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ABSTRACT

Generalised gauge field theories are interacting field theories with a gauge symmetry
generalised beyond the standard Lie algebra case. Such theories have become increasingly
important in modern physics, especially high energy physics as the search for a consistent
description of quantum gravity makes these generalised symmetries unavoidable. Two
theories we shall analyse in particular are the Courant sigma model and double field
theory. They are relevant in the understanding of dualities and symmetries with higher
form gauge fields. The aim of this thesis is to explore deeper the relation between the two
and to embed them into the appropriate framework for studying higher gauge symmetries
— Ly-algebras. This will be broken down into three parts. The first dedicated to delving
deeper into the BRST symmetry of them and exploring how the known classical projection
procedure relating them appears on the BRST level. It is at this point that we explicitly
see the necessity of the strong constraint for double field theory to be covariant. Having
understood the BRST structure and knowing that the Courant algebroid, the geometric
structure behind the sigma model, is an L.-algebra we are motivated to see how the
full field theory fits into this framework. This is the second part. In it we construct the
L.-algebra for the Courant sigma model in such a way that all physical data can be
expressed using the objects and operations defined by the algebra itself. Then the intimate
relationship between L., and the Batalin-Vilkovisky formalism is utilised to obtain its
BV/BRST formulation. Finally, in the last part, we go back to double field theory and
embed its geometric structure, the DFT algebroid, into L., much the same way as the
Courant algebroid is. However, because of the section condition of double field theory this
cannot be done as is, given that the cohomological vector in this formulation squares to
zero only upon applying the section condition. In order to get around this we turn to the
well known but extremely rarely used extension of L..-algebras — curved L..-algebras. It is
precisely this curving that encapsulates the strong constraint violating terms and restores
the existence of the cohomological vector. We finish off with a sigma model built upon

this new curved algebra that brings about the section condition as an on-shell requirement.

Keywords: L..-algebra, Batalin-Vilkovisky, Double Field Theory, Gauge symmetry,

Courant algebroid.



PROSIRENI SAZETAK

Teorije polja s poopéenim bazdarnim simetrijama integralni su dio moderne fizike,
posebice fizike visokih energija s obzirom da potraga za kvantnim opisom gravitacije ¢ini
takve poopcene simetrije nezaobilaznima. Mi ¢emo se fokusirati prvenstveno na dvije takve
teorije: Courantov sigma model i dvostruka teorija polja (DFT). Obje teorije motivirane
su teorijom zatvorenih struna i pojavnosti tzv. T-dualnosti u njoj. Cilj ovog rada jest da
istrazi dublje vezu medu ovim dvjema teorijama te da ih smjesti u formalizam prilagoden
visim bazdarnim simetrijama — formalizam L.-algebri. Ovo ¢e biti napravljeno u tri dijela

detaljnije objasnjena u nastavku.

BRST simetrija Courantovog sigma modela i dvostruke teorije polja.
Roytenberg je u [18] pokazao da je BV akcija Courantovog sigma modela, ovdje nad

dvostrukom baznom mnogostrukoséu:

Sc[X, A, F] = / p(FadX? + L ATAAT — p? ((X)ATF 4 + 1T (X)ATAT AR,

T[]Ss

gdje su:

XA — XA+FTA+tTA+UTA7
Al =+ AT 4Tl 4 plel
Fu=va4+ts+Fs+ X4,

BV superpolja, u mjera na T[1]X3, 7 invarijantna metrika grupe O(2d, 2d) te p i T funkcije
od X. Indeksi oznaceni slovima s pocetka abecede oznacavaju tangentne vektore i 1-forme
na odredisnoj mnogostrukosti A,... = 1,...,2d, a iz sredine abecede f, o.o=1,...,4d
vektore vektorskog sveznja nad odrediSnom mnogostrukoséu sa strukturom Courantovog
algebroida. Ova akcija preko BV zagrade takoder definira poopéenu BRST transformaciju
komponentnih polja. U izvoru [45] je bilo pokazano da postoji projekcija s udvostrucenog

Courantovog sigma modela na DFT:

p+:A'—>A+EA,

1
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gdje su:
AL =1(AT£09"Ay),

komponente dobivene mijesanjem vektorskih i kovektorskih komponenti opcéeg prereza stan-
dardnog Courantovog algebroida novom strukturom 7, O(d, d) invarijantnom metrikom.

