segment of
Sx-transitions between a and z, we have aSxz. Thus, for some a, b ∈ Sx[xC�D], a loop of
this form must exist:

a Sx z Sx xC�D,G Sx b R a.

Now, since
xC�D,G Sx b R a Sx z 
 E,

for some E such that E �G ∈ Ix, we have in fact

xC�D,G Sx b R a Sx z Sx u 
 G,

for some u ∈ [G]x that was present in the model before extending Sx with (z, xC�D,G).
This contradicts (Sx ◦ R ◦ Sx)-maximality of xC�D,G w.r.t. [G]x. Thus, there are no
(R ◦ (Sx)+)-loops. It remains to close Sx under transitivity.

Worlds of the form xC�D,G may lose their (Sx◦R◦Sx)-maximality (property (2c)) in this
iterative process once we start adding Sx-transitions for another formula G′ ∈ PC�D. This
can be remedied easily. Let xC�D,G denote the world currently denoted by xC�D,G, and
now redefine xC�D,G to be the (Sx◦R◦Sx)-maximal world in the set {z : xC�D,GSxz 
 G}.

Since xC�D,G aggregates paths from all worlds requiring an Sx-successor satisfying G,
and xC�D,GSxxC�D,G, we have all the old properties, with no need to extend Sx. Since
we did not change the model itself, we do not have to check if the properties (2a)–(2e)
are preserved.

We let the model N be the model thus obtained, and y := x. Finally, we should check
(M, x) ≡Γ (N, y) and {B ∈ Γ : R[x] 
 B} = {B ∈ Γ : R[y] 
 B}, where (M, x) now
stands for the state of the model before our transformations took place. First note that
the second claim holds trivially, since our transformation preserves R and Sz for z 6= x.
So it suffices to verify that x and y agree on propositional variables p ∈ Γ (which by

5Given a binary relation Q, we denote the transitive closure of Q with Q+.
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definition they do) and formulas of the form C � D ∈ Γ. Since we extend Sx in a way
that does not enlarge Sx[xC�D], clearly if x 1 C � D, also y 1 C � D. If x 
 C � D,
since we do not erase any Sx-transition, also y 
 C �D. a

Let us now present the algorithm. We use an approach similar to the one for the logic
IL. In particular, we have three algorithms, which we call Algorithms (1), (2) and (3),
again.

We need one more ingredient for ILW. We will say that a binary relation G is a
visibility graph for a (∆, C � D)-pair (N,P ) if G ⊆ P 2 is transitive and reflexive on P .
Let G := G ∩ G−1. Note that due to the reflexivity, every G ∈ P is contained in the
equivalence class [G] ∈ P/G.

Algorithms (1) and (2) are defined as before, so we skip their definitions (replacing
each implicit or explicit occurrence of “IL” with “ILW”). Algorithm (3) takes a single
formula C �D ∈ Γ as input, a set ∆ ⊆ Γ \ {C �D} of formulas of the form E �G; and
a set of formulas D ⊆ Γ. It returns a positive answer if for some (∆, C �D)-pair (N,P )
and a visibility graph G, for every G ∈ P there is a rooted Veltman model (MG, wG) of
G such that:

1. Ṙ[wG] 
 ¬D,¬N,¬{H : H � J ∈ ∆ and (G, J) /∈ G};

2. R[wG] 
 ¬G,¬{H : H � J ∈ ∆ and [G]G = [J ]G}.

Note that these checks can be computed with Algorithm (1).
We will now proceed to prove that algorithms (1), (2) and (3) are correct.

Lemma 6.8 Given ∆,B,D ⊆ Γ, the following statements are equivalent:

1. there exists a rooted model (M, w) such that w 
 ∆, such that Ṙ[w] 
 ¬B and
R[w] 
 ¬D;

2. there is a set ∆′ ⊆ Γ and a rooted model (M, w) such that w 
 Full(∆′), such that
R[w] 
 ¬B,¬D, the set ∆′ is a Boolean satisfiable extension of ∆, and Full(∆′)∪¬B
is propositionally satisfiable.

Proof. See the proof of Lemma 6.2. Since we use the same model (M, w) in both directions
of the proof, we do not need to check if the characteristic property (W) is preserved. a

The sets ∆+ and ∆− are given by (6.1) and (6.2), as before.

Lemma 6.9 Let ∆ be a Boolean satisfiable subset of Γ, and B,D ⊆ Γ. The following
statements are equivalent:

1. there exists a rooted model (M, w) such that w 
 Full(∆) and R[w] 
 ¬D;
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2. for all C �D ∈ ∆−, there is a rooted Veltman model (MC�D, wC�D) of {¬(C �
D)} ∪∆+, such that R[wC�D] 
 ¬D.

Proof. The proof of this lemma is essentially the same as the proof of Lemma 6.3. The
(1.)-to-(2.) direction is exactly the same, and since we are taking generated submodels of
the model (M, w) we do not need to check if the characteristic property is preserved in
the newly defined models.

In the other direction, we should check whether the resulting model (M, w) satisfies
converse well-foundedness of R ◦ Sw. However, every (R ◦ Sw)-path that exists in the
joint model (M, w) is already present in one of the initial models (MC�D, wC�D) as an
(R ◦ SwC�D)-path. Thus, no (R ◦ Sw)-loops can occur in this construction. a

Lemma 6.10 Let ∆,D ⊆ Γ where ∆ is a set of formulas of the form E �G, and assume
C �D ∈ Γ \∆. The following statements are equivalent:

1. there exists a rooted model (M, w) of {¬(C �D)} ∪∆, such that R[w] 
 ¬D;

2. there is a (∆, C �D)-pair (N,P ) and a visibility graph G for it such that for every
G ∈ P there is a rooted Veltman model (MG, wG) of G such that:

(a) Ṙ[wG] 
 ¬D,¬N,¬{H : H � J ∈ ∆ and (G, J) /∈ G};

(b) R[wG] 
 ¬G,¬{H : H � J ∈ ∆ and [G]G = [J ]G}.

Proof. (1.) to (2.). Assume w.l.o.g. that the model (M, w) has properties of the model
(N, y) described in Lemma 6.7. In particular, we assume the existence of worlds wC�D
and wC�D,G as described there. To show (2), let (N,P ) be the (∆, C � D)-pair defined
as follows: P = {B ∈ Γ : [B]w ∩ Sw[wC�D] 6= ∅} and N = Γ \ P . Note that this coincides
with PC�D in Lemma 6.7.

Let us define the visibility graph G ⊆ P 2 as follows. Given G1, G2 ∈ P , put (G1, G2) ∈
G if and only if wC�D,G1SwwC�D,G2 . The reflexivity and transitivity of G follow from the
reflexivity and transitivity of Sw.

Let G ∈ P and put (MG, wG) := (M[wC�D,G], wC�D,G) where M[wC�D,G] is the
submodel generated by wC�D,G. Also let (WG, RG, {SGx : x ∈ WG},
G) = MG.

Portions of properties (2a) and (2b) that appeared already in Lemma 6.4 (Ṙ[wG] 

¬D,¬N and R[wG] 
 ¬G) are proved exactly the same as before.

Let us verify Ṙ[wG] 
 ¬{H : H � J ∈ ∆ and (G, J) /∈ G}. Assume otherwise, i.e.
for some x ∈ Ṙ[wG] we have x 
 H for some H � J ∈ ∆ and (G, J) /∈ G. Properties in
Lemma 6.7 imply xSwwC�D,J . Thus, wC�D,GSwwC�D,J , contradicting (G, J) /∈ G.

Finally, let us verify that R[wG] 
 ¬{H : H � J ∈ ∆ and [G]G = [J ]G}. Assume
otherwise, i.e. for some x ∈ R[wG] we have x 
 H for some H � J ∈ ∆ and [G]G = [J ]G.
Again, Lemma 6.7 implies xSwwC�D,J . Since [G]G = [J ]G, we have wC�D,JSwwC�D,G.
Thus, wC�D,GRxSwwC�D,G, contradicting the converse well-foundedness of R ◦ Sw in M.

99



Chapter 6. Complexity

(2.) to (1.). We construct M as follows. Let (WG, RG, {SGx : x ∈ WG},
G) = MG for
all G ∈ P . First take the disjoint union U of the models (MG, wG) for G ∈ P . Prepend
a new world w as a predecessor of every world in U . Let

Q = {(x,wG2) ∈ U2 : (G1, G2) ∈ G, x ∈MG1 , x 
 E,E �G2 ∈ ∆}

Take Sw = (=U ∪
⋃
G∈P RG ∪ Q)+. This concludes the construction of M. Let us first

verify that M is an ILW-model.
The only non-trivial property is the converse well-foundedness of R ◦ Sw. Suppose for

a contradiction that there is an (R ◦Sw)-loop. Since Γ is finite, for some G ∈ P the world
wG must occur more than once in the loop. If we fix two occurrences of wG in the loop
and look at the part of the chain bounded by these occurrences, we obtained another
(although not necessarily different) (R ◦ Sw)-loop, but this time we are guaranteed to
have only a finite amount of pairwise distinct transitions. Furthermore, it is easy to see
that our (R ◦ Sw)-loop induces some (R ◦Q+)-loop (remove each Sw-transition that is an
=U -transition and collapse all consecutive R-transitions into a single R-transition).

Note that by the definition of Q, whenever xQy, if Gx and Gy are indices of the
models containing x and y (resp.), we have (Gx, Gy) ∈ G. In particular this means that
the formulas Gx, where x is any world from the (R ◦ Q+)-loop, all belong to the same
equivalence class of G. Recall that our loop contains only finitely many distinct Q and R
transitions. Fix some transition xRy that appears infinitely often in the loop.

Since x is the target of some Q-transition (an (R ◦ Q+)-loop cannot contain two
consecutive R-moves), we have x = wH for some H ∈ P . Since xRyQz for some z, there
is some E � G ∈ ∆ such that (H,G) ∈ G and y 
 E. However, since [G]G = [H]G, we
have R[wH ] 
 ¬E (see (2b)). This contradicts wH = xRy 
 E.

It remains to prove that w 
 ¬(C�D),∆ and R[w] 
 ¬D. To see that w 
 ¬(C�D),
note that wRwC 
 C and that, since D ∈ N , all the models MG validate ¬D. Similarly,
R[w] 
 ¬D. Let E � G ∈ ∆ be an arbitrary formula, and x ∈ R[w] an arbitrary world
such that x 
 E. Assume that x ∈ MH . Since x 
 E, we have (H,G) ∈ G (see (2a)).
Now the definition of Q implies xQwG, thus also xSwwG. a

Theorem 6.11 The logic ILW is PSPACE-decidable.

Proof. The proof is almost exactly the same as the proof of Lemma 6.5, but this time
referring to Lemmas 6.8–6.10. A small change is that we should convince ourselves that
finding a good visibility graph in Algorithm (3) takes a polynomial amount of space.
When we loop through the possible (∆, C � D)-pairs (N,P ), we should try all possible
visibility graphs for P . A visibility graph for P is a binary relation on P , and thus requires
at most |P |2 bits for its representation. Verifying its reflexivity and transitivity is a simple
PTIME operation. a
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6.4 The logic ILP
It is well known that ILP extends ILW. However, the logic itself is simpler. Models

of this logic have a convenient property that wRxRuSwv implies uSxv. For this reason,
when building a world w and dealing with a formula E � G ∈ ∆+ (we are trying to
ensure w 
 E � G), we only need to ensure a world satisfying G exists if there will be
an immediate R-successor of w satisfying E (as far as the formula E � G is concerned;
we might need a world satisfying G for other reasons, of course). If there will be non-
immediate R-successors satisfying E, the construction of their Sw-successors satisfying G
will be handled by their immediate R-predecessors (which is, by this case’s assumption,
not the world w). As is shown the picture below (where x0, . . . , xn are the worlds whose
construction was triggered by the world w), we can make Sw total in the first R-layer.
We could not have done this with ILW, since one formula had only one witness, and
connecting too many worlds to it may have caused loops. Here, on the other hand, the
worlds xi (pictured) only serve to cover each other’s needs: their children will take care
of their Sw-needs themselves.

Thus, there will be some “repetition” and models will on average be larger than it was
the case for IL and ILW, but the construction itself is arguably simpler.

w

x0 xn... first R-layer: Sw total

... otherwise reuse existing S

In this section all models are ILP-models.
We do not need any auxiliary lemmas, so let us present the algorithm. As before,

we have three algorithms (1), (2) and (3) with the same purpose as their IL and ILW-
counterparts.

Let A be the formula whose satisfiability we are interested in, and Γ := Sub(A)∪{⊥}.
Algorithms (1) and (2) are defined just like before. Please see above for their descrip-

tions (replacing each implicit or explicit occurrence of “IL” or “ILW” with “ILP”).
Algorithm (3) takes as input a single formula C �D ∈ Γ, a set ∆ ⊆ Γ \ {C �D} of

formulas of the form E � G; and a set of formulas D ⊆ Γ. It returns a positive answer
if for some (∆, C � D)-pair (N,P ), for every G ∈ P there is a rooted Veltman model
(MG, wG) of G such that:

1. Ṙ[wG] 
 ∆,¬D,¬N ;

2. R[wG] 
 ¬G.
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Note that these checks can be computed with Algorithm (1).
We will now proceed to prove that Algorithms (1), (2) and (3) are correct.

Lemma 6.12 Given ∆,B,D ⊆ Γ, the following statements are equivalent:

1. there exists a rooted model (M, w) such that w 
 ∆, such that Ṙ[w] 
 ¬B and
R[w] 
 ¬D;

2. there is a set ∆′ ⊆ Γ and a rooted model (M, w) such that w 
 Full(∆′), such that
R[w] 
 ¬B,¬D, the set ∆′ is a Boolean satisfiable extension of ∆, and Full(∆′)∪¬B
is propositionally satisfiable.

Proof. See the proof of Lemma 6.2. Since we use the same model (M, w) in both directions
of the proof, we do not need to check if the characteristic property (P) is preserved. a

Lemma 6.13 Let ∆ be a Boolean satisfiable subset of Γ, and B,D ⊆ Γ. The following
statements are equivalent:

1. there exists a rooted model (M, w) such that w 
 Full(∆) and R[w] 
 ¬D;

2. for all C �D ∈ ∆−, there is a rooted Veltman model (MC�D, wC�D) of {¬(C �
D)} ∪∆+, such that R[wC�D] 
 ¬D.

Proof. See the proof of Lemma 6.3. Here we should make an additional check of whether
we still have the characteristic property (P) once we merge (the roots of) the models
MC�D into one.

So, assume uSwv and let w′ be between w and u. Then for some C � D we have
uSwC�Dv. Since MC�D satisfies (P), we have uSw′v in MC�D, and thus uSw′v in M. a

Lemma 6.14 Let ∆,D ⊆ Γ where ∆ is a set of formulas of the form E �G, and assume
C �D ∈ Γ \∆. The following are equivalent:

1. there exists a rooted model (M, w) of {¬(C �D)} ∪∆, such that R[w] 
 ¬D;

2. there is a (∆, C � D)-pair (N,P ) such that for every G ∈ P there is a rooted
Veltman model (MG, wG) of G such that:

(a) Ṙ[wG] 
 ∆,¬D,¬N ;

(b) R[wG] 
 ¬G.

Proof. (1.) to (2.). This is exactly the same as in the proof of Lemma 6.4, but now we
have an additional property to check: Ṙ[wG] 
 ∆. Since wRwG and M satisfies (P),
whenever w 
 H � J , we have Ṙ[wG] ⊆ R[w] 
 H � J .

(2.) to (1.). Let (WG, RG, {SGx : x ∈ WG},
G) = MG for all G ∈ P . We construct M
as follows. First take the disjoint union U of the models (MG, wG) for G ∈ P . Prepend
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a new world w as a predecessor of every world in U . Let Sw = {(wG, x) : G ∈ P, x ∈
R[w]} ∪ ⋃G∈P SwG . This concludes the construction of M. The following properties are
easy to check: the transitivity and converse well-foundedness of R; the property that
xRyRz implies ySxz for x ∈ R[w], the reflexivity of Sx (on R[x]2) for x ∈ R[w], and the
transitivity of Sx for x ∈ R[w].

Reflexivity of Sw: assume wRx. If x = wG for some G ∈ P , we required that
(x, x) ∈ Sw; otherwise we use the reflexivity of SwG for the formula G ∈ P such that
x ∈MG.

If wRxRy, and x = wG for some G ∈ P , then xSwy follows from the definition of Sw.
If wRxRy, and x 6= wG (for all G ∈ P ), there must be some G ∈ P such that wGRxRy.
Then (x, y) ∈ SwG ⊆ Sw.

Let us verify the transitivity of Sw. Assume aSwbSwc and not aSwc. Thus, in partic-
ular, a 6= wG for all G ∈ P . This and aSwb imply aSwGb for some G ∈ P . Now wGRb

implies b 6= wH for all H ∈ P . This and bSwc imply bSwHc for some H ∈ P . Since
R[wG] ∩ R[wH ] = ∅ if G 6= H, it follows that bSwGc. By the transitivity of SwG , we have
aSwGc, and so aSwc.