Ovakva projekcija daje za BV akciju DFT-a:

SDFT[Xa A+7 F] = /

s M(FA dX* + iy ALdATL = (p) " 1(X)ALF 4 +
3

+ L7y (X)AL AT AK )

Medutim, BRST transformacije su takoder projicirane sto znaci da iako sve — komponente
iSCezavaju to ne znaci da njihove BRST varijacije takoder moraju iSceznuti. Naprotiv,
transformacija i polja i duha superpolja A_ ne iScezava sto namece pitanje konzistentnosti
projekcije. Naime, moramo osigurati kako BRST transformacija nece vratiti ono Sto je
projekcija unistila tj. moramo zahtijevati QA_ = 0. Ovaj dodatni zahtjev implicira

fiksiranje duhova t i v:

Vag = %@AJK(X)E_{_E{:,

tA = @AJK(X)A_’J_Gf -+ %8B@ALMFTBEiE¥.

novom funkcijom ©. No ovime ponovo imamo problem ekvivalentan prvotnom osim
sto duhovi ¢t i v nisu fiksirani trivijalno kao komponentna polja A_. Dakle moramo
provjeriti samosuglasnost ovakvog BRST transformacije ovako fiksiranih duhova s BRST
transformacijama naslijedenim iz Courantovog sigma modela. Rezultat jest uvjet na
funkciju © iskazanu kroz iScezavanje dviju struktura koje zovemo R i S dane relacijama
(2.2.39) i (2.2.38). Vratimo li se na bazdarnu razinu i izra¢unamo varijaciju jednadzbi
gibanja s obzirom na projicirane varijacije DF'T-a, vidjet ¢emo kako su one kovarijantne

samo do na tzv. jaki uvjet:

D404(-+) =0,

gdje je u zagradi bilo kakav produkt polja, odnosno na razini teorije svjetskog volumena:
oM )Fy=0.

Courantov sigma model i L-algebre.

Sada zelimo konstruirati Courantov sigma model koriste¢i L.,-algebre. Teoriju polja
L.-algebri mozemo razdijeliti na tri L., razine. Prva algebra je simetrijska i sadrzi samo
algebarske elemente koji opisuju strukturu vrsti polja kakva ¢e se pojaviti, tu osnovnu
simetrijsku algebru zovemo L. Zatim algebarske elemente Zelimo pretvoriti u polja koja

poprimaju vrijednosti u simetrijskoj algebri. To napravimo na nacin da konstruiramo novu

1ii



Prosireni sazetak

Lo-algebru, L', tenzorskim produktom simetrijske algebre L i de Rhamovog kompleksa
diferencijalnih formi Q°(M). No mozemo i¢i i dalje jer nam L., opis omogucuje da
konzistentno napravimo i prosirenje na BV opis teorije. Za potrebe toga prelazimo na
trecu razinu Lo.-algebri, L, koja je tenzorski produkt L’ i komutativne algebre C*°(L'[1])
koja uvodi stupnjeve duha. Stoga sve Sto nam treba za potpun opis teorije je pocCetna
simetrijska L..-algebra definirana gradiranim vektorskim prostorom L =L; & Lo P L_; i
preslikavanjima pu:

L, > pn ()1 l(l)n 15 (o) : a" ' 10, "'aan_lpall(lo)

l“1

I—O = Nn(l(l)la s yn— 17 (-1) (1)1 l(l)n 1Y%ar " " aanflpa(]l(—l)an[(]7

l(l)l l?{an 20as Oy, 0ap” 1l —l)blI
am 2 a o Oa, Tkl O)IZ )277

' ?Tigaal' +0a, 0 Trx o 1 l(o)s

) =
) =
Lo (- l(l)m 2,1( :l)
=) P (Layts - Laym—2, L)1, Loy2)
0)3) =

L2 Nr(l(l)la oo laye— 37l(0)1, 02> [(0)3

Ovakvim izborom dobijemo upravo akciju (4.B.1) i BRST transformacije (4.B.2)—(4.B.13)
kakve slijede iz AKSZ pristupa. No kako znamo da je Courantov algebroid [52] takoder
L.-algebra pitamo se kakva je veza izmedu algebre tog geometrijskog objekta ciljane
mnogostrukosti i algebre same pripadne teorije polja. Ovo je ostvareno morfizmom L -
algebri, dakle kolekcijom preslikavanja ¢ takvih da ¢uvaju L., strukturu. Ovaj morfizam

je konstruiran i njegove komponente iznose:

¢1(h) = X*h,
1(e) = X"e »
o1(f) = d
B i) = X B BBy )]
bilhi, ... hig,er,e9)q = X (W% - h{20,, - - 5%72(77”6[115@65])) ,

¢z’<h17”- i—1) )a - _X*(hal c hal 04y - aaz 1a f)

za 1 > 2. Ovdje je p tocka bazne mnogostrukosti Courantovog algebroida oko koje

razvijamo i koja je takva da je njena koordinatizacija dana s x = 0.

DFT algebroid i zakrivljene L. -algebre.

Zanimljivo je istraziti kako geometrijska struktura, analogna Courantovom algebroidu,
dobivena prethodno opisanom projekcijom odnosno DFT algebroid, ulazi u formalizam
Lo.-algebri. Naime, fundamentalna razlika pri prijelazu iz Courantovog u DFT algebroid
jest jaki uvjet definiran gore, zbog njega se naivni pokusaj konstrukcije L.-algebre lomi

u trenutku zahtjeva relacija homotopije. No bez relacija homotopije to nije konzistentna

iv
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algebra pa stoga autori [59] to nazivaju Le-algebrom do na jaki uvjet. RjeSenje prob-
lema jest uvodenjem poznatog, ali vrlo rijetko koriStenog prosirenja zvanog zakrivljene
L..-algebre. Kljucna razlika jest u postojanju novog konstantnog preslikavanja pg koje

modificira sve relacije homotopije dodatnim ¢lanom:

o (=1 i (po, by -, i) = 0.

Upravo je ovaj ¢lan zasluzan za moguénost opisa struktura koje ne zadovoljavaju jaki

uvjet. Pogledamo li relacije za Courantov algebroid vidimo zasto:

(poD)f =0
plei, ealo — [p(er), ple2)] =0
Jac(eq, e, €3) — DN (e1,e2,e3) =0

sve desne strane ovih relacija is¢ezavaju i sve slijede iz relacija homotopije pripadne L -
algebre. No u slucaju DFT algebroida te iste desne strane relacija, sada sa strukturama
koje odgovaraju DFT algebroidu, vise nisu nula ve¢ imaju netrivijalan doprinos. Upravo je
ta netrivijalna desna strana proizvod postojanja dodatnog ¢lana u relacijama homotopije
zakrivljenih L..-algebri. Stoga definiramo strukturu L, formulacije DFT algebroida (u

minimalnom slucaju), opet definirajuéi prostor kao L_; & Lo @ Ly te preslikavanja:

m(f) =D,

pz(e1, e2) = [er, e2],

pa(e, f) = (e, Df),
ps(er, ez, e3) = N(eq, ea, e3),

ps(po, €, f) = e, Df] — Die, Df),
1o, f1, f2) = 2(Df1, D f2),
pa(po, €1, €2, e3) = DN (eq, eq, €3) — Jac(eq, €9, €3),
15 (po, €1, €2, €3, €4) = 3(DN (€1, €2, €3), 1) — 3(Jac(ey, €2, €3), €4) +