Let us verify that the characteristic property (P) is preserved. It is clearly preserved
if only worlds from R[w] are involved. So assume uSwv and let w′ be between w and u.
Since wRw′Ru, we have u 6= wG for all G ∈ P , so uSwGv for some G ∈ P . If wGRw′ and
since (P) holds for MG, we have uSw′v. Otherwise, wG = w′. In this case, we already
obtained uSw′v.

It remains to prove w 
 ¬(C � D),∆ and R[w] 
 ¬D. To see that w 
 ¬(C � D),
note that wRwC 
 C and that, since D ∈ N , all the models MG satisfy ¬D. Similarly,
R[w] 
 ¬D. Let E � G ∈ ∆ be an arbitrary formula, and x ∈ R[w] an arbitrary world
such that x 
 E. If x = wH for some H ∈ P , we have xSwwG 
 G. Otherwise, there is
some H ∈ P such that wRwHRx. By the assumption that Ṙ[wH ] 
 ∆, in particular we
have wH 
 E � G. Since wHRx 
 E, there is y with xSwHy 
 G. Since SwH ⊆ Sw, we
have xSwy. a

Theorem 6.15 The logic ILP is PSPACE-decidable.

Proof. The proof is analogous to the proof of Theorem 6.11, except that now we use
Lemmas 6.12, 6.13, and 6.14. a

Corollary 6.16 The logic ILP is PSPACE-complete.

Proof. By Theorem 6.15 and the fact that it conservatively extends GL. a

Note 6.17 Lemmas 6.2, 6.3, 6.4 (IL), 6.8, 6.9, 6.10 (ILW), 6.12, 6.12, and 6.12 (ILP)
can be slightly strengthened by adding the condition of finiteness to one (or both) of the
claims (1.) or (2.) that are present in all these lemmas. Depending on a lemma, this
is either obvious, or a simple consequence of the finite model property (which all three
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logics, IL, ILW and ILP, have). This fact is not crucial for our proofs since we ensure
finiteness by other means, namely by ensuring R-maximality with appropriate formulas.

6.5 Other logics
It is natural to ask whether the results of this chapter extend to other interpretability

logics. Probably the best candidate logics to test next are interpretability logics that are
already known to be decidable. These are (to the best of our knowledge) ILM ([18]),
ILM0 ([49]), ILW∗ ([49]), ILR ([50]) and ILP0 ([50]).

Note also that in [49] and [50] the decidability of ILM0, ILW∗, ILR and ILP0 is proved
using generalised Veltman semantics, in which Sw-successors are sets of worlds. Therefore,
an adaptation of the technique of this chapter should take that into consideration. How-
ever, the remaining logic on this list, the logic ILM, does have the finite model property
with respect to ordinary Veltman semantics. This is also the only interesting extension
of IL that is known to be complete and to have the finite model property with respect to
ordinary Veltman semantics, but for which a complexity result is not obtained yet (either
in this chapter or elsewhere).

So let us briefly comment on what we tried to do and why we did not succeed in
applying the approach that worked for IL, ILW and ILP to ILM.

In the piece-by-piece approach of building models that we’ve seen in this chapter, the
set of (direct) successors of any world w is split into disjoint subsets (which we refer to
as pieces). Every piece corresponds to a single formula of form E �G we wish to be true
in the world w. Inside every piece, or in the case of ILP inside the first R-layer of every
piece, we inserted as many Sw relation as required in order to have all formulas of form
E � G we wish to be true in the world w, true. So, if we wanted to satisfy E � G in w
and at the same time wanted to satisfy E in a world u in one of the pieces, we would
connect u to the (single) distinguished witness for G in this piece. This does not work
well for ILM. Recall that the frame condition (M) is that wRuSwvRz implies uRz. So,
when selecting the target of an Sw-transition, one has to ensure that the set of boxed
formulas of the source is a subset of the set of boxed formulas of the target. Otherwise,
we would have uSwv with u 
 2B and v 1 2B, for some 2B. Hence there would be
z with vRz 1 B. The frame condition requires uRz, contradicting u 
 2B. Since for
every formula we want a single distinguished witness per piece, we would have to select
a particular set of boxed formulas for this distinguished witness. There is no obvious
reason why this single set of boxed formulas would be compatible with all the worlds
we would wish to connect to the witness. That is, we might want to connect different
sources (satisfying different sets of boxed formulas) to this distinguished witness. Even if
we drop the requirement for having a single distinguished witness, there is still no obvious
reason why even a polynomial number of witnesses would suffice. The number of different
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w

True A�B formulas &
information on criticality

x0 xn... witnesses of negated
A�B formulas

For true A �B in some w′, w′Rw,
and A ∈ w, witness x of B, w′Rx

...

...

...

Figure 6.1: A “naive” approach to building models in a space-efficient manner.

possible selections of boxed formulas is, roughly, 2|Γ|, where Γ is the set of subformulas of
the formula whose satisfiability our algorithm is currently verifying.

One alternative to the approach used in this chapter is to drop the general approach
of building self-sufficient pieces altogether. A possible alternative is to try and implement
something like the procedure used in Goris’ and Joosten’s construction method ([27, 28]).
With this approach, every world would take care of all the problems (as in our approach)
and all the deficiencies that the addition of this world caused in the model. The latter is
unlike the approach we used in this chapter, since in this chapter we let the parent of a
world take care of solving children’s deficiencies (solving deficiencies can be done efficiently
for the logics studied in this chapter, since we take care of all children’s deficiencies in one
go). It is easy to see that the alternative approach can quickly lead to an infinite branch
if we’re not careful. Suppose the ambient logic is IL and we have w 
 E �G,G�E and
wRu 
 E. We first need a witness v of G so that we can let uSwv and solve the deficiency
caused by w 
 E�G and wRu 
 E. The world v causes a new deficiency: w 
 G�E and
wRv 
 G. So we need a witness for E, which will then require a witness for G, etc. For
IL we can try to solve this by keeping track of all the formulas satisfied among all the Sw-
transitions that occurred after the last R-transition. Whenever we make an Sw-transition
uSwv, we can add another Sw-transition vSwu. Since the ambient logic is IL, no property
of a Veltman model is invalidated by such additions. There will never be more than |Γ|
adjacent Sw-transitions since after |Γ| adjacent Sw-transitions every possible deficiency
can be solved by making a transition to one of the worlds in the preceding Sw-sequence.
However, it’s not clear if and how we can ensure (in polynomial space) that the total
number of R-transitions is bound.

For ILM, the approach described in the last paragraph might be fruitful. The re-
quirement that would work for IL, that whenever we make an Sw-transition uSwv we add
another Sw-transition vSwu, is not sufficiently subtle for ILM, since it does not take into
account the sets of boxed formulas. We should only allow Sw-transitions towards worlds
whose sets of boxed formulas are supersets of the corresponding set for the current world.
Every time we make a transition (either R or Sx for some x) the target world has at least
as many boxed formulas. This property might6 imply that the recursion depth does not

6We only sketch the approach in this section, so we cannot claim this categorically; there may be
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exceed |Γ|3:

• There are never more than |Γ| R-transitions in a single branch since every world is
R-maximal for some formula in Γ.

• Between two R-transitions we can make Sx-transitions, and x can be one of the at
most |Γ| worlds.

• For a fixed x, there can be at most |Γ| adjacent Sx-transitions where the set of boxed
formulas stays the same.

Similarly, we preserved the polynomial branching factor: every world causes at most |Γ|
problems, and at most |Γ|2 deficiencies. Unfortunately, we did not yet succeed in turning
this sketch into an actual algorithm. One of the issues we have to solve is how to resolve
deficiencies that appear after performing the closure under the characteristic property (in
this process new R-transitions are inserted in the model). If space was not a problem,
we could keep track of the worlds that are going to become connected after the closure.
However, it is not clear why would such a list of worlds be of polynomial length. A
possible solution would be not to keep track of the worlds, but rather of their sets of
true �-formulas and their sets of boxed formulas. Since the sets of boxed formulas is
monotonically increasing, the number of possible combinations would fit into polynomial
space. We aim to continue working on this issue and resolve it in future work.

unforeseen issues.
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The approximating theory

In this chapter we prove the arithmetical validity of the principles contained in the
two series of principles Rn and Rn, which were recently introduced in [29]. Both series
are already known to be arithmetically sound; this was established using reasoning based
on definable cuts. We wanted to provide a different proof of the same result and aimed
to use the method of approximating theories introduced in [40]. In [40] this approach is
formalised as a system AtL. The benefit of AtL is that such proofs seem to highly resemble
the purely modal proofs of these principles within the logic ILP.1 It turned out that the
original version of AtL, the version of this system presented in [40], did not suffice to prove
the arithmetical soundness of the series Rn and Rn. At least we were not able to find full
proofs of the two series while staying inside the old version of AtL.

The aim of this chapter is to present an extended system (which we still call AtL), and
prove that the two series are arithmetically valid by reasoning in the system. Together
with the authors of [40] we extend and generalise the results of [40]. Unlike most other
chapters, this content is not yet submitted to a journal, but we plan to do this soon ([39]).

This chapter is for the most part joint work with Joost J. Joosten and Albert Visser,
and the modal soundness results w.r.t. generalised Veltman semantics are joint work with
Jan Mas Rovira (see [44] for details).

7.1 Preliminaries
In this part of the thesis we will be using reasoning in and over weak arithmetics. To

this end, let us start by describing the theory S1
2, introduced by Buss in [9]. This is a

finitely axiomatisable and weak first-order theory of arithmetic. The signature of S1
2 is

(S, | · |, b12 ·c,+, ·,#,=,≤).

The intended interpretation of | · | is the length of its argument when expressed in the
binary number system. In other words, |n| is (in the intended interpretation) equal

1There is another extension of IL, CuL, where arithmetical soundness proofs resemble ILM-proofs.
See Section 8.4 for the definition of CuL.
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to dlog2(n + 1)e. The intended interpretation of b1
2 ·c is precisely the one suggested by

the notation. The symbol # is pronounced “smash” and has the following intended
interpretation (“the smash function”):

n#m = 2|n||m|.

Other symbols are more standard and are intended to be interpreted in the expected way.
The motivation for the smash function is that it gives an upper bound to Gödel

numbers of formulas obtained by substitution. Suppose A is a formula, x a variable and
t a term. Given the Gödel numbers of A and t (denoted with dAe and dte, as usual),
the Gödel number of A(x 7→ t) will not surpass dAe#dte. Here the assumption is that
both the numeral representation and the Gödel numbers we work with are efficient. For
example, we can take the Gödel number of a string of symbols to be its ordinal number
in an arbitrary computationally very easy but otherwise fixed enumeration of all strings
in the language of S1

2.
As for the numerals, we can use efficient numerals, defined recursively as follows:

0 7→ 0;

2n 7→ (SS0) · n;

2n+ 1 7→ S((SS0) · n).

Clearly, efficient numerals have about the same growth rate as the corresponding binary
representations. We require the coding of our choice to have asymptotically the same
growth order as the Gödel numbers of the efficient numerals. We also require that the
code of a subterm is always smaller than the entire term, and similarly for formulas. We
will consider such coding natural. For example, using powers of prime numbers to code
sequences and terms of the form SSS...0 as numerals will not be considered natural in
this context. See [10] for details.

Before introducing (some of) the axioms of S1
2, we will first define a certain hierarchy

of formulas in the language of S1
2. We will say that a quantifier is bounded if it is of the

form (Qx ≤ t) where t is a term that does not involve x.2 A quantifier is sharply bounded
if it is of the form (Qx ≤ |t|) where t is a term that does not involve x

Definition 7.1 ([10]) Let ∆b
0, Σb

0, and Πb
0 stand for the set of formulas all of whose

quantifiers are sharply bounded. We define ∆b
i , Σb

i , and Πb
i for i > 0 as the minimal sets

satisfying the following conditions:

1. If A and B are Σb
i -formulas, then A ∧B and A ∨B are Σb

i -formulas.

2. If A is a Πb
i -formula and B is a Σb

i -formula, then ¬A and A→ B are Σb
i -formulas.

2By “(Qx ≤ t)” we mean “(∃x)(x ≤ t ∧ . . . ” if Q is ∃, and similarly if Q is ∀.
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3. If A is a Πb
i−1-formula, then A is a Σb

i -formula.

4. If A is a Σb
i -formula, x a variable and t is a term not involving x, then (∀x ≤ |t|)A

is a Σb
i -formula.

5. If A is a Σb
i -formula, x a variable and t is a term not involving x, then (∃x ≤ t)A

and (∃x ≤ |t|)A are Σb
i -formulas.

6. The first five conditions are to be repeated in the dual form: with the roles of Σ
and Π, and ∃ and ∀, swapped in all places.

7. A formula A is a ∆b
i -formula if it is equivalent over predicate logic both to a Σb

i -
formula and to a Πb

i -formula.

Thus, this hierarchy is analogous to the standard arithmetical hierarchy, with bounded
quantifiers in the role of unbounded quantifiers, and sharply bounded quantifiers in the
role of bounded quantifiers.

Definition 7.2 (The polynomial induction schema [10]) Let Φ be a set of formulas which
may contain zero or more free variables. We define Φ-PIND axioms to be the formulas

A(x 7→ 0) ∧ (∀x)(A(x 7→ b12xc)→ A)→ ∀xA,

for all A ∈ Φ and all variables x.

Thus, when proving facts using the schema of polynomial induction, in the inductive
step we are only allowed to refer to the property obtained for b1

2nc. This is, of course,
less convenient than the standard schema of mathematical induction where we can use
the property obtained for n− 1.

We obtain S1
2 by extending a certain list of 32 quantifier-free formulas (dubbed BASIC,

see e.g. [10]) with all Σb
1-PIND axioms.

This somewhat unusually axiomatised theory has a nice connection to computational
complexity, as the next theorem shows.

Theorem 7.3 ([9]) We have the following.

• Suppose S1
2 ` (∀x)(∃y)A(x, y) for some Σb

1-formula A. Then there is a PTIME-
computable function fA such that if fA(x) = y then A(x, y) holds (fA is a witnessing
function for A), and S1

2 ` (∀x)A(x, fA(x)).

• Conversely, suppose f is a PTIME-computable function. Then there is a Σb
1-formula

Af such that Af (x, y) holds if and only if f(x) = y, and S1
2 ` (∀x)(∃y)Af (x, y).
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Theories in this chapter will be ∆b
1-axiomatised theories (i.e. having PTIME-decidable

axiomatisations). Moreover, we will always assume that any theory we consider comes
with a designated interpretation of S1

2. That is, when we say “a theory”, we mean a pair
of an actual theory together with some singled-out and fixed interpretation of S1

2.
As S1

2 is finitely axiomatisable, and in this chapter we work with a principle similar
to a principle of interpretability P which is valid in finitely axiomatisable theories, the
theory S1

2 is a natural choice. However, we could have used another weak theory, such
as I∆0 + Ω1. Here I∆0 refers to Q extended with the schema of induction, restricted
to ∆0-formulas of the standard hierarchy. The axiom Ω1 states the totality of ω1, the
function n 7→ 2|n|2 (note the similarity with the smash function). This theory is a less
natural choice as it is not yet known whether it is finitely axiomatisable. An even more
powerful system is I∆0 + exp. Here, exp states the totality of exponentiation. This can be
expressed by a Π2 statement since the graph of the exponentiation function can be given
by a bounded formula.

A principle similar to induction is that of collection, in particular Σ1-collection.

Definition 7.4 (Σ1-collection) The schema

(∀n)((∀x < n)(∃y)A(x, y)→ (∃m)(∀x < n)(∃y < m)A(x, y))

where A is restricted to Σ1-formulas possibly with parameters, is the Σ1-collection schema.
The principle is occasionally useful, however we will have to find ways to avoid it as it is
not available in S1

2.

7.1.1 Formalised interpretability
Before introducing formalised interpretability, let us say a few words on formalised

provability. The provability predicate of a theory T , usually denoted as PrT , is the natural
formalisation of the statement “there exists a T -proof of a given formula”. Let us denote
the efficient numeral of the (natural) Gödel number of A by dAe. Sufficiently strong
theories (such as S1

2 and I∆0 + Ω1) prove the Hilbert–Bernays–Löb derivability conditions
([32]):

1. for all A, if T ` A, then T ` PrT (dAe);

2. for all A, T ` PrT (dA→ Be)→ (PrT (dAe)→ PrT (dBe));

3. for all A, T ` PrT (dAe)→ PrT (dPrT (dAe)e).

These conditions suffice to show that T ` PrT (d0 = 1e) and consequently T ` 0 = 1
follows from T ` ¬PrT (d0 = 1e), i.e. the Gödel’s second incompleteness theorem. These
conditions also suffice to show that the following holds:

if T ` PrT (dAe)→ A, then T ` A.
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Thus T is only “aware” that PrT (dAe) implies A in case the conditional is trivially satisfied
by the provability of its consequent. This entailment is known as Löb’s rule. In fact, T is
“aware” of this limitation (formalised Löb’s rule):

T ` PrT (dPrT (dAe)→ Ae)→ PrT (dAe).