+ antisymm.(1, 2, 3,4),

gdje antisymm. oznacava sve potrebne permutacije kako bi se postigla potpuna anti-
simetrija u 1, 2, 3 1 4. Sada preostaje samo pitanje interpretacije jakog uvjeta. Naime,
znamo da primjenom jakog uvjeta DFT algebroid pada nazad na Courantov algebroid
(sada nad neudvostru¢enom mnogostrukoséu). Znamo za oboje njima pripadnu L., for-
mulaciju stoga kao i u slucaju Courantovog sigma modela trazimo vezu medu njima

kroz L..-morfizam. Ovaj morfizam smo konstruirali te je dan sljede¢im komponentnim
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preslikavanjima:
o1(f) = %f’M
p1(e) = G‘M,
dapo, f) = 3(DS)]
03110, f,€) = He. DI -
Gs(pio,e1,e2) = [er,ealo| = [erseal| .
)

¢4(M0, €1, €2, €3

= (%N(el, €2, €3) — Ne(ex, €2, 63))‘1\4'

Odnosno dijagramatski:

DFT : L, = C®(M) @ Lo =I(L) ® L,
¢ ¢4 o1 ¢ 4
CA: L, = C®(M) @ Ly =T'(E) ® g .

Na kraju smo iskoristili ovu zakrivijenu algebru kako bismo konstruirali sigma model koji
za odredisnu mnogostrukost ima upravo DFT algebroid. Pri ovoj konstrukciji konstruiran
je kohomoloski vektor pripadan dvostrukoj teoriji polja ¢ije je postojanje implicirala

konzistentnost L..-algebre DFT algebroida:

0
Q=n"5 75+ (P r(X)AT =P Ep = S (X)pp® 5 (XAPATAT) oo

+ (ﬁIMPAI(X)FA — 50" Ty (X) AT AR + AP 0™ oy (X)0pp© 51(X)ATFa +
_ R 0
+ ;gnABZABLIJK(X)nLMAIAJAK> DA +
+ ( - 8EpBJ(X)AJFB + %nAD&g (pc[K<X)8QpCL] (X))AKALFA —
0

— LOpTr e (X)ATAT AR 4 1nABoLZ 0 (X) AT AT AK AL ) -
E

Kako bismo sigma model mogli zapisati preko akcije koja varijacijskim principom vraca
jednadzbe gibanja moramo uvesti novi prostor L_, takav da postoji unutarnji produkt
izmedu L_5 i Ly. Ovo prosirenje je napravljeno na minimalni nacin zahtjevom da svi visi
produkti koji ukljucuju G € L_5 iScezavaju. Maurer-Cartanova akcija dobivena jest:

S[X,A F,G] = /E Gapn™® + Fa NdX? + L AT A dAT — p ((X)AT A Fy +
3

+ 1Ty (X)AT N AT N AR

vi
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s reducibilnom bazdarnom simetrijom reda 2 uzrokovanom postojanjem novog polja, 3-
forme G.
Kljuéne rijeci: L.-algebra, Batalin-Vilkovisky, dvostruka teorija polja, bazdarna

simetrija, Courantov algebroid.
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CHAPTER 1

INTRODUCTION TO GAUGE FIELD THEORY

Field theory occurs in most aspects of theoretical physics in some form or another.
Nowhere as much as it does in high energy physics, where it is the basis for the description
of almost all phenomena. The widely accepted current foundation of high energy physics
is the Standard Model, a gauge field theory based on the U(1) x SU(2) x SU(3) gauge
group. Although extremely successful, it has certain drawbacks, the biggest of which is the
glaring absence of gravity, in that it models three of the four fundamental forces known
today. This large hole in its description of the quantum level of physics today is the main
motivation for many alternate theories that try to integrate gravity into a wider framework
for understanding the quantum physics of nature. The most widely recognised of such
frameworks is string theory with its fundamental shift of elementary objects being not
O-dimensional objects, points, but 1-dimensional (or even higher) objects, strings. However
groundbreaking this paradigm shift is, one still cannot avoid the underlying structure of
gauge field theory. Now even richer in structure and symmetry but nonetheless still a
gauge field theory. Therefore the study of gauge symmetries and the field theories built
upon them remains one of the main interests of high energy theoretical physics, and
mathematical physics.