If we replace occurrences of PrT (dAe) with 2A, for all A, we can formulate the facts and
rules above in the language of propositional modal logic. The provability logic GL is the
extension of the basic modal logic K with an additional axiom schema representing Löb’s
formalised rule:

2(2A→ A)→ A.

In his well-known result, Solovay [57] established arithmetical completeness for this logic.
The predicate PrT satisfies the following property:

T ` A if and only if N |= PrT (dAe). (7.1)

Now, one might ask if there are other predicates, apart from PrT , that satisfy the same
Property (7.1) (i.e. which extensionally coincide with the predicate PrT ). Indeed, there
are many other such predicates. One such predicate is given in [22] as the formalisation
of “provable by the union of all consistent initial segments of T”.3 Let us call this notion
Feferman-provability. As we’re interested only in consistent theories, clearly this predicate
has the same extension as the predicate PrT . However, it is provable within PA that
0 = 1 is not Feferman-provable. This is of course not the case with PrPA, as that would
contradict Gödel’s second incompleteness theorem.

If we’re dealing with some poly-time decidable theory T , by Theorem 7.3 there is
a Σb

1-predicate verifying whether a number codes a T -proof of a formula. This implies
that the provability predicate, claiming that a proof exists for some given formula, is a
∃Σb

1-predicate. This is convenient because for S1
2 we have provable ∃Σb

1-completeness.
We now move on and consider interpretability. There are various notions of formalised

interpretability (see Theorem 1.2.10. of [37] for a discussion on their relationships). Here
we are interested in theorems interpretability, i.o.w. we say that k is an interpretation of
V in U (we write k : U � V ) if and only if

∀φ (2V φ→ 2Uφk).

Here 2V and 2U are to be understood as, of course, the provability predicates of V and
U , respectively. The k-translation of φ is denoted as φk. If V is a finitely axiomatisable
theory, then U � V is in fact a ∃Σb

1 sentence. This is due to the fact that for finitely
3In [22] the theory T is assumed to be a consistent reflexive extension of PA.
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axiomatisable theories V , their interpretability in U boils down to the statements stating
the provability of the translation of the conjunction of these axioms. As the theories
studied in this chapter are all ∆b

1-axiomatisable, the aforementioned statement is ∃∆b
1, in

particular ∃Σb
1.

7.2 Tweaking the axiom set
For finitely axiomatised theories V , we have:

S1
2 ` U � V → 2S1

2
(U � V ),

because U � V is a ∃Σb
1-sentence. Recall that in this chapter all theories are assumed to

be ∆b
1-axiomatised. If this were not the case, U�V need not, of course, be a Σb

1-sentence,
even for finitely axiomatised theories V .

To mimic the P-style behaviour for an arbitrary theory V , we will modify V to a new
theory V ′ that approximates V to obtain S1

2 ` U �V → 2S1
2
(U �V ′). Of course, the new

theory V ′ should be sufficiently like V to be useful. Thus, we define a theory V ′ that is
extensionally the same as V , but for which U � V ′ is a statement that is so simple that
under the assumption that U � V , we can easily infer 2S1

2
(U � V ′).

7.2.1 The approximating theory defined
The idea is simple and as follows. Given some translation k, let us define the set

of axioms V ′ as consisting of just those axioms φ of V such that U ` φk. Note that,
if k : U � V , then V and V ′ have the same axioms. However, when V is not finitely
axiomatisable in general, we cannot take this insight with us when we proceed to reason
inside a box. In formulas: we do have k : U � V ⇒ V ≡ V ′ but in general we do not
have k : U � V ⇒ 2(V ≡ V ′).

This idea works modulo some trifling details. Firstly, the definition of the new axiom
set does not have the right complexity. Secondly, if the argument is not set up in a careful
way, we may seem to need both Σ1-collection and exp. We shall use a variation of Craig’s
trick so that the axiom sets that we consider will remain to be ∆b

1-definable. The same
trick makes the use of strong principles, like Σ1-collection and exp, superfluous.

Definition 7.5 Let U and V be ∆b
1-axiomatised theories. Moreover, let k be a translation

of the language of V into the language of U that includes a domain specifier. We define
V [U,k] as follows.

axiomsV [U,k](x) := ∃ p, ϕ<x
(
x = pϕ ∧ (p = p)q ∧

axiomsV (ϕ) ∧ proofU(p, ϕk)
)
.
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It appears at first sight that we have defined a Σb
1-formula. It is clear that axiomsV [U,k](x) is

poly-time decidable if axiomsV (x) and axiomsU(x) are. Thus, this formula clearly describes
a PTIME-computable procedure. By Theorem 7.3, we know it has to be ∆b

1-definable.
The following lemma tells us that S1

2 verifies that k : U � V implies that V and V [U,k]

are extensionally equal. Actually, V � V [U,k] always holds and does not depend on the
assumption k : U � V .

Lemma 7.6 Let U and V be ∆b
1-axiomatised theories. We have

1. S1
2 ` ∀k (id : V � V [U,k]).

2. S1
2 ` ∀k (k : U � V → id : V [U,k] � V ).

Proof. Ad (1). Reason in S1
2. We have to show: 2V [U,k]ϕ → 2V ϕ. This is easily seen to

be true, since we can replace every axiom ϕ ∧ (p = p) of V [U,k] by a proof of ϕ ∧ (p = p)
from the V -axiom ϕ. The resulting transformation is clearly p-time.

Ad (2). Reason in S1
2. Suppose k : U � V and 2V ϕ. We set out to prove 2V [U,k]ϕ. From

our assumption 2V ϕ we obtain a proof p of ϕ from V -axioms τ0, . . . , τn. We would be
done obtaining a proof p′ if we could replace every axiom occurrence of τi in p by

τi ∧ (qi = qi)
τi ∧E, l

where qi were a proof in U of τ ki , so that we would obtain a V [U,k]-proof r of ϕ. Clearly, for
each τi we have that 2V τi, so that by our assumption k : U �V we obtain a U proof qi of
τ ki . However, these proofs qi may be cofinal and thus we would need a form of collection
to exclude that possibility to keep the resulting syntactical object p′ finite.

It turns out that we can perform a little trick to avoid the use of collection. To
this end, let τ be the (possibly non-standard) conjunction of these axioms. Note that,
by the naturality conditions on our coding, τ is bounded by p. Since clearly, we have
2V τ , we may find, using k : U � V , a U -proof q of τ k (recall that we employ theorems
interpretability in this chapter). We may use q to obtain U -proofs of qi of τik. Clearly,
|qi| is bounded by a term of order |q|2. We can now replace every axiom occurrence of τi
in p by

τi ∧ (qi = qi)
τi ∧E, l

and obtain a V [U,k]-proof r of ϕ. We find that |r| is bounded by a term of order |p| · |q|2.
So r can indeed be found in p-time from the given p and q. a

For the previous lemma to hold it is essential that we work with efficient numerals p.
The reader may find it instructive to rephrase the lemma in terms of provability.

Corollary 7.7 For U and V , ∆b
1-axiomatised theories we have
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1. S1
2 ` ∀k ∀ϕ (2V [U,k]ϕ→ 2V ϕ).

2. S1
2 ` ∀k

(
k : U � V → ∀ϕ (2V [U,k]ϕ↔ 2V ϕ)

)
.

As mentioned before, even though we have extensional equivalence of V and V [U,k] under
the assumption that k : U � V , we do not necessarily have this under a provability
predicate. That is, although we do have 2S1

2
(2V [U,k]ϕ → 2V ϕ) we shall, in general, not

have k : U � V → 2S1
2
(2V ϕ→ 2V [U,k]ϕ).

7.2.2 A P-like principle for the approximated theory
The theory V [U,k] is exactly defined so that it being interpretable in U is true almost

by definition. This is even independent on k being or not an interpretation of V in U .
The following lemma reflects this insight.

Lemma 7.8 For U and V , ∆b
1-axiomatised theories we have S1

2 ` ∀k (k : U � V [U,k]).

Proof. Reason in S1
2. Suppose p is a V [U,k]-proof of φ. We want to construct a U -proof of

φk. As a first step we transform p into a V -proof p′ as we did in the proof of Lemma 7.6,(1).
Next we transform p′, using k, into a predicate logical proof q of φk from assumptions τ ki ,
where each τi is a V -axiom. It is well known that this transformation is p-time. Finally,
each axiom τi extracted from p, comes from a V [U,k]-axiom τi ∧ (ri = ri), where ri is a
U -proof of τ ki . So our final step is to extend q to a U -proof q′ by prepending the U -proofs
ri above the corresponding τ ki . This extension will at most double the number of symbols
of q, so q′ ≈ q2. a

As a direct consequence of this lemma, we see via necessitation that S1
2 ` 2S1

2
∀k (k :

U � V [U,k]) so that in a trivial way we obtain something that comes quite close to the
P-schema:

S1
2 ` U � V → 2S1

2
∀k (k : U � V [U,k]). (7.2)

This is not yet what we are looking for. Therefore, we go to the setting of interpretability
logics where all theories that we consider come as sentential extensions of some base
theory. In this context we can prove the following lemma.

Lemma 7.9 Let T be a ∆b
1-axiomatised theory, containing S1

2 (as always), and let α and
β be T -sentences.

S1
2 ` k : (T + α)� (T + β)→ 2S1

2
k : (T + α)� (T [T+α,k] + β)

Proof. We reason in S1
2 and suppose

k : (T + α)� (T + β). (7.3)
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In particular, k : (T + α)� T whence by (7.2) we conclude

2S1
2
k : (T + α)� T [T+α,k]. (7.4)

We need to conclude 2S1
2
k : (T + α)� (T [T+α,k] + β). In other words, we need to show

2S1
2

(
∀ϕ (2T [T+α,k]+βϕ → 2T+αϕ

k)
)
. (7.5)

By (7.3) we know that2T+αβ
k so that by provable Σ1-completeness we also have2S1

2
2T+αβ

k.
Thus, under the 2S1

2
we may use 2T+αβ

k. With this, we can now set out to prove (7.5).
Thus we reason under the 2S1

2
, fix some arbitrary ϕ and assume 2T [T+α,k]+βϕ. By the

formalised deduction theorem we get 2T [T+α,k](β → ϕ). Thus, via (7.4) and by observing
that (β → ϕ)k = (βk → ϕk) we obtain 2T+α(βk → ϕk). This is combined with 2T+αβ

k

to obtain 2T+αϕ
k which was needed for (7.5) so that the proof is finished. a

This lemma can be simplified slightly which shall be the final version of our approxi-
mation of the principle P.

Theorem 7.10 Let T be a ∆b
1-axiomatised theory, containing S1

2, and let α and β be
T -sentences.

S1
2 ` k : (T + α)� (T + β)→ 2S1

2
k : (T + α)� (T [T,k] + β)

Proof. Similar to the proof of Lemma 7.9. We now start by applying (7.2) to U=V=T
to conclude 2S1

2
k : T � T [T,k] so in particular 2S1

2
k : (T + α) � T [T,k]. The remainder of

the proof is unaltered. a

We observe that, a priori, Lemma 7.9 is slightly stronger than Theorem 7.10 since
T [T+α,k] can contain more axioms than T [T,k]. However, for our purposes we did not see a
need for the additional freedom generated by using T [T+α,k] instead of T [T,k].

7.2.3 Iterated approximations
As it turns out, we will need to apply our technique of approximating theories to

theories that themselves are already approximations4. To this end we generalise the
definition of approximated theories to sequences of interpretations as follows.

Definition 7.11 Let V [〈U,k〉] := V [U,k]. We recursively define

V [〈U0,k0〉,...,〈Un,kn〉,〈Un+1,kn+1〉]

4An example can be found in the proof of Lemma 7.30.
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for n ≥ 0 to stand for
(
V [〈U0,k0〉,...,〈Un,kn〉]

)[Un+1,kn+1]
, i.e.:

axiomsV [〈U0,k0〉,...,〈Un,kn〉,〈Un+1,kn+1〉](x) :=

∃ p, ϕ<x
(
x = pϕ ∧ (p = p)q ∧

axiomsV [〈U0,k0〉,...,〈Un,kn〉](ϕ) ∧

proofUn+1(p, ϕkn+1)
)
.

If x denotes a finite sequence 〈U0, k0〉, . . . , 〈Un, kn〉, then we understand V [x,〈Un+1,kn+1〉] as
V [〈U0,k0〉,...,〈Un,kn〉,〈Un+1,kn+1〉].

Lemma 7.9 can be adapted to this new setting so that we get the following.

Lemma 7.12 Let T be a ∆b
1-axiomatised theory, containing S1

2, and let α and β be
T -sentences. Let x be a sequence of pairs 〈Ui, ki〉. We have:

S1
2 ` k : (T + α)� (T [x] + β)→ 2S1

2
(T + α� T [x,〈T+α,k〉] + β).

Proof. Reason in S1
2 and suppose k : (T +α)�(T [x] +β). Via a straightforward and minor

modification of Lemma 7.9 we get

2S1
2
k : (T + α)� (

(
T [x]

)[T+α,k]
+ β),

i.e., 2S1
2
k : (T + α)� (T [x,〈T+α,k〉] + β) as was to be shown. a

Again, it seems that there is no need to keep track of the α formulas in the T [T+α,k]

definition. Therefore, we shall in the sequel work with simply sequences of interpretations
of T in T rather than sequences of pairs of theory and interpretation. The corresponding
definition is as follows where 〈〉 denotes the empty sequence and for a sequence x, we use
x ? k or sometimes simply x, k to denote the concatenation of x with 〈k〉.

Definition 7.13 For T a ∆b
1-axiomatised theory we define T [〈〉] := T and T [x?k] :=(

T [x]
)[T,k]

.

From now on, we shall write T [k] instead of T [〈k〉]. With the simplified notion of
iteration we can formulate a friendlier P-flavoured principle.

Theorem 7.14 Let T be a ∆b
1-axiomatised theory, containing S1

2, and let α and β be
T -sentences. Let x be a sequence of interpretations. We have:

S1
2 ` k : (T + α)� (T [x] + β)→ 2S1

2
k : (T + α)� (T [x,k] + β).
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7.3 A modal logic for approximation
In this section we will present a modal logical system to reason about interpretations

and approximations based on them.

7.3.1 The logic AtL
We proceed to articulate modal principles reflecting facts about approximations. The

main idea is to label our modalities with sequences x of interpretation variables. Of
course, in the arithmetical part, these sequences x will indeed be interpreted via some
map κ as a sequence κ(x) of translations from the language of T to the language of T .
In the next subsection we shall make the arithmetical reading precise but the idea is that
A �x B will stand for T + α � T [κ(x)] + β whenever A is interpreted by the arithmetical
sentence α and B by β. Likewise, 2xA will be interpreted as 2T [κ(x)]α.

As in [40], we will call our modal system AtL. We first specify the language. We have
propositional variables p0, p1, p2 . . .We will use p, q, r, . . . to range over them, and we have
interpretation variables k0, k1, k2, . . .. We have one interpretation constant id. The meta-
variables k, `,m, . . . will range over the interpretation terms (i.e. interpretation variables
and id). The meta-variables x, y, z, . . . will range over finite sequences of interpretation
variables. The modal language is the smallest language containing the propositional
variables, closed under the propositional connectives, including > and ⊥, and given an
interpretation term k, the modal operators 2k and �k (we let 3xA abbreviate ¬2x¬A),
and closed under the following rule.

• If A�xB is in the language and k is an interpretation term not contained in x, then
A�x,k B is in the language. Similarly for 2xA.

We will write � for �id, and analogously for 2 and 3. Our logic AtLwill have axioms
` A for any tautology A. Moreover, AtL has the obvious interchange rules to govern
interaction between both sides of the turnstyle ` based on the deduction theorem so that
∆,Γ ` C ⇔ ∆ ` ∧Γ→ C. Apart from modus ponens, AtL has the following axioms and
rules.
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(→ 2)x,k ` 2x,kA→ 2xA

(→ �)x,k ` A�xB → A�x,kB

Lx1 ` 2x(A→ B)→ (2xA→ 2xB)
Lx,y2 ` 2yA→ 2x2yA

Lx3 ` 2x(2xA→ A)→ 2xA

Jx1 ` 2x(A→ B)→ A�xB

Jx2a ` (A�B) ∧ (B�xC)→ A�xC

Jx,y2 b ` (A�xB) ∧2x?y(B → C)→ A�xC

Jx3 ` (A�xC) ∧ (B�xC)→ A ∨B �xC

Jx4 ` A�xB → (3A→ 3xB)
Jx,y5 ` A�x 3yB → A�y B

Px,y,k Γ,∆,2y(A�x,k B) ` C ⇒ Γ, A�x B ` C
Necx ` A⇒ ` 2xA

In the above, the rule Px,y,k is subject to the following conditions:

1. k is an interpretation variable;

2. k does not occur in x,Γ, A,B,C;

3. ∆ consists of formulas of the form E �x,k F → E �x F and
2xE → 2x,kE.

We will call the licence to use 2xE → 2x,kE provided by Px,y,k: (E2)k, and we will call
the licence to use E �x,k F → E �x F : (E�)k.

We observe that by taking the empty sequence we get various special cases of our
axioms. For example, a special case of (→ 2)x,k would be ` 2kA → 2A. Furthermore,
successive applications of (→ 2)x,k yield ` 2xA→ 2A

Likewise, a special case of (→ �)x,k gives us ` A � B → A�kB. A special case of
Jx,y2 b is given by what we could call Jx2b given by (A�xB) ∧ 2x(B → C) → A�xC by
taking y to be the empty sequence in Jx,y2 b. In our applications so far, we only saw need
for the special case of the axiom. It is unknown if AtL with Jy2b instead of Jx,y2 b proves
the same set of interpretability-variable-free formulas (and likewise for the other special
cases).

Furthermore, we observe that Jx1 follows from the classical J1 principle since

2x(A→ B) → 2(A→ B)
→ A�B

→ A�xB.

As a first and simple derivation in our system we have the following strengthening of
the principle P0 in AtL (recall that P0 is the scheme A�3B → 2(A�B)).
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Lemma 7.15 Let x be a finite non-empty sequence of interpretation variables. We may
fix y so that x= y?〈k〉 with the understanding that y = id in case the length of x is just
one. Now, let ∆ consists of formulas of the form E �y,k F → E �y F and 2yE → 2y,kE.
We have the following rule to be derivable over AtL:

Γ,∆,2(A�B) ` C ⇒ Γ, A�x 3B ` C

Proof. This follows from the rule Px combined with the schema Jx5 . a

7.3.2 Quantifying over interpretations
In order to set up arithmetical semantics, we would like to quantify over sensible trans-

lations. However, how are we to separate the sensible from the non-sensical translations?
In this subsection we shall provide a construction to guarantee that we only use sensible
translations.

Being a sensible translation or not shall be gauged via some fixed interpretation of the
natural numbers. Thus, let T be any theory with a designated interpretation, say N , of
S1

2. Let α? be a conjunction of T -axioms that implies (S1
2)N . We fix T , N and α? for the

remainder of this section.
We can now provide a construction that guarantees that we only deal with sensible

translations. Define, for any translation k of the language of T to the language of T :

s(k) :=

k, if (α?)k

id, otherwise

Thus, s(k) is an interpretation defined by cases. Via an easy induction on the complexity
of ϕ we can prove that over predicate logic we have

ϕs(k) ←→
(

(α?)k ∧ ϕk
)
∨
(
¬(α?)k ∧ ϕ

)
. (7.6)

Since the needed induction to prove this is on the length of ϕ and since the proof can be
uniformly constructed in p-time from ϕ, we have access to (7.6) when reasoning inside S1

2.
We observe that s(k) should be evaluated where it occurs. For example in the formula

∃k2Uφs(k), the choice of whether s(k) will be id or k will depend on whether (α?)k holds
under the 2U even though the k comes from a quantifier outside the box. In contrast, in
the expression ∃k2U [s(k)]ϕ, the nature of U [s(k)] depends on whether (α?)k holds outside
the box.

Let us proceed by making some easy observations on s(k). In the following lemma,
we start by observing that regardless of the nature of k, the derived s(k) provides us an
interpretation of α? in T . Next, we see that any other interpretation of α? in T will also
occur as an image of s. Thus, modulo T -provable equivalence, s(k) ranges precisely over
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all interpretations of α?.

Lemma 7.16 We have, verifiably in S1
2, for any k,

1. T ` (α?)s(k),

2. for any formula φ we have T ` (α?)k → (φs(k) ↔ φk),

Proof. Let us prove the first claim. Reason in S1
2 and let k be arbitrary. Now reason in T

or more formally, under the 2T . We distinguish cases. If (α?)k, then s(k) = k, and (α?)k

holds by the case assumption. Otherwise, s(k) = id. The choice of T (see beginning of
the subsection) implies T ` α?, as required.

Similarly, to see the second claim we should show that either (α?)k → (φk ↔ φk) if
(α?)k, or (α?)k → (φ↔ φk) if (α?)k does not hold. Both claims are obviously true under
the respective assumptions. a

In the light of Theorem 7.14 it is desirable that approximating theories contain S1
2. The

following lemma tells us that approximating theories indeed contain a sufficient amount
of arithmetic. We recall that where the lemma mentions the theory of form T [T,s(k)] we
really mean the theory axiomatised by

axiomsT [T,s(k)](x) = ∃ p, ϕ < x
(
x = pϕ ∧ (p = p)q∧

axiomsT (ϕ) ∧ proofT (p, ϕs(k))
)
.

(7.7)

In this formula we can expand ϕs(k) as in (7.6).

Lemma 7.17 S1
2 ` ∀k 2T [T,s(k)](S1

2)N .

Proof. Reason in S1
2. Consider any translation k from the language of T to the language

of T . Lemma 7.16 tells us there is a proof in T of (α?)s(k). Hence, we have proofs pi of
(αi)s(k), for (standardly) finitely many T -axioms α1, . . . , αn. We would like to show that
T [T,s(k)] proves each of these αi, since then T [T,s(k)] proves (S1

2)N . We take arbitrary αi and
put x = pαi ∧ (pi = pi)q. If we now substitute this x into (7.7), we immediately get the
first two conjuncts of (7.7). Furthermore, T proves (αi)s(k) because pi is a proof of this
formula in T . So, αi ∧ (pi = pi) is an axiom of T [T,s(k)], whence T [T,s(k)] proves αi. a

Recall that we work with the theories T that interpret S1
2 and that we fix a designated

interpretation N : T � S1
2. We defined a variety of other theories of the form T [x], but

we did not specify what interpretation of S1
2 we are supposed to bundle them with. The

preceding lemma tells us that we can reuse N . Thus, we will take N as the designated
interpretation of S1

2 in the T [x].
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7.3.3 Arithmetical soundness
As usual, the modal logics are related to arithmetic via so-called realisations. Realisa-

tions map the propositional variables to sentences in the language of arithmetic. However,
we now also have to deal with the interpretation sequences. Thus, our realisations for the
arithmetical interpretation are pairs (σ, κ), where:

• σ maps the propositional variables to T -sentences, and

• κ maps the interpretation variables to translations from the language of T to the
language of T .

We stipulate that the σ are> for all but finitely many arguments and likewise, we stipulate
that the κ are id for all but finitely many arguments. The realisations are lifted to
the arithmetical language in the obvious way by having them commute with the logical
connectives and by taking:

(2k1,...,knA)σ,κ := 2T [ 〈s(κ(k1)),...,s(κ(kn))〉 ]Aσ,κ, and

(A�k1,...,kn B)σ,κ :=

(T + Aσ,κ)� (T [ 〈s(κ(k1)),...,s(κ(kn))〉 ] +Bσ,κ).

We observe that the nested modalities make sense because of Lemma 7.17. Note that the
interpretation s(k) is applied only at locations where it can be expanded to a formula.
Thus, we can arithmetise its use in T . For this reason, we can internally quantify over
interpretations and the statement of the following theorem makes sense.

Theorem 7.18 Let T be a ∆b
1-axiomatisable theory containing S1

2. Furthermore, let
∀T -realisation flag that we quantify over realisations that are lifted to the entire modal lan-
guage using formalised provability and interpretability over the base theory T . We then
have

Γ `AtL A =⇒ ∀T -realisationσ S1
2 ` ∀κ (

∧
Γσ,κ → Aσ,κ).

Proof. Via an easy induction on AtLproofs. We refer the reader to [40] for details. An
important ingredient is given in Theorem 7.14. a

The use of a P-flavoured rule instead of an axiom is suggested since it better allocates
flexibility in collecting all applications of Lemma 7.6 and Corollary 7.7 in our reasoning.
To be on the safe side, we consider that AtLis presented using multi-sets so that we can
allocate of applications of Lemma 7.6 and Corollary 7.7 after a Px,y,k rule is applied.
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7.3.4 Room for generalisations
We already observed that our modal system does not directly allocate the extra flex-

ibility that Lemma 7.12 has over Theorem 7.14. If we would like our logics to reflect
the extra flexibility, we could work with sequences of pairs of formulas and translations
instead of just sequences of translations. These formulas can then be added to the base
theory. Similar, but even more general, is the following notion where assignments for the
arithmetical interpretation are triples (σ, κ, τ), where:

• σ maps the propositional variables to T -sentences,

• κ maps the interpretation variables to translations from the language of T to the
language of T , and

• τ maps the interpretation variables to theories in the language of T .

As before, we stipulate that the σ are > for all but finitely many arguments; the κ are id
for all but finitely many arguments; and the τ are T for all but finitely many arguments.
The assignments are lifted to the arithmetical language in the obvious way as before, but
now taking:

(2k1,...,knA)σ,κ,τ := 2T [ 〈τ(k1),s(κ(k1))〉,...,〈τ(kn),s(κ(kn))〉 ]Aσ,κ,τ ,

(A�k1,...,kn B)σ,κ,τ :=

(T + Aσ,κ,τ )� (T [ 〈τ(k1),s(κ(k1))〉,...,〈τ(kn),s(κ(kn))〉 ] +Bσ,κ,τ ).

This notion gives rise to the following notion of consequence and soundness of AtLwith
respect to this notion of consequence is readily proven.

Γ |=T A :⇔ ∀σ S1
2 ` ∀κ, τ (

∧
Γσ,κ,τ → Aσ,κ,τ ).

Another way of possible generalisation is given by approximating both the interpreted and
the interpreting theory. We observe that currently we only approximate the interpreted
theory. Alternatively, we could label the binary modality � by a pair of sequences x, y
of translations with the intended reading of A�x,y B being T [s(x)] + α� T [s(y)] + β when
α and β are the intended readings of A and B respectively. Such a generalisation would
allow for a more sophisticated transitivity axiom:

(A�x,y B) ∧ (B �y,z C)→ (A�x,z C).

We leave these observations for future investigations.
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7.3.5 An alternative system
The idea of approximating finite axiomatisability can be realised in a different way.

Let A �0 B stand for T + α � S1
2 + β when α and β are the arithmetical interpretation

of A and B respectively. Likewise, 20A will stand for 2S1
2
α. Using this notation, we can

formulate a new sound principle.

Lemma 7.19 Given an interpretation k, we have

` k : A�B → 20(k : A�0 B).

Proof. Assume k : A�B. Clearly k : A�0B, by the assumption that all our base theories
T extend S1

2. Since S1
2 + B is finitely axiomatisable, k : A �0 B is a ∃Σb

1-statement. By
∃Σb

1-completeness we get the required 20(k : A�0 B). a

Lemma 7.20
` A�3B → 20(A�B).

Proof. Using Lemma 7.19 and noticing that from k : A�0 3B we can obtain A�B just
like with the rule Jx,y5 of AtL. a

The relation between the logic AtL, i.e. reasoning with iterated approximations, and
reasoning with �0 and non-iterated approximations, is unknown. In particular, we do
not know if both systems prove the same theorems in their common language or in the
language without any interpretability variable at all. However, we do observe that both
systems are sufficiently strong for the principles appearing in this chapter.

7.4 On principles in IL(All)
In this section, we give arithmetical soundness proofs for some well-known inter-

pretability principles that hold in all reasonable arithmetical theories. For this purpose
we will employ the system AtL.

To avoid repeating too much content from [40], here we study only the following
principles, but with proofs written in more detail compared to [40]. For other well-known
principles please refer to [40].

W ` A�B → A� (B ∧2¬A)
M0 ` A�B → (3A ∧2C)� (B ∧2C)
R ` A�B → ¬(A� ¬C)�B ∧2C

7.4.1 The principle W
We start with the ILP-proof of the principle W, which we will later convert to an AtL

proof of W.
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Fact 7.21 ILP ` W.

Proof. We reason in ILP. Suppose A� B. Then, 2(A� B). Hence, (∗) 2(3A→ 3B),
and, thus, (∗∗) 2(2¬B → 2¬A).

Moreover, from A�B, we have A� (B∧2¬A)∨ (B∧3A). So it is sufficient to show:
B ∧3A�B ∧2¬A.

We have:
B ∧3A � 3B by (∗)

� 3(B ∧2¬B) by L3

� B ∧2¬B by J5

� B ∧2¬A. by (∗∗)

a

To prove arithmetical soundness of W we will essentially replicate the modal proof of
W in ILP. We first give a more formal version of the proof that uses the rule Px,y,k in the
way we formally defined it. Afterwards we will give a more natural proof.

Lemma 7.22 The following holds:

2(A�[k] B),

(B ∧3A�[k] B ∧2[k]¬B)→ (B ∧3A�B ∧2[k]¬B)

`AtL B ∧3A�B ∧2¬A.

Proof. Reason in AtL. Some simple uses of rules and axiom schemas of AtL are left
implicit.

2(A�[k] B) assump. (7.8)

(B∧3A�[k]B∧2[k]¬B)→(B∧3A�B∧2[k]¬B) assump. (7.9)

2(3A→ 3[k]B) by (7.8), Jk4 (7.10)

2(2[k]¬B → 2¬A) by (7.10) (7.11)

3A�3[k]B by (7.10), J1 (7.12)

B ∧3A�3[k]B by (7.12), J1, J2 (7.13)

B ∧3A�3[k](B ∧2k¬B) by (7.13), Lk3, Jk2 (7.14)

B ∧3A�[k] B ∧2k¬B by (7.14), Jk5 (7.15)

B ∧3A�B ∧2[k]¬B by (7.9), (7.15) (7.16)

B ∧3A�B ∧2¬A. by (7.11), (7.16) (7.17)

a
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Proposition 7.23 The principle W is arithmetically valid.

AtL ` A�B → A�B ∧2¬A.

Proof. Reason in AtL. By Pk and Lemma 7.22 we get

A�B `AtL B ∧3A�B ∧2¬A. (∗)

Now assume A�B. Combining A�B with (∗) we get

B ∧3A�B ∧2¬A. (∗∗)

Clearly A�B implies
A� (B ∧2¬A) ∨ (B ∧3A). (∗∗∗)

From (∗∗) and (∗∗∗) by J3 we obtain A�B ∧2¬A. Thus

AtL ` A�B → A�B ∧2¬A,

as required. a

The proof presented in Proposition 7.23 (and Lemma 7.22) resembles the proof we gave
earlier demonstrating that ILP ` W. However, the resemblance is not exactly obvious; we
had to turn our proof “inside-out” in order to use the rule Pk (resulting in the contrived
statement of Lemma 7.22). This can be avoided by applying the rule Pk in a different
way. When we want to conclude something starting from A �x B, we introduce a fresh
interpretation variable k and get 2y(A �x,k B) (for whichever y we find suitable). Now
we have to be a bit more careful; we can’t end the proof before we eliminate this k. We
also have to be careful in how we use the rules (E2)k and (E�)k. Essentially, any proof
in the new form must be formalisable in the system AtL as it was defined earlier. Let us
demonstrate this with the principle W.

Reason in AtL. Suppose that A � B. By Pk we have that, for some k, 2(A �[k] B).
Hence, by Jk4, we have (∗) 2(3A→ 3[k]B) and, so, (∗∗) 2(2[k]¬B → 2¬A).

Moreover, from A�B, we have A� (B ∧2¬A)∨ (B ∧3A). So it is sufficient to show
B ∧3A�B ∧2¬A. We have:

B ∧3A � 3[k]B by (∗)
� 3[k](B ∧2[k]¬B) by Lk3
� B ∧2[k]¬B by Jk5 and (E�)k

� B ∧2¬A. by (∗∗) .
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7.4.2 The principle M0

Another good test case is the principle M0, since both ILW 0 M0 and ILM0 0 W.
Although we will later demonstrate the method for the principle R too and ILR ` M0,
the proof for R is more complex. For this reason we include the principle M0.

We start with the ILP-proof of M0.

Fact 7.24 ILP ` M0.

Proof. Reason in ILP.

A�B → 2(A�B) by P
→ 2(3A→ 3B) by J4

→ 2(3A ∧2C → 3B ∧2C)
→ 3A ∧2C �3B ∧2C by J1

→ 3A ∧2C �3(B ∧2C)
→ 3A ∧2C �B ∧2C. by J5

a

Now we adapt this proof to fit AtL. We will not write the more formal version of the
proof (see the commentary in Subsection 7.4.1).

P-style soundness proof of M0 Reason in AtL.

A�B → 2(A�[k] B) by Pk

→ 2(3A→ 3[k]B) by Jk4
→ 2(3A ∧2C → 3[k]B ∧2C)
→ 3A ∧2C �3[k]B ∧2C by J1

→ 3A ∧2C �3[k]B ∧2[k]2C by Lk2
→ 3A ∧2C �3[k](B ∧2C)
→ 3A ∧2C �[k] B ∧2C. by Jk5
→ 3A ∧2C �B ∧2C. by (E�)k

7.4.3 The principle R
As the final example, we will prove that the principle R is arithmetically valid.
Before we see that ILP ` R, we first prove an auxiliary lemma.

Lemma 7.25 IL ` ¬(A� ¬C) ∧ (A�B)→ 3(B ∧2C).

Proof. We prove the IL-equivalent formula (A�B)∧2(B → 3¬C)→ A�¬C. But this
is clear, as IL ` (A�B) ∧2(B → 3¬C)→ A�3¬C and IL ` 3¬C � ¬C. a
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Fact 7.26 ILP ` R.