So, what makes this symmetry so important to field theory and its attempt to describe
nature? If one is to think about the fundamentals of physics at the most basic level
there are essentially two concepts present: the fundamental objects and the fundamental
interaction of these objects. Gauge field theory is constructed to explain the latter. Take
for example the simplest of gauge theories, electromagnetism. Classically, we have charged
particles interacting via an electromagnetic 4-potential that mediates this force. This
4-potential is not in one-to-one correspondence with the physics the particles experience
since there is another potential field that gives the same interaction. This symmetry is
called a gauge symmetry or gauge redundancy. This is why when we calculate interactions

classically, we assume an additional constraint on the potential, a gauge or gauge fixing.
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In electrodynamics the most common such constraints are the Coulomb, Weyl or Lorenz
gauges. However, not all gauges are a complete fixing of the redundancy (such as the Weyl
gauge just mentioned), and leave a remnant symmetry structure. Such gauge fixings are
called incomplete gauges. In chapter 2 we shall in the same manner do a partial gauge
fixing in order to reduce the theories symmetry to be able to relate two field theories of
different gauge redundancies. The same applies to the quantum regime, with one difference.
If we take the most widely used quantisation procedure, the path integral method, in order
to calculate the interaction of particles all physical gauge field (potential) configurations
affect the end result. Hence it is not enough to simply gauge fix the potential, now one
must identify all the field configurations that are gauge equivalent in order to count them
only once. This is a nontrivial problem and one that necessitates the introduction of
special tools such as the Becchi-Rouet-Stora [1-3] and Tyutin [4] (BRST) formalism. This
formalism had groundbreaking implications in the mathematical understanding of gauge
theories and “physical states”, more specifically it introduced the study of cohomologies
into the spotlight of gauge field theory. On the basis of this the more general and advanced
Batalin-Vilkovisky (BV) formalism [5-7] was built. It is necessary in the case of more
general gauge symmetries called reducible gauge symmetries where the gauge parameters
that control the redundancy are not themselves independent. In this case by introducing
just ghosts in the quantum picture one would, in fact, dispose of too many degrees
of freedom and therefore need more ghosts that fix parts of the lower ghosts that are
redundant. This is what the BV procedure introduces, a tower of ghosts, ghosts for ghosts
and so on until all the degeneracies are properly taken care of.

As mentioned above, string theory also comes with a sea of gauge field theories with
generalised symmetries in some sense, therefore one needs BV to handle such cases. One
theory in particular is of special interest to us and will be the focus of most chapters of
this thesis, either directly or indirectly. This is Double Field Theory (DFT) [8,9]. Its goal
is to include a symmetry known as T-duality manifestly into field theory. T-duality is a
symmetry inherent to fundamental objects of an extended nature since it is based on the

possibility of the fundamental object to see the nontrivial topology of spacetime.

1.1 | BRST and BV formalism

Gauge field theories contain by construction a redundancy in their description of
physics. This is an integral part of the theory but presents challenges when one wants
to extract physical data about the system in question. In order to obtain “pure” results,
unaffected by this redundancy, we consider gauge invariant objects as those representing
physical values. Therefore, we can calculate an observable in any gauge and hence have the
freedom to choose the most convenient gauge condition. This changes when one wishes to

quantise a theory as then all possible field configurations must be taken into account and
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therein lies the problem, discerning physically different configurations from those related
by a gauge redundancy of the formulation. It is precisely this problem that the BRST
or, its generalisation, BV methods aim to solve and it is this formalism we present in the
following. To be able to fully grasp the formalism a brief recap on graded geometry is also

given.