Proof. We reason in ILP. Suppose A�B. It follows that 2(A�B). Using this together
with Lemma 7.25 we get:

¬(A� ¬C) � ¬(A� ¬C) ∧ (A�B)
� 3(B ∧2C) by Lemma 7.25
� B ∧2C. by J5

a

P-style soundness proof of R Reason in AtL. We first show that (A�[k] B) ∧ ¬(A�
¬C)→ 3[k](B∧2C). We show an equivalent claim (A�[k]B)∧2[k](B → 3¬C)→ A�¬C.

Suppose that A�[k] B and 2[k](B → 3¬C). Thus, A�[k] 3¬C by Jk2b. By Jk5 we get
A� ¬C, as required. By necessitation,

2((A�[k] B) ∧ ¬(A� ¬C)→ 3[k](B ∧2C)). (7.18)

We now turn to the main proof. Suppose A�B. Then, for some k, we have 2(A�[k] B)
and, thus,

¬(A� ¬C) � ¬(A� ¬C) ∧ (A�[k] B)
� 3[k](B ∧2C) by (7.18)
� B ∧2C. by Jk5 and (E�)k

7.5 Two series of principles
In [29] two series of interpretability principles are presented. One series is called the

broad series, denoted Rn for n ∈ ω. The other series is called the slim hierarchy, denoted
by Rn. The latter is actually a hierarchy of principles of increasing logical strength.

Both series of principles are proven to be arithmetically sound in any reasonable arith-
metical theory. The methods used to prove this soundness in [29] involve definable cuts
and in essence can be carried out in the system called CuL (we use this system in this
thesis too, please see Chapter 8). In the next two sections we will see how both series
admit a soundness proof based on the method of finite approximations of target theo-
ries as embodied in our logic AtL. We will also use this opportunity to state the results
concerning modal semantics we obtained in collaboration with Jan Mas Rovira, which
concern the two series. The proofs of these results can be found in his Master’s thesis
[44].
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7.6 Arithmetical soundness of the slim hierarchy
As already mentioned, the slim series Rn defined in [29] is actually a hierarchy. Thus,

to prove arithmetical soundness it suffices to study a cofinal sub-series. In our case we will
study the certain sub-series R̃n. Let us define the original sequence first; even though we
will use the sub-series for the most part. Let ai, bi, ci and ei denote different propositional
variables, for all i ∈ ω.5 We define a series of principles as follows.

R0 := a0 � b0 → ¬(a0 � ¬c0)� b0 ∧2c0

R2n+1 := R2n[¬(an � ¬cn)/¬(an � ¬cn) ∧ (en+1 �3an+1);
bn ∧2cn/bn ∧2cn ∧ (en+1 � an+1)]

R2n+2 := R2n+1[bn/bn ∧ (an+1 � bn+1);
3an+1/¬(an+1 � ¬cn+1);
(en+1 � an+1)/(en+1 � an+1) ∧ (en+1 � bn+1 ∧2cn+1)]

We proceed with defining the sub-series R̃n (see [29], below Lemma 3.1):

X0 := A0 �B0

Xn+1 := An+1 �Bn+1 ∧ (Xn)

Y0 := ¬(A0 � ¬C0)

Yn+1 := ¬(An+1 � ¬Cn+1) ∧ (En+1 � Yn)

Z0 := B0 ∧2C0

Zn+1 := Bn+1 ∧ (Xn) ∧2Cn+1 ∧ (En+1 � An) ∧ (En+1 � Zn)

R̃n := Xn → Yn � Zn.

For convenience, define X−1 = >. With this we have Xn ≡IL An � Bn ∧ (Xn−1) for all
n ∈ ω. The first two schemas:

R̃0 := A0 �B0 → ¬(A0 � ¬C0)�B0 ∧2C0;
R̃1 := A1 �B1 ∧ (A0 �B0)→ ¬(A1 � ¬C1) ∧ (E1 � ¬(A0 � ¬C0)) �

B1 ∧ (A0 �B0) ∧2C1 ∧ (E1 � A0) ∧ (E1 �B0 ∧2C0).

In the proof that AtL ` R̃n (see the proof of Theorem 7.28) we use the following lemma.

5The series is originally defined as a series of modal formulas, not a series of schemas of modal formulas.
In the remainder of the chapter we will work with schemas, as that is the way we treat other principles
in this thesis.
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Lemma 7.27 For all n ∈ ω, and all interpretation variables k:

AtL ` (An �k Bn ∧ (Xn−1)) ∧ Yn → 3k(Zn).

Proof. Let n = 0 and fix k. We are to prove

AtL ` (A0 �k B0 ∧ >) ∧ ¬(A0 � ¬C0)→ 3k(B0 ∧2C0).

Equivalently,
AtL ` (A0 �k B0) ∧2k(B0 → 3¬C0)→ A0 � ¬C0.

Assume (A0 �k B0) ∧ 2k(B0 → 3¬C0). By Jk2, this yields A0 �k 3¬C0, whence by Jk5,
A0 � ¬C0.

Let us now prove the claim for n+ 1. Fix k. Unpacking, we are to show that:

AtL `(An+1 �k Bn+1 ∧ (Xn)) ∧ ¬(An+1 � ¬Cn+1) ∧ (En+1 � Yn)

→ 3k
(
Bn+1 ∧ (Xn) ∧2Cn+1 ∧ (En+1 � An) ∧ (En+1 � Zn)

)
.

Equivalently, we are to show that:

AtL `(An+1 �k Bn+1 ∧ (Xn)) ∧ (En+1 � Yn)

∧2k
(

(Bn+1 ∧ (Xn))→ 3¬Cn+1 ∨ ¬(En+1 � An) ∨ ¬(En+1 � Zn)
)

→ An+1 � ¬Cn+1.

(7.19)

Assume the conjunction on the left-hand side of (7.19). The first and the third con-
junct imply

An+1 �k Bn+1 ∧ (Xn) ∧
(
3¬Cn+1 ∨ ¬(En+1 � An) ∨ ¬(En+1 � Zn)

)
,

whence by weakening,

An+1 �k (Xn) ∧
(
3¬Cn+1 ∨ ¬(En+1 � An) ∨ ¬(En+1 � Zn)

)
. (7.20)

We now aim to get An+1 �k 3¬Cn+1. To this end, we set out to eliminate the last two
disjuncts within (7.20).

From En+1�Yn (the second conjunct on the left-hand side of (7.19)) we have En+1�

¬(An � ¬Cn), thus En+1 � 3An, whence 2k(En+1 � An) by the generalised P0 (Lemma
7.15). We now combine 2k(En+1 � An) with (7.20), simplify and weaken to obtain

An+1 �k (Xn) ∧ (3¬Cn+1 ∨ ¬(En+1 � Zn)). (7.21)
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Thus, we have eliminated the second disjunct within (7.20), and it remains to eliminate
¬(En+1 � Zn). We will now use the second conjunct on the left-hand side of (7.19),
En+1 � Yn, again. We wish to apply the rule Pjk, so assume 2k(En+1 �j Yn). Combining
2k(En+1 �j Yn) with (7.21) and unpacking Xn,

An+1 �k (An �Bn ∧ (Xn−1)) ∧ (En+1 �j Yn) ∧ (3¬Cn+1 ∨ ¬(En+1 � Zn)). (7.22)

Reason under 2k. We wish to apply the rule P`j with An � Bn ∧ (Xn−1), so assume
2j(An �` Bn ∧ (Xn−1)). Combining 2j(An �` Bn ∧ (Xn−1)) with En+1 �j Yn we obtain
(still under the 2k) that En+1 �j (An �` Bn ∧ (Xn−1)) ∧ Yn. Applying this to (7.22) we
may conclude

An+1 �k
(
En+1 �j (An �` Bn ∧ (Xn−1)) ∧ Yn

)
∧ (3¬Cn+1 ∨ ¬(En+1 � Zn)).

The induction hypothesis allows us to replace An �` Bn ∧ (Xn−1) ∧ Yn with 3`(Zn).

An+1 �k (En+1 �j 3`(Zn)) ∧ (3¬Cn+1 ∨ ¬(En+1 � Zn)).

By Jk,`5 ,
An+1 �k (En+1 �` Zn) ∧ (3¬Cn+1 ∨ ¬(En+1 � Zn)).

By our last application of P`j and (E�)`, we can substitute � for �`:

An+1 �k (En+1 � Zn) ∧ (3¬Cn+1 ∨ ¬(En+1 � Zn)).

Finally, we can simplify, weaken and apply J5 to obtain An+1 � ¬Cn+1. a

We can now prove soundness for the slim hierarchy. It suffices to do this for the cofinal
sub-hierarchy R̃n.

Theorem 7.28 For all n ∈ ω, AtL ` R̃n.

Proof. Let n ∈ ω be arbitrary. Assume 2k(An �Bn ∧ (Xn−1)). Clearly

Yn � (An �k Bn ∧ (Xn−1)) ∧ Yn.

Now Lemma 7.27 implies
Yn �3k(Zn),

whence by the generalised J5,
Yn �k Zn.

By the rule Pk, we can replace our assumption 2k(An�Bn∧(Xn−1)) with Xn. Furthermore,
by the same application of Pk, and by (E�)k, we have Yn�Zn. Thus, Xn → Yn�Zn, i.e.
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R̃n. a

Finally, as we announced earlier, we quote the result obtained in collaboration with
Jan Mas Rovira. To state the generalised frame condition for the principle R1 (which
lies strictly between R̃0 and R̃1) we let R−1[E] := {x : (∃y ∈ E)xRy}, and R−1

x [E] :=
R−1[E] ∩R[x].

Theorem 7.29 The frame condition for the principle R1 with respect to generalised
Veltman semantics is the following condition:

∀w, x, u,B,C,E
(
wRxRuSwB,C ∈ C(x, u)

⇒ (∃B′ ⊆ B)
(
xSwB′, R[B′] ⊆ C, (∀v ∈ B′)(∀c ∈ C)

(vRcSxR−1
x [E]⇒ (∃E′ ⊆ E)cSvE′)

))
.

Proof. Please see [44] for the proof (including a formalisation in Agda). a

7.7 Arithmetical soundness of the broad series
In order to define the second series we first define a series of auxiliary formulas. For

any n ≥ 1 we define the schemata Un as follows.

U1 := 3¬(D1 � ¬C),

Un+2 := 3((Dn+1 �Dn+2) ∧ Un+1).

Now, for n ≥ 0 we define the schemata Rn as follows.

R0 := A�B → ¬(A� ¬C)�B ∧2C,

Rn+1 := A�B →
(

Un+1 ∧ (Dn+1 � A)
)
�B ∧2C.

As an illustration we present the first three principles.

R0 := A�B → ¬(A� ¬C)�B ∧2C;
R1 := A�B → 3¬(D1 � ¬C) ∧ (D1 � A)�B ∧2C;
R2 := A�B → 3

[
(D1 �D2) ∧3¬(D1 � ¬C)

]
∧ (D2 � A)�B ∧2C.
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7.7.1 Proof using iterated approximations
When working with this series it is convenient to also have the following schemas:

V1 := 2(D1 � ¬C),

Vn+1 := 2(Dn �Dn+1 → Vn) for n ≥ 1.

Alternatively, we could have defined Vn := ¬Un for n ≥ 1.

Lemma 7.30 For all n ∈ ω \ {0}, and all finite sequences x consisting of interpretation
variables:

AtL ` Dn �x 3¬C → Vn.

Proof. Let n = 1 and x be arbitrary. We are to prove AtL ` D1�x3¬C → 2(D1�¬C).
This is an instance of the generalised P0 schema as we stated in Lemma 7.15.

Let us now prove the claim for n+ 1. Thus, we fix an arbitrary sequence of interpre-
tations x. We are to show that

AtL ` Dn+1 �x 3¬C → 2(Dn �Dn+1 → Vn).

Thus, reasoning in AtL, we assume Dn+1 �x 3¬C. We now wish to apply the rule Pk

with this formula, where k is an arbitrary variable not used in x. So, assume 2(Dn+1�x,k

3¬C). Reason under a box. Assume Dn �Dn+1. Now Dn �Dn+1 and Dn+1 �x,k 3¬C
imply Dn �x,k 3¬C. By the necessitated induction hypothesis, this implies Vn. Thus,
2(Dn �Dn+1 → Vn), as required. a

Lemma 7.31 For all interpretation variables k we have the following:

AtL ` Un ∧ (Dn � A) ∧ (A�k B)�k B ∧2C.

Proof. It is clear that the claim to be proved follows by necessitation, J1, and Jk
5 from the

following:
AtL ` Un ∧ (Dn � A) ∧ (A�k B)→ 3k(B ∧2C).

This formula is equivalent to

(Dn � A) ∧ (A�k B) ∧2k(B → 3¬C)→ Vn.

On the left-hand side we get Dn �k 3¬C. Now Vn follows from Lemma 7.30. a

Theorem 7.32 For all n ∈ ω, AtL ` Rn.

Proof. Case n = 0 is clear. Let n > 0 be arbitrary and let us prove Rn. Reason in AtL.
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Assume A�B. We wish to apply the rule Pk here. So, assume 2(A�k B). We have:

Un ∧ (Dn � A)� Un ∧ (Dn � A) ∧ (A�k B).

Lemma 7.31 and the rule J2 imply

Un ∧ (Dn � A)�k B ∧2C,

and by (E�)k,
Un ∧ (Dn � A)�B ∧2C.

a

7.7.2 Proof using �0 (S1
2)

Here we present an alternative proof which avoids iterated approximations, and instead
uses the idea exploited in Lemma 7.19 and Lemma 7.20. The proof is essentially the same,
but slightly shorter. We note here that we also wrote an alternative proof for the series
Rn but we omit it in this thesis it as the proofs are very similar in that case too.

Lemma 7.33 For all n ∈ ω \ {0}:

AtL ` Dn �0 3¬C → Vn.

Proof. Let n = 1. We are to prove AtL ` D1�03¬C → 2(D1�¬C). This is an instance
of the generalised P0 schema (Lemma 7.20).

Let us now prove the claim for n+ 1. We are to show that

AtL ` Dn+1 �0 3¬C → 2(Dn �Dn+1 → Vn).

Assume Dn+1 �0 3¬C. By Lemma 7.19, we have 20(Dn+1 �0 3¬C). Reason under a
box. Assume Dn �Dn+1. Now Dn �Dn+1 and Dn+1 �03¬C imply Dn �03¬C. By the
induction hypothesis, this implies Vn, as required. a

Lemma 7.34 Given an interpretation variable k,

AtL ` Un ∧ (Dn � A) ∧ (A�k B)�k B ∧2C.

Proof. It is clear that the claim to be proved follows by necessitation, J1, and Jk
5 from the

following:
AtL ` Un ∧ (Dn � A) ∧ (A�k B)→ 3k(B ∧2C).
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This formula is equivalent to

(Dn � A) ∧ (A�k B) ∧2k(B → 3¬C)→ Vn.

On the left-hand side we get Dn �k 3¬C. In particular, Dn �0 3¬C. Now Vn follows
from Lemma 7.33. a

Theorem 7.35 For all n ∈ ω, AtL ` Rn.

Proof. The proof is exactly the same as the proof of Theorem 7.32. a

Finally, we state the generalised frame condition for the series Rn, obtained in joint
work with Jan Mas Rovira.

Theorem 7.36 Let n ∈ ω be arbitrary. We have F 
 Rn if and only if for all w, x0, . . . ,
xn−1, y, z, A, B, C, D0, . . . , Dn−1 we have the following:

wRxn−1R . . . Rx0RyRz,

(∀u ∈ R[w] ∩ A)(∃V )uSwV ⊆ B,

(∀u ∈ R[xn−1] ∩ Dn−1)(∃V )uSxn−1V ⊆ A,

(∀i ∈ {1, . . . , n− 2})(∀u ∈ R[xi] ∩ Di)(∃V )uSxiV ⊆ Di+1,

(∀V ∈ Sy[z])V ∩ C 6= 0,

z ∈ D0

⇒ (∃V ⊆ B)(xn−1SwV & R[V ] ⊆ C).

Proof. Please see [44] for the proof (including a formalisation in Agda). a
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Chapter 8

An R∗-flavoured series of principles

In this chapter we further explore the question of the completeness of the logic ILWR
which we touched upon in Section 4.3 and in particular Subsection 4.3.1. We discussed
the label iteration problem and described labelling systems which can be used to resolve
the label iteration problem at least in the simpler case of ILWP-frames. We postponed
the remainder of the discussion on ILWR for this chapter.

The contents of this chapter is unpublished, with a preliminary report appearing as a
short paper [46].

Introduction
In Subsection 4.3.1 we commented on the situation that may appear in a model we

are building (which is meant to be an ILWR-model):

B � C ∈ w ≺S x ≺T u 3 B.

In such situations we need to find a world v with

w ≺S∪x2
T∪{2¬B}∪{2¬B} v 3 B.

However, using the principles W and R directly only gives us w ≺S∪x2T∪{2¬B} v (we only
get T where we’d like to have T ∪ {2¬B}). Similarly for longer sequences: suppose
B � C ∈ w ≺S x ≺T y ≺U u 3 B. In this case we’d like to have

w ≺S∪x2
T∪{2¬B}∪y2

U∪{2¬B}
∪{2¬B} v 3 C

In order to prove the characteristic property we will actually require slightly more
complex labels. We make the recursive labelling pattern for ILWR explicit in Definition
8.1.

Definition 8.1 For n ∈ ω \ {0}, let {w0, . . . , wn} be a finite sequence of ILWR-MCS’s,
let {S1, . . . , Sn} be a finite sequence of sets of formulas, and B a formula. We recursively
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define n sets of formulas, one for every j ∈ {0, . . . , n− 1} :

Q({w0, . . . , wn}, {S1, . . . , Sn}, B, j).

Usually the MCS’s {w0, . . . , wn}, and the sets of formulas {S1, . . . , Sn} will be clear from
the context, so we will write Qj(B) for Q({w0, . . . , wn}, {S1, . . . , Sn}, B, j).

Q0(B) := ∅;

for j ∈ {1, . . . , n− 1} : Qj(B) := wj
2
Sj∪{2¬B}∪Qj−1(B) ∪Qj−1(B).

Given a sufficiently large sequence of worlds wi and the corresponding labels Si, we
have:

Q1(B) = w1
2
S1∪{2¬B};

Q2(B) = w2
2
S2∪{2¬B}∪w12S1∪{2¬B}

∪ w1
2
S1∪{2¬B};

Q3(B) = w3
2

S3∪{2¬B}∪
(
w22S2∪{2¬B}∪w12S1∪{2¬B}

)
∪w12S1∪{2¬B}

∪ w2
2
S2∪{2¬B}∪w12S1∪{2¬B}

∪ w1
2
S1∪{2¬B}.

Given a set S and a formula B, we will often need to refer to the set S ∪ {2¬B}; for this
reason we will sometimes denote S∪{2¬B} as S∗ (the formula B will usually be obvious
from the context). Using this notation we have:

Q1 = w1
2
S∗1

;

Q2 = w2
2
S∗2∪w12S∗1

∪ w1
2
S∗1

;

Q3 = w3
2

S∗3∪

(
w22S∗2∪w12S∗1

)
∪w12S∗1

∪ w2
2
S∗2∪w12S∗1

∪ w1
2
S∗1
.

Considering what it takes to be able to claim the existence of worlds (i.e. maximal
consistent sets w.r.t. ILWR) v with w ≺S∗n∪Qn−1(B), which is a labelling that can be used to
prove the characteristic property, we arrive at a new series of principles. If the principles
in this series are provable in ILWR, this approach leads to a completeness proof of ILWR.

Let us lay down the plan for this chapter. In the next section we first define the new
series of principles Wn for n ∈ ω and then we prove the “deficiency-solving” lemma, i.e.
that the new series is sufficiently strong for obtaining the labels Qj(B) defined above.

One we defined the principles, we introduce ILWω-structures (where ILWω stands for
the extension of IL with the set of principles {Wn : n ∈ ω}) and prove that if ILWR ` Wn

(for all n ∈ ω), then ILWR is complete w.r.t. generalised semantics. Also, if the principles
Wn are valid in ILsetWR-frames, then ILWω is complete w.r.t. generalised semantics. Both
claims we prove conditionally; we do not know if their antecedents are true.
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Having discussed generalised semantics, we then turn to discuss ordinary Veltman
semantics for ILWω and prove that the principles Wn are valid in ordinary ILWR-frames.
If ILWR ` Wn (for all n ∈ ω), then the principles Wn are valid in generalised ILWR-frames
too. We believe to have determined that the principles W1–W4 are valid in ILsetWR-
frames.1 The proof that the principle W5 is valid in ordinary ILWR-frames amounts to
showing that a certain model with about 500 worlds cannot exist. The principle W5 is the
point where our earlier strategies do not seem to be sufficiently strong to prove the validity
w.r.t. the appropriate generalised frames. It is hard to analyse such large models (the
generalised model whose existence we are to show to be impossible has at least as many
worlds as the corresponding model in ordinary semantics, i.e. more than 500 worlds). We
leave resolving this question for future work.

In the penultimate section we show that the new series is arithmetically valid. This is
a prerequisite for even considering this series in the context of IL(All); the section comes
next-to-last for purely technical reasons: no other content depends on the results of this
section, while that section depends on Section 8.1.

In the final section we give a recap of what we know regarding ILWω, and what remains
to be answered in future work.

8.1 The logic ILWω

Definition 8.2 We define a series of principles (Wn)n∈ω.

U1 := ⊥;

for n > 1 : Un := 3Cn−1 ∨ · · · ∨3C1;

V1 := A;

for n > 1 : Vn := ¬((Cn−1 �3A ∨Bn−1 ∨ Un−1)→ (Vn−1 �Bn−1));

for n > 0 : Wn := (A�3A ∨Bn ∨ Un)→ (Vn �Bn).

Note that most parentheses in the definition are not required by our reading conven-
tion; they are added here solely for additional clarity.

We can let W0 := W so that Wn is defined for all n ∈ ω. We could also shift the indices
down, so that W1 becomes W0 etc., which we do not do in order to have the indices align
better in some situations. We are really only interested in Wn for n > 0, and only treat
that case in proofs.

1More precisely, a script employing a certain amount of semantic reasoning determined that an ILWR-
counterexample cannot exist for W1–W4. The reasoning principles that this script employs haven’t been
formally verified and it is possible, though we believe it to be unlikely, that W3 or W4 are not valid in
ILsetWR-frames.
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By ILWω we denote the extension of IL with the set of principles {Wn : n ∈ ω}.
Similarly, by ILWωX we understand the extension of ILWω by X.

Let us unravel the definition of Wn for some small values of n:

W1 :A�3A ∨B1 → A�B1;

W2 :A�3A ∨B2 ∨3C1 → ¬(C1 �3A ∨B1 → A�B1)�B2;

W3 :A�3A ∨B3 ∨3C2 ∨3C1 →

¬(C2 �3A ∨B2 ∨3C1 → ¬(C1 �3A ∨B1 → A�B1)�B2)�B3.

The first two principles are well-known, although not in the form presented above. We
show that ILW1 = ILW and ILW1W2 = ILR∗:

• ILW1 = ILW . Clearly ILW ` A�3A∨B1 → A�(3A∨B1)∧2¬A,→ A�B1. On
the other hand, ILW1 ` A�B → A�B∧ (2¬A∨3A),→ A� (B∧2¬A)∨3A,→
A�B ∧2¬A.

• ILW1W2 = ILR∗.

ILR∗ ` A�3A ∨B2 ∨3C1 → ¬(A� C1)�B2 ∧2¬C1

ILR∗ ` A�3A ∨B2 ∨3C1 → ¬(A� C1)�B2

ILR∗ ` A�3A ∨B2 ∨3C1 → ¬(C1 �3A ∨B1 → A�B1)�B2

To see the last inference, suppose C1�3A∨B1, ¬(A�B1) and (for a contradiction)
A� C1. Then A�3A ∨B1, and thus by W (ILR∗ ` W), A�B1, a contradiction.

For the other direction,

IL ` A�B → A� (B ∧2¬A ∧2¬C) ∨3A ∨3C

ILW2 ` A�B → ¬(C �3A ∨ C → A� C)�B ∧2¬A ∧2¬C

ILW2 ` A�B → ¬(A� C)�B ∧2¬A ∧2¬C

ILW2 ` A�B → ¬(A� C)�B ∧2¬C

For the second line take B2 := B and C1, B1 := C.

We note here that there is an easy way of forming Wn+1 from Wn. Let OLD be
the result of replacing the first occurrence of A in Wn (the occurrence of A at the very
beginning of Wn) with Cn. We then have:

Wn+1 = A�3A ∨Bn+1 ∨3Cn ∨ · · · ∨3C1 → ¬(OLD)�Bn+1.
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8.2 Generalised semantics
In this section we prove two conditional claims:

1. If ILWR ` Wn for all n ∈ ω, then ILWR is complete with respect to its generalised
semantics.

2. If the generalised frame condition of ILWω is equivalent to (WR)gen, then ILWω is
complete w.r.t. the class of ILsetWω-frames.

The structure of this proof resembles Section 4.3. Our first goal is to prove a deficiency-
solving lemma for ILWω. This is not as trivial as it was for other logics considered in
this thesis. We first introduce a technical notion, CB-sequences, and prove they can be
constructed. We will need CB-sequences in the deficiency-solving lemma; essentially, they
will populate the labels used in that lemma with the correct choice of formulas.

Definition 8.3 Let X be an arbitrary collection of modal formulas. Let n ∈ ω \ {0}. Let
{w0, . . . , wn} be a finite sequence of ILWωX-MCS’s, let {S1, . . . , Sn} be a finite sequence
of sets of formulas and let E �G a formula such that:

E �G ∈ wn ≺Sn wn−1 ≺Sn−1 · · · ≺S1 w0 3 E.

We define a CB-sequence of length m ∈ {1, . . . , n−1} to be a pair of any finite sequences
{C1, . . . , Cm} and {B1, . . . ,Bm} of sets of formulas, and furthermore for all i ∈ {1, . . . ,m}:

Bi ⊆ ¬Si;∨
Ci �3E ∨

∨
Bi ∨

∨
1≤j≤i−1

3
∨
Cj ∈ wi.

Lemma 8.4 Let X be an arbitrary collection of modal formulas. Let n ∈ ω \ {0, 1}. Let
{w0, . . . , wn} be a finite sequence of ILWωX-MCS’s, let {S1, . . . , Sn} be a finite sequence
of sets of formulas and E �G a formula such that:

E �G ∈ wn ≺Sn wn−1 ≺Sn−1 · · · ≺S1 w0 3 E.

Let m ∈ {1, . . . , n− 1} be arbitrary. If 2¬D ∈ Qm(E), then2 there exist a CB-sequence
({C1, . . . , Cm}, {B1, . . . ,Bm}) of length m with D ∈ ⋃i∈{1,...,m} Ci.
Proof. Let n ∈ ω \ {0, 1} be arbitrary. We prove the claim for this value of n and all
values of m ∈ {1, . . . , n−1} by induction on m. Base case is m = 1. Since 2¬D ∈ Q1(E),
for some finite J we have D � ∨j∈J ¬S1

j ∨3E ∈ w1 where S1
j ∈ S1 for all j ∈ J . We let

C1 = {D} and B1 = {¬S1
j : j ∈ J}. Clearly all required properties are satisfied.

2Note that all formulas in Qm(E) are of the form 2¬D.

139



Chapter 8. An R∗-flavoured series of principles

Suppose the claim holds for all values less than some value m, with 2 ≤ m ≤ n − 1.
We now prove the claim for m. Since 2¬D ∈ Qm(E) and 2 ≤ m ≤ n− 1, there are two
cases to distinguish: (1) 2¬D ∈ Qm−1(E) and (2) 2¬D ∈ wm2Sm∪{2¬E}∪Qm−1(E).

In Case (1) we use the induction hypothesis for m − 1 and obtain a CB-sequence
({C1, . . . , Cm−1}, {B1, . . . ,Bm−1}) of length m − 1 with D ∈ ⋃

i∈{1,...,m−1} Ci. We extend
this sequence by defining Bm = ∅ and Cm = ∅. Clearly the required properties of a
CB-sequence are satisfied, and D ∈ ⋃i∈{1,...,m} Ci.

In Case (2), for some finite J and K we have D�∨j∈J ¬Smj ∨3E∨∨k∈K ¬2¬Hk ∈ wm
where Smj ∈ Sm for all j ∈ J and 2¬Hk ∈ Qm−1(E) for all k ∈ K. We define a
CB-sequence of length m as follows. For every k ∈ K, since 2¬Hk ∈ Qm−1(E), the
induction hypothesis implies there is a CB-sequence ({Ck1 , . . . , Ckm−1}, {Bk1 , . . . ,Bkm−1}) of
length m − 1. Put Cm = {D} and Bm = {¬Smj : j ∈ J}. For i with 1 ≤ i ≤ m − 1, put
Ci = ⋃

k∈K Cki and Bi = ⋃
k∈K Bki . It is easy to see we have all the required properties. In

particular, for the property that

∨
Cm �3E ∨

∨
Bm ∨

∨
1≤j≤m−1

3
∨
Cj ∈ wm

note that for all k ∈ K, by the induction hypothesis, we have

Hk ∈
⋃

1≤j≤m−1
Cj.

Thus, this property follows from

D �
∨
j∈J
¬Smj ∨3E ∨

∨
k∈K
¬2¬Hk ∈ wm.

a

We need the following lemma for the “deficiency-solving” business.

Lemma 8.5 Let X be an arbitrary collection of modal formulas. Let n ∈ ω \ {0}. Let
{w0, . . . , wn} be a finite sequence of ILWωX-MCS’s, let {S1, . . . , Sn} be a finite sequence
of sets of formulas and let E �G be a formula such that:

E �G ∈ wn ≺Sn wn−1 ≺Sn−1 · · · ≺S1 w0 3 E.

Then there is an ILWωX-MCS v such that wn ≺S∗n∪Qn−1(E) v and G,2¬G ∈ v.

Proof. For n = 1 this is the labelling lemma for ILW (see Lemma 4.26). Let n > 1 be
arbitrary. Suppose there is no such consistent set v, i.e. the following set is inconsistent:

{G,2¬G,¬A,2¬A}
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where A is a formula such that for some finite sets J and K we have:

A�
∨
j∈J
¬Snj ∨3E ∨

∨
k∈K
¬2¬Hk ∈ wn,

where Snj ∈ Sn for all j ∈ J and 2¬Hk ∈ Qn−1(E) for all k ∈ K. The inconsistency of
the set {G,2¬G,¬A,2¬A} implies IL ` G� A, whence by J2:

E �
∨
j∈J
¬Snj ∨3E ∨

∨
k∈K
¬2¬Hk ∈ wn.

We define a CB-sequence of length n− 1 as follows. For every k ∈ K, since 2¬Hk ∈
Qn−1(E), Lemma 8.4 implies there is a CB sequence ({Ck1 , . . . , Ckn−1}, {Bk1 , . . . ,Bkn−1}) of
length n− 1. For i with 1 ≤ i ≤ n− 1, put Ci = ⋃

k∈K Cki and Bi = ⋃
k∈K Bki .

For convenience, we also define Cn = {E} and Bn = {¬Snj : j ∈ J}.
Finally, we define for all i ∈ {1, . . . , n− 1}:

Bi :=
∨
Bi;

Ci :=
∨
Ci.

We prove the following claim by induction: for all i ∈ {n, . . . , 2, 1},

Vi �Bi ∈ wi.

As the base case we take i = n. Unpacking the definitions of Cn and Bn and since for
every k ∈ K we have Hk ∈

⋃
1≤j≤n−1 Cj, we have: E�3E∨Bn∨3Cn−1∨· · ·∨3C1 ∈ wn.

The principle Wn implies Vn � Bn ∈ wn. Suppose the claim holds for i + 1 and let us
prove the claim for i. By the induction hypothesis and after unpacking Vi+1 � Bi+1 we
have

¬(Ci �3E ∨Bi ∨ Ui → Vi �Bi)�Bi+1 ∈ wi+1.

Since wi+1 ≺Si+1 wi and using the property of a CB-sequence that Bi+1 ⊆ ¬Si+1, we get

Ci �3E ∨Bi ∨ Ui → Vi �Bi ∈ wi.

Again, since ({Ck1 , . . . , Ckn−1}, {Bk1 , . . . ,Bkn−1}) is a CB-sequence, we have ∨Ci � 3E ∨∨
Bi ∨

∨
1≤j≤i−13Cj ∈ wi. Thus,

Vi �Bi ∈ wi,

as required. This concludes the proof by induction.
In particular this implies that V1�B1 ∈ w1, i.e. E�B1 ∈ w1. This is impossible since

B1 = ∨B1, B1 ⊆ ¬S1 and w1 ≺S1 w0 3 E. a
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Now that we have our deficiency-solving lemma, we can proceed to the definition of an
ILWω-structure for a set of formulas D. Here we assume that D has the same properties
that were assumed in Chapter 4, i.e. it is a finite set closed under subformulas and single
negations, and contains > (see Definition 4.5).

The ILWω-structures will resemble ILWP-structures defined earlier (see Definition
4.35). As was the case with ILW-structures (Definition 4.27), we distinguish two cases
in the definition of Sw. And since ILWω is affected by the problem of label iteration (see
Section 4.3), we need to use a labelling system. The labelling system for ILWω is defined
in Definition 8.1.

Definition 8.6 We say that M = (W,R, {Sw : w ∈ W},
) is the ILWω-structure for a
set of formulas D if:

• W = {w : w is an ILWω-MCS and for some B ∈ D, B ∧�¬B ∈ w};

• wRu⇔ w ≺ u;

• uSwV ⇔ wRu and V ⊆ R[w] and, moreover, one of the following holds:

(a) V ∩ Ṙ[u] 6= ∅;

(b) we have for all n ∈ ω\{0}, all {w0, . . . , wn}, and all {S1, . . . , Sn}:

w = wn ≺Sn · · · ≺S1 w0 = u⇒ (∃v ∈ V )(∃B ∈ D ∩
⋃
Ṙ[u]) w ≺S∗n∪Qn−1(B) v;

• w 
 p⇔ p ∈ w.

The following lemma is very similar to Lemma 4.36, and both share the same general
format as Lemma 4.28. Essentially the only difference compared to Lemma 4.36 is a
different labelling system, which affects the proof only slightly.

Lemma 8.7 The ILWω-structure M for D is a generalised Veltman model. Furthermore,
the following holds for each w ∈ W and G ∈ D:

M, w 
 G if and only if G ∈ w,

Proof. All the properties, except for quasi-transitivity, have easy proofs (see the proof of
Lemma 4.36). Let us prove quasi-transitivity. Assume uSwV , and vSwUv for all v ∈ V .
Put U = ⋃

v∈V Uv. We claim that uSwU . Clearly U ⊆ R[w]. To prove uSwU we will
distinguish the cases (a) and (b) from the definition of the relation Sw for uSwV.

In Case (a), there exists v0 ∈ V for some v0 ∈ Ṙ[u]. We will next distinguish two cases
from the definition of v0SwUv0 .

In Case (aa) we have x ∈ Uv0 for some x ∈ Ṙ[v0]. Since v0 ∈ Ṙ[u], we then have
x ∈ Ṙ[u]. Since x ∈ Uv0 ⊆ U , then U ∩ Ṙ[u] 6= ∅. So, we have uSwU , as required.
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In Case (ab) we have:

For all n ∈ ω\{0}, all {w0, . . . , wn}, and all {S1, . . . , Sn} we have: (8.1)

w = wn ≺Sn · · · ≺S1 w0 = v0 ⇒ (∃x ∈ Uv0)(∃B ∈ D ∩
⋃
Ṙ[v0]) w ≺S∗n∪Qn−1(B) x.

To prove uSwU in this case, we will use Case (b) from the definition of the relation Sw.
Let n ∈ ω\{0} be arbitrary and let {w0, . . . , wn} and {S1, . . . , Sn} be arbitrary such that
w = wn ≺Sn · · · ≺S1 w0 = u. If u = v0, applying (8.1) with n, the world {w0, . . . , wn}
and the labels {S1, . . . , Sn}, produces the required x ∈ Uv0 ⊆ U and B ∈ D ∩ ⋃ Ṙ[v0].
Otherwise, i.e. if uRv0, let w′0 = v0, w′i+1 = wi, S ′1 = ∅, S ′i+1 = Si and apply (8.1)
with n + 1, {w′0, . . . , w′n+1}, and {S ′1, . . . , S ′n+1}. This gives us a world x ∈ Uv0 and
B ∈ D ∩ ⋃ Ṙ[v0] with w ≺S∗n∪Q′n(B) x, where, for every j, the notation Q′j(B) is short
for Q({w′0, . . . , w′n+1}, {S ′1, . . . , S ′n+1}, B, j). It is easy to prove by induction that after
replacing occurrences of u2{2¬B} (i.e. w′1

2
S′1∪{2¬B}

) with ∅ in the recursive definition ofQ′n(B)
we obtain Qn−1(B) and furthermore that Qn−1(B) ⊆ Q′n(B). Thus, w ≺S∗n∪Qn−1(B) x.
Since uRv0, we have Ṙ[v0] ⊆ Ṙ[u]. Thus, we can reuse the formula B for this Sw transition.

In Case (b), we have:

For all n ∈ ω\{0}, all {w0, . . . , wn}, and all {S1, . . . , Sn} we have: (8.2)

w = wn ≺Sn · · · ≺S1 w0 = u⇒ (∃v ∈ V )(∃B ∈ D ∩
⋃
Ṙ[u]) w ≺S∗n∪Qn−1(B) v.

To prove uSwU we will use Case (b) from the definition of the relation Sw.
Let n ∈ ω\{0} be arbitrary and let {w0, . . . , wn} and {S1, . . . , Sn} be arbitrary such

that w = wn ≺Sn · · · ≺S1 w0 = u. By (8.2), there are v0 ∈ V and B ∈ D ∩ ⋃ Ṙ[u] such
that w ≺S∗n∪Qn−1(B) v0. From v0 ∈ V it follows that v0SwUv0 . We will next distinguish the
possible cases in the definition of v0SwUv0 .

In Case (ba) we have Uv0 ∩ Ṙ[v0] 6= ∅, i.e. there is x ∈ Uv0 such that either v0 = x or
v0Rx. In both cases we have w ≺S∗n∪Qn−1(B) x.

In Case (bb), we have:

For all n′ ∈ ω\{0}, all {w′0, . . . , w′n′}, and all {S ′1, . . . , S ′n′} we have: (8.3)

w = w′n′ ≺S′n′ · · · ≺S′1 w
′
0 = v0 ⇒ (∃x ∈ Uv0)(∃B′ ∈ D ∩

⋃
Ṙ[v0]) w ≺S∗

n′∪Q
′
n′−1(B) x,

where Q′j(B) is short for Q({w′0, . . . , w′n′}, {S ′1, . . . , S ′n′}, B, j).
At the moment we only need to use (8.3) with n′ = 1, which is the following statement:

for every T , if w ≺T v0, there is x ∈ Uv0 and B′ ∈ D ∩ ⋃ Ṙ[v0] such that w ≺T∪{2¬B} x.
Using this and w ≺S∗n∪Qn−1(B) v0 we get that there is some x ∈ Uv0 ⊆ U and B′ ∈
D∩⋃ Ṙ[v0] such that w ≺S∗n∪Qn−1(B)∪{�¬B′} x. By weakening, w ≺S∗n∪Qn−1(B) x, as required.
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We claim that for each formula G ∈ D and each world w ∈ W the following holds:

M, w 
 G if and only if G ∈ w.

The proof is by induction on the complexity of G. The only non-trivial case is when
G = B � C.

Assume B �C ∈ w, wRu and u 
 B. Induction hypothesis implies B ∈ u. We claim
that uSw[C]w by Case (b) from the definition of Sw. Clearly wRu and [C]w ⊆ R[w].

Fix n ∈ ω\{0}, {w0, . . . , wn} and {S1, . . . , Sn}. Assume w = wn ≺Sn · · · ≺S1 w0 = u.
Since B � C ∈ wn and B ∈ w0, Lemma 8.7 implies that there is an ILWω-MCS v with
wn ≺S∗n∪Qn−1(B) v and C,2¬C ∈ v (thus v ∈ W ). Since C ∈ v, the induction hypothesis
implies v 
 C. Since w ≺ v, i.e. wRv, then v ∈ [C]w. Finally, B ∈ D and B ∈ u imply
B ∈ D ∩ ⋃ Ṙ[u].

To prove the converse, assume B � C /∈ w. Since w is an ILWω-MCS, we have
¬(B � C) ∈ w. Lemma 4.25 implies there is u with w ≺{�¬B,¬C} u and B ∈ u. Since
w ≺{�¬B} u, we have in particular that �¬B ∈ u. So, u ∈ W. The induction hypothesis
implies u 
 B. Let V ⊆ R[w] be such that uSwV . We will find a world v ∈ V such that
w ≺{¬C} v. We will distinguish Cases (a) and (b) from the definition of the relation Sw.
Consider Case (a). Let v be an arbitrary world in V ∩Ṙ[u]. If v = u, clearly w ≺{�¬B,¬C} v.
If uRv, then we have w ≺{�¬B,¬C} u ≺ v. This implies w ≺{�¬B,¬C} v. Consider Case
(b). From w ≺{�¬B,¬C} u and the definition of Sw it follows that there is v ∈ V such that
(for some formula D) w ≺{�¬B,¬C,�¬D} v. In both cases we have w ≺{¬C} v; thus C /∈ v.
Induction hypothesis implies v 1 C; whence V 1 C, as required. a

Theorem 8.8 The logic ILWR is complete w.r.t. ILsetWR-frames if ILWR ` Wn for all
n ∈ ω.

Proof. In the light of Lemma 8.7 it suffices to show that the ILWω-structure M for D
possesses the properties (W)gen and (R)gen. The proof that (W)gen holds is very similar to
the proof that ILW-structures satisfy (W)gen (Theorem 4.29). Let us now prove that M
possesses the property (R)gen.

Assume wRxRuSwV and C ∈ C(x, u). We are to show that there is U ⊆ V with xSwU
and R[U ] ⊆ C. To do this, we distinguish two possible cases for uSwV . If uSwV holds
by Case (a) from the definition of Sw, there is v ∈ V such that either u = v or uRv. In
both cases xRv. Let U = {v}. Clearly U ⊆ V . Since xRv, xSw{v}, i.e. xSwU . For any
z ∈ R[v] we have xRuRz and thus uSx{z}. This implies z ∈ C. Thus R[U ](= R[v]) ⊆ C.
The remainder of the proof deals with the case when uSwV holds by Case (b) from the
definition of Sw.
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We will first prove an auxiliary claim:

for all n ∈ ω\{0}, all {w0, . . . , wn}, and all {S1, . . . , Sn} we have:

w = wn ≺Sn · · · ≺S1 w0 = x⇒ (∃v ∈ V )(∃B ∈ D ∩
⋃
Ṙ[u]) w ≺S∗n∪Qn−1(B)∪x2∅ v & R[v] ⊆ C.

Fix n ∈ ω \ {0}, and sets {w0, . . . , wn} and {S1, . . . , Sn} with w = wn ≺Sn · · · ≺S1

w0 = x. Suppose (for a contradiction) that for every v ∈ V and B ∈ D ∩ ⋃ Ṙ[u] with
w ≺S∗n∪Qn−1(B)∪x2∅ v, we have R[v] * C, that is, there is some zv,B ∈ R[v] \ C. Let

Z = {zv,B : v ∈ V,B ∈ D ∩
⋃
Ṙ[u], w ≺S∗n∪Qn−1(B)∪x2∅ v}.

We claim that uSxZ. We have xRu by assumption. To see that Z ⊆ R[x], take any
zv,B ∈ Z and apply Lemma 4.2 and Lemma 4.21 to the fact that w ≺x2∅ v ≺ z. To
complete the proof that uSxZ, we will use Case (b) from the definition of Sx. This part
of the proof will also imply Z 6= ∅.

Fix n′ ∈ ω \ {0}, {w′0, . . . , w′n′} and {S ′1, . . . , S ′n′}. Assume x = w′n′ ≺S′n′ · · · ≺S′1 w
′
0 =

u. We have:
w = wn ≺Sn · · · ≺S1 w0 = x = w′n′ ≺S′n′ · · · ≺S′1 w

′
0 = u.

For i ∈ {1, . . . , n}, let w′n′+i = wi and S ′n′+i = Si. Let n′′ := n′ + n.
Recall that uSwV (i.e. w′0Sw′n′′V ) holds by Case (b). We can apply this clause with

n′′, {w′0, . . . , w′n′′}, and {S ′1, . . . , S ′n′′}. So there is some v ∈ V and B ∈ D ∩ ⋃ Ṙ[u] such
that

w ≺(S′
n′′ )
∗∪Q′

n′′−1(B) v,

where, for every j, the notation Q′j(B) is short for Q({w′0, . . . , w′n′′}, {S ′1, . . . , S ′n′′}, B, j).
Note that in particular, w ≺S∗n∪Qn−1(B)∪x2∅ v. To see this, note that (S ′n′′)∗ = S∗n,

Qn−1(B) ⊆ Q′n′′−1(B) (this can be proved inductively using the recursive definition of
Q′n′′−1(B)), and

x2∅ = w′n′
2
∅ ⊆ w′n′

2
S′
n′∪{2¬B}∪Q

′
n′−1(B) ⊆ Q′n′(B) ⊆ Q′n′′−1(B).

Thus, zv,B is well-defined. Note that a part of the proof just given is w′n′
2
S′
n′∪{2¬B}∪Q

′
n′−1(B) ⊆

Q′n′′−1(B). Thus, we have

w ≺w′
n′
2
S′
n′
∪{2¬B}∪Q′

n′−1
(B)

v ≺ zv,B.

This and Lemma 4.21 imply (recall once more that x = w′n′)

x ≺S′
n′∪{2¬B}∪Q

′
n′−1(B) zv,B.
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This concludes the proof of uSxZ.
Now, uSxZ and C ∈ C(x, u) imply C ∩ Z 6= ∅, contradicting the definition and the

non-emptiness of Z. This concludes the proof of the auxiliary claim.

Let U = {v ∈ V : R[v] ⊆ C}. Auxiliary claim implies U 6= ∅. To prove xSwU we will
use Case (b) from the definition of Sw. Fix n ∈ ω \ {0}, {w0, . . . , wn}, and {S1, . . . , Sn}.
Assume w = wn ≺Sn · · · ≺S1 w0 = x. The auxiliary claim implies there is B ∈ D∩⋃ Ṙ[u]
and v ∈ U such that w ≺S∗n∪Qn−1(B)∪x2∅ v. Thus, B ∈ D ∩ ⋃ Ṙ[x] and w ≺S∗n∪Qn−1(B) v.
This concludes the proof that xSwU . It is clear that R[U ] ⊆ C. a

8.3 Ordinary semantics
Due to difficulties in determining whether the principles Wn are valid in ILsetWR-

frames, we tried to obtain validity in regular ILWR-frames. In this section we prove that,
indeed, the logic ILWω is valid in regular semantics. What this entails is that either
ILWR is incomplete w.r.t. ILsetWR-frames, or ILWω ` ILWR.

Theorem 8.9 For n ∈ ω, the principle Wn is valid in ordinary ILWR-frames.

Proof. For n = 1 and n = 2 the claim follows from the fact that ILW1 = ILW and
ILW1W2 = ILR∗.

Suppose the claim does not hold for some n > 2. Then there is an ILWR-model M,
and formulas A,B1, . . . , Bn, C1, . . . , Cn−1 such that there is a world in M, we will denote
this world as vn, such that the instance of Wn with these formulas is not satisfied in vn.
Note that the schema Wn does not contain Cn. For this reason we can use the symbol
Cn to refer to the formula denoted by A. This will eliminate the need for some case
distinctions.

Before proceeding with the proof, let us sketch the proof. First we see there is a
certain R-sequence in our model. Then we see that there is a structure, which we will call
an “L-sequence”, appended to the end of the aforementioned R-sequence. Next, we will
construct two functions, i 7→ i and i 7→ ĩ, both mapping the set {1, . . . , n} to some finite
set of natural numbers. Finally, using these mappings we will see that our L-sequence
must be finite, yielding a contradiction.

In the first part of this proof we establish the existence of certain worlds vn, vn−1, . . . , v0

such that vn R vn−1 R . . . R v0 and prove the property (8.7) below.
We will write Si for Svi .
By unravelling the definition of Wn, we see that there exist worlds vn−1, . . . , v0 such
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that vn R vn−1 R . . . R v0 and:

vn 
 Cn �3Cn ∨Bn ∨ Un; (8.4)

vi 
 Ci �3Cn ∨Bi ∨ Ui,

and for all Si+1-successors x of vi, x 
 ¬Bi+1 (for 1 ≤ i ≤ n− 1); (8.5)

v0 
 Cn, and for all S1-successors x of v0, x 
 ¬B1. (8.6)

Thus (8.5) expands to:

• vn−1 
 Cn−1 �3Cn ∨Bn−1 ∨ Un−1, and for all Sn-successors x of vn−1, x 
 ¬Bn;

• vn−2 
 Cn−2�3Cn∨Bn−2∨Un−2, and for all Sn−1-successors x of vn−2, x 
 ¬Bn−1;

• . . .

• v2 
 C2 �3Cn ∨B2 ∨ U2, and for all S3-successors x of v2, x 
 ¬B3;

• v1 
 C1 �3Cn ∨B1 ∨ U1, and for all S2-successors x of v1, x 
 ¬B2.

Let
Y = {y ∈ R[v1] : y 
 Cn and (∀x ∈ S1[y])x 
 ¬B1}.

Thus, any y ∈ Y satisfies the properties we require from the world v0. W.l.o.g. we can
assume that the world v0 is an (S1 ◦R ◦ S1)-maximal world in Y . Otherwise, if no world
in Y is (S1 ◦ R ◦ S1)-maximal, the relation S1 ◦ R ◦ S1 is not converse well-founded,
contradicting the property (W). Furthermore, note that

if v0 (S1 ◦R ◦ S1) z, then z 1 Cn. (8.7)

If this were not the case, the existence of such a world z would contradict the (S1◦R◦S1)-
maximality of the world v0 within Y (we would have v1Rz and z 
 Cn, and, since
S1[z] ⊆ S1[v0], for all S1-successors x of z, x 
 ¬B1, so z ∈ Y ).

In the next portion of the proof we define a certain type of sequence, an “L-sequence”,
and prove there is an infinite such sequence.

Let us define the L-sequences. These are a specific kind of either a finite sequence
{x0, . . . , xm} for some m ∈ ω, or of an infinite sequence (xi)i∈ω. We denote the set of
indices {0, . . . ,m} or ω as I. Furthermore, we require x0 = v0 and that the following
properties are satisfied too:

1. for all i ∈ I such that i+ 1 ∈ I we have xi(R ◦ (S1 ∪ · · · ∪ Sn))xi+1;

2. for all i ∈ I we have xi 1 C1 and xi 
 Cj for some j ∈ {2, . . . , n};

3. if i, i+1 ∈ I and xi(R ◦ Sk)xi+1, then xiSjxi+1 for all j ∈ {1, . . . , k};
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4. if i, i+1 ∈ I and xi(R ◦ Sk)xi+1, and j is the minimal ` such that xi 
 C`, then
xi(R ◦ Sj)xi+1.

As a consequence of (3.), L-sequences will also have these properties:

5. for all i ∈ I we have v0S1xi;

6. for every world w ∈ {v1, . . . , vn} and all i ∈ I we have wRxi;

Since vn R vn−1 R . . . R v1, the property (6) follows from the property (5). Furthermore,
since the property (3.) implies that whenever we have xi(R◦Sk)xi+1, we also have xiS1xi+1,
the property (3.) implies the property (5).

First we check that the sequence which consists only of the world v0 is a finite L-
sequence. All properties have simple proofs, except for the property v0 1 C1. Suppose
for a contradiction that v0 
 C1. Since v1 R v0 
 C1 and v1 
 C1 � 3Cn ∨ B1, we have
v0S1u 
 3Cn ∨ B1 for some u. Since v0S1u, by (8.6) we have u 
 ¬B1, thus u 
 3Cn.
Then there is u′ with uRu′ 
 Cn. However, we noted earlier (8.7) that if v0(S1 ◦R ◦S1)z,
then z 1 Cn. So, it cannot be the case that v0S1uRu

′S1u
′ 
 Cn, i.e. v0 (S1◦R◦S1) u′ 
 Cn.

Thus, v0 1 C1.
We will prove that an infinite L-sequence exists by showing that any finite L-sequence

can be extended to a longer finite L-sequence. Once we do that, the required infinite
L-sequence can be obtained as the appropriate union of finite L-sequences.

So suppose we have an L-sequence L1 = {x0, . . . , xk} and we wish to construct an
appropriate extension L2 of L1, i.e. we wish to define xk+1.

By the property (2.) we know that xk 
 Ci for some i ∈ {2, . . . , n}. Pick the minimal
such i. By the property (6) we have vi R xk. This, together with the fact that vi 

Ci � 3Cn ∨ Bi ∨ Ui, implies there must exist a world y with xkSiy 
 3Cn ∨ Bi ∨ Ui.
Using the property (6) once more, we have vi R vi−1 R xk. So, vi−1 Si xk, and thus
vi−1 Si y. Since any Si-successor of vi−1 satisfies ¬Bi (see (8.5)), we have y 
 ¬Bi. Thus,
y 
 3Cn ∨ Ui, i.e. y 
 3Cn ∨3Ci−1 ∨ · · · ∨3C1. So, there must exist z with yRz 
 Cj
for some j ∈ {1, 2, . . . , i− 2, i− 1, n}. So, xk(R ◦ (S1 ∪ · · · ∪ Sn))z.

Let L2 denote the extension of L1 with z, i.e. xk+1 := z. We have to check if L2 is
an L-sequence too. As we noted above, we only need to check properties (1.) (which is
immediate), (2.), (3.), and (4.). Furthermore, Property (2.) only needs to be verified for
the new world z, while Properties (3.) and (4.) only need to be checked for the newly
added part of the L-sequence, i.e. for i = k.

Let us check (4.) first. This is immediate since we defined i to be the minimal ` such
that xk 
 C`.

Next we check (3.). Let j ∈ {1, . . . , i} be arbitrary. Since R ◦ Si ⊆ Si, the case
j = i is easy. The other case is j < i, i.e. vi R vj. We have vi R vj Rxk Si y R z. The
characteristic property (R) implies xkSjz.
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It remains to check (2.). The proof for this property is very similar to the proof that
v0 1 C1 which we gave earlier. We already know that z 
 Cj for some j ∈ {1, 2, . . . , i −
2, i− 1, n}. Thus, it suffices to show z 1 C1. Suppose not, i.e. z 
 C1. Since v1 R z 
 C1

and v1 
 C1�3Cn ∨B1, we have zS1u 
 3Cn ∨B1 for some u. The property (5) (which
follows from (3.), so we can use it) implies v0S1z. Since v0S1zS1u, we must have u 
 ¬B1,
thus u 
 3Cn. Then there is u′ with uRu′ 
 Cn. However, we noted earlier (8.7) that
if v0(S1 ◦ R ◦ S1)u, then u 1 Cn. So, it cannot be the case that v0S1uRu

′S1u
′ 
 Cn, i.e.

v0 (S1 ◦R ◦ S1) u′ 
 Cn. Thus, z 1 C1.
This concludes our proof that an infinite L-sequence exists.
In the final part of the proof we define certain indices i and ĩ. These indices will be

associated with world whose existence will enable us to point to the contradiction.
Fix an arbitrary infinite L-sequence L∞ = (xi)i∈ω. We will recursively define mappings

i 7→ i and i 7→ ĩ with the domain {1, . . . , n} and the codomain ω.
Let 1 = 1 and 1̃ = 0. Now suppose the indices 1, . . . , i− 1 and the indices 1̃, . . . , ĩ− 1 ∈

ω have been selected. We are to define i and ĩ. For at least one j ∈ {2, . . . , n} and some
k > ĩ− 1, the formula Cj is true in xk (this follows from applying (2.) to indices in I = ω

that are larger than ĩ− 1). Fix the minimal j such that there exists k > ĩ− 1 and the
formula Cj is true in xk; and define i = j. The definition of i implies that the following
set is non-empty:

T = {xk ∈ ω : k > ĩ− 1 and xk 
 Ci}.

By the characteristic property (W) there is at least one (Si ◦R ◦ Si)-maximal world in T .
Let ĩ equal the index ` such that the world x` is an (Si ◦R ◦ Si)-maximal world in T .

We will show the following properties hold:

a. i ∈ {i− 1 + 1, . . . , n} for all i ∈ {2, . . . , n};

b. if ĩ < k, then xk 1 Cj for all i ∈ {1, . . . , n} and j ∈ {1, 2, . . . , i− 1, i};

c. ĩ− 1 < ĩ for all i ∈ {2, . . . , n}

d. if ĩ < k ≤ `, then xkSjx` for all i ∈ {1, . . . , n} and all j ∈ {1, 2, . . . , i− 1, i}.

We prove (a.)–(d.) simultaneously by induction on i, with base cases being i = 1 for
all four properties (thus there is nothing to prove in the base case for (a.) and (c.)). To
make the proof more readable, we will group the induction’s base and step by properties
(a.)–(d.).

Let us check the property (a.). There is nothing to check for i = 1. Assume i > 1.
By the property (b.) applied to i− 1 we know that for any k such that ĩ− 1 < k, for all
j ∈ {1, . . . , i− 1} we have xk 1 Cj. Since by the definition of i there is k with ĩ− 1 < k

and xk 
 Ci, we must have i > i− 1. The definition of i clearly implies i ≤ n, so (a.)
holds.
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The property (c.) is obvious from the definition of ĩ.
Next we check the property (d.). We will prove the induction base and step at the

same time. Fix k and ` such that ĩ < k ≤ `, and j ∈ {1, . . . , i}. If k = `, the claim follows
from the reflexivity of Sj (jRxk follows from (6)). So assume k 6= ` and, in addition, that
` = k + 1 (if the claim held for all pairs of adjacent indices, the required result would
be implied by the transitivity of Sj). Let m be minimal such that xk 
 Cm. Now the
property (4.) implies xk(R ◦ Sm)x`. By the definition of i we have i ≤ m. Since j ≤ i

(hence j ≤ m), Property (3.) implies xkSjx`.
Finally, the property (b.). The base case follows from Property (2.). We first consider

the case j < i. The definition of i implies that i ≤ ` for every ` such that C` is true in xm
for some m > ĩ. So, it cannot be the case that j < i does not satisfy the property (b.).

It remains to consider the case j = i. Let m be the minimal index such that x̃
i

 Cm.

Certainly m ≤ i since x̃
i

 Ci by the definition of ĩ. We can also show that m ≥ i.

Suppose otherwise, i.e. x̃
i

 Cm and m < i. Then ĩ− 1 < ĩ and x̃

i

 Cm, contradicting

the definition of i. Thus, we can conclude that i = m. By Property (4.) we have
x̃
i
(R ◦ Si)x̃i+1. By the same property we have x̃

i+1(R ◦ Sj)x̃i+2 for some j ≥ i, and
applying the property (d.) to this, x̃

i+1(R ◦ Si)x̃i+2. Thus, by the transitivity of Si, we
get x̃

i
(R ◦ Si)x̃i+2. We can continue this process, and after finitely many steps (ĩ+ 1− ĩ

steps) we conclude x̃
i
(R ◦ Si)xĩ+1.

By Property (d.), we have x
ĩ+1Sixk. Thus, xi(Si ◦R ◦ Si)xk. Since ĩ < k and x̃

i
is an

(Si ◦R ◦ Si)-maximal world in the set we denoted by T earlier, we must have x 1 Ci.
We have checked all properties (a.)–(d.).
The property (b.) implies xñ+1 1 Cj for all j (the property (a.) implies n = n). This

contradicts the property (2.) satisfied by L∞. a

8.4 Arithmetical soundness
In this section we prove that the logic ILWω is arithmetically valid, i.e. a subset of

IL(All).
This semi-formal system CuL is defined in [40]. Essentially, this is an extension of

the logic IL both in terms of the language and theoremhood. It is an alternative to the
system AtL that we explored in Chapter 7. Both systems enable us to give modal-like
proofs of arithmetical validity for many known principles (see [40]), and at the moment
it is not clear whether these systems differ in power. In any case, will use CuL in this
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chapter. These are the axiom schemas and the rules of the system:

(→)J ` 2IA→ 2A

LJ
1 ` 2I(A→ B)→ (2IA→ 2IB)

LJ
2 ` 2IA→ 2I2JA

LJ
3 ` 2I(2JA→ A)→ 2IA

JJ
1 ` 2(A→ B)→ A�B

JJ
5 ` 3JA� A

NecJ ` A⇒ ` 2IA
MJ Γ, (A ∧2JC �B ∧2J ′C) ` D ⇒ Γ, A�B ` D

Here J is a variable not occurring in Γ, A,B,D and J 6= J ′

Reasoning in the system allows using all the regular principles like J2 : (A�B)∧(B�C)→
A� C, J3 : (A� C) ∧ (B � C)→ A ∨B � C and J4 : A�B → (3A→ 3B).

The intended interpretations of superscripts (such as I and J) are definable cuts.
See [40] for more details. Reasoning with definable cuts is the standard way of proving
arithmetical validity; see [29] for a rather large application.

Before proving the main theorem of the section (the arithmetical validity of ILWω),
we first prove two auxiliary lemmas.

Lemma 8.10 Let n ∈ ω \ {0}. Suppose 2(A → ∨
1≤i≤n−13K¬Ci) and Cn−1 � 3A ∨

Bn−1 ∨ Un−1. Then for some cut J the following holds:

Cn−1 ∧
∧

1≤i≤n−2
2J¬Ci �Bn−1

Proof. Combining the two assumed formulas, we get

Cn−1 �3

 ∨
1≤i≤n−1

3K¬Ci

 ∨Bn−1 ∨ Un−1.

Applying (the contraposition of) LK
2 ,

Cn−1 �

 ∨
1≤i≤n−1

3¬Ci

 ∨Bn−1 ∨ Un−1.

We can unpack Un−1 next:

Cn−1 �

 ∨
1≤i≤n−1

3¬Ci

 ∨Bn−1 ∨

 ∨
1≤i≤n−2

3¬Ci

 .
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Equivalently,

Cn−1 �

 ∨
1≤i≤n−1

3¬Ci

 ∨Bn−1.

Applying the principle W,

Cn−1 �

 ∨
1≤i≤n−2

3¬Ci

 ∨Bn−1.

Finally, there is a cut J such that

Cn−1 ∧
∧

1≤i≤n−2
2J¬Ci �

Bn−1 ∨
∨

1≤i≤n−2
3¬Ci

 ∧ ∧
1≤i≤n−2

2¬Ci.

a

Lemma 8.11 For all cut variables K and all n ∈ ω \ {0},

` Vn � A ∧
∧

1≤i≤n−1
2K¬Ci.

Proof. We prove the claim by induction on n. If n = 1, Vn = A, and clearly ` A�A∧>.
Suppose the claim holds for all k ∈ {1, . . . , n− 1}. Fix K. We are to show that

` Vn � A ∧
∧

1≤i≤n−1
2K¬Ci.

We will do this by proving that

` Vn → 3(A ∧
∧

1≤i≤n−1
2K¬Ci),

equivalently (by unpacking Vn and rearranging),

2(A→
∨

1≤i≤n−1
3KCi) ∧ (Cn−1 �3A ∨Bn−1 ∨ Un−1)→ Vn−1 �Bn−1.

So, suppose 2(A → ∨
1≤i≤n−13KCi) and Cn−1 � 3A ∨ Bn−1 ∨ Un−1. By the induction

hypothesis,
` Vn−1 � A ∧

∧
1≤i≤n−2

2K¬Ci.

Applying 2(A→ ∨
1≤i≤n−13KCi),

Vn−1 �

 ∨
1≤i≤n−1

3KCi

 ∧ ∧
1≤i≤n−2

2K¬Ci.
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Thus,
Vn−1 �3KCn−1 ∧

∧
1≤i≤n−2

2K¬Ci.

Let J be the cut given by Lemma 8.10. Applying LJ
2,

Vn−1 �3KCn−1 ∧
∧

1≤i≤n−2
2K2J¬Ci.

Thus,
Vn−1 �3K(Cn−1 ∧

∧
1≤i≤n−2

2J¬Ci).

Applying JK
5 ,

Vn−1 � Cn−1 ∧
∧

1≤i≤n−2
2J¬Ci.

Finally, applying Lemma 8.10 and J2:

Vn−1 �Bn−1.

a

Theorem 8.12 For all n ∈ ω \ {0}, ` Wn, i.e.

` A�3A ∨Bn ∨ Un → Vn �Bn

Proof. Suppose A�3A ∨Bn ∨ Un. Applying the principle W, A�Bn ∨ Un. Then there
is a cut K such that

A ∧
∧

1≤i≤n−1
2K¬Ci � (Bn ∨ Un) ∧

∧
1≤i≤n−1

2¬Ci.

By unpacking Un we see that

A ∧
∧

1≤i≤n−1
2K¬Ci �Bn ∧

∧
1≤i≤n−1

2¬Ci.

In particular,
A ∧

∧
1≤i≤n−1

2K¬Ci �Bn.

Lemma 8.11 implies
Vn � A ∧

∧
1≤i≤n−1

2K¬Ci.

Applying J2 gives Vn �Bn, as required. a

Thus ILWω ⊆ IL(All). Note that this result does not mean that we found a better
lower bound for IL(All). The new principles might depend on some already introduced
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principles.

8.5 Status
At the moment we don’t have answers to the following three questions:

1. Are the principles (Wn)n∈ω valid on generalised ILWR-frames?

2. Do we have ILWR 
 Wn for all n ∈ ω?

3. Do we have ILWRωRω 
 Wn for all n ∈ ω?3

Of course, if (2) has a positive answer, then (1) and (3) have a positive answer too.
If (1), we have modal completeness of ILWω w.r.t. generalised semantics. This is a

strictly stronger system than ILW and ILR, and so would be the strongest system yet for
which we have modal completeness.
If (1) and (2), then ILWR = ILWω, and so we also have completeness of ILWR w.r.t.
generalised semantics.
If (1) and not (2) are the case, in addition we have incompleteness of ILWR w.r.t. gen-
eralised semantics. This would be a first example of an interpretability logic that is
incomplete w.r.t. generalised semantics. If (2) is not the case (regardless of (1)), we have
incompleteness of ILWR w.r.t. ordinary semantics.

If (1) is not the case, then (Wn)n∈ω is strictly stronger than ILWR; in this case, (2)
is not the case either. With additional work we might still be able to prove completeness
of ILWω w.r.t. generalised semantics. This would require us to first formulate the char-
acteristic properties w.r.t. generalised semantics (since in this case, this is not merely a
conjunction of (W)gen and (R)gen).

If (3) is not the case, we have a (strictly) better lower bound of IL(All): the logic
ILWωRωRω.

To sum up, these are the possible outcomes we might hope for:

• Modal completeness of ILWω w.r.t. generalised semantics.

• Modal completeness of ILWR w.r.t. generalised semantics.

• Modal incompleteness of ILWω w.r.t. ordinary semantics.

• Modal incompleteness of ILWR w.r.t. ordinary semantics.

• A (strictly) better lower bound of IL(All): the logic ILWωRωRω.

Currently, we are aiming to show that all the principles Wn are valid on ILsetWω-
frames, i.e. to answer the first question posed above positively.

3By ILWRωRω we denote the extension of ILWω with the principles Rn and Rn for all n ∈ ω. Similar
notation will be used elsewhere too.
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