1.1.1 | Gauge redundancy

In this section we shall explore the idea of gauge symmetry or redundancy and its
role in field theory. Before moving on to a proper treatment of the subject it is useful

to illustrate this symmetry by analogy with complex analysis. Take, for example, the

+o00 1
/ dx,
—00 $2%—1

and its computation using the theorem of residues (this illustration is due to [10]). First,

integral:

one must extend the space from R to C = R?, and in this the one-form dz/(x? 4 1) has

been generalised to a closed complex 1-form w = dz/(z? + 1). Therefore our integral is

[
Rx{0}

As w is defined at oo but not at points +7 it is really a 1-form on P'C\{#+i},! and since

now:

the integration domain R U {co} is a cycle in P'C\{#:}, the integral does not change
for all cycles in the same homology class. So we may change the integration domain to a

small circle around ¢ that we call I, meaning we have ended up so far at :

+o00 1
/ dm:/w.
—00 $24—1 T

Since I' is arbitrarily small we may expand w in to its Laurent series around ¢:

szj— 1= (‘ > (5)" w”) dw

n=-—1

where we have introduced the substitution w = z — 7. Finally, one can integrate this

relation (around a circle centred on 0) via the residue theorem to obtain:

400 1
/;m $2%‘1dw::7t

So, how does this relate to our problem of gauge symmetry? Let’s break it down into four

steps.

1. Identify the problem: calculate the integral [, w with M an differential manifold

1 PIC denotes the complex procjective line, in other words the Riemann sphere.
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and w a top form.

2. Double the space: embed M as a cycle into a double dimensional manifold N and

generalise w to a closed form 2 on N.

3. Change the cycle: choose another cycle in N that is in the same homology class as

M, one that has a power series expansion of () in its neighbourhood in N.

4. Expand and integrate: expand the 1-form €2 and apply the integration to obtain a

series of the original integral.

The simplified analogy goes as follows: our initial problem is the gauge redundancy of
the path integral, therefore BV extends this space by introducing “antifields” to each
corresponding physical field just like in step 2 of the above example. The requirement
that © be closed (d€2 = 0) is a gauge invariance condition just as we have for gauge fields.
Then in step 3, by changing the integration cycle we are doing a change of gauge that still
produces the same result due to the gauge invariance condition essentially just as if going
to another Lagrangian submanifold. In the end one arrives at the perturbative expansion

of your desired now gauged theory.

1.1.2 | Graded geometry

Before defining the BRST or Batalin-Vilkovisky formalism we need to give a brief intro-
duction to graded geometry as this is the mathematical basis of the formalism (following
mostly [11] and [12], with the help of [13]). The idea of grading can be understood as a
generalisation of differential forms, the essence of which is captured in the commutativity
of the wedge product:

WAX = (—1)P Aw,

where w and x are p and g-forms respectively. The aim is to introduce coordinates on
a supermanifold that anticommute and then extend that from a Z, to an arbitrary Z

grading.

Graded vector spaces. We begin by defining a graded vector space and its related
objects. A graded vector space is the formal sum of a collection of vector spaces {V; }icz, Vi
is called the degree i homogeneous subspace of V. A degree shifted (by n) graded vector
space denoted V' [n] is again a graded vector space with the homogeneous subspaces given

by (V[n]); = Visn. One can also define the symmetric:

O (V) =T*(V)\Lo,
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and antisymmetric (exterior) tensor algebras:

/\. (V) = T.(V)\I/\>

with I the ideal generated by elements v; ® vy — (—1)"1l"2lyy, @ vy and I, by elements
V1 ® vy + (—1)llv2ly, @ vy,

Graded manifolds. Moving on now to manifolds, a graded manifold M is a locally
ringed space locally isomorphic to (U, C*(U) ® O(W*)) where U is an open subset of R"™,
W is a graded vector space and the Z degree is preserved. It is logical to extend now to
graded vector bundles which are, roughly speaking, a formal sum of (ungraded) vector
bundles £ = @,cy E; over M that is itself a graded manifold. A simple example is the
graded manifold T'[1]M with functions on it being equivalent to forms in Q(M). A graded
vector field X on a graded manifold M is a graded derivation on the algebra of smooth

functions on M. Therefore X is a graded linear map:
X : C®(M) = C*(M)IK]
such that it satisfies the graded Leibniz rule:

X(fg)=X(f)g+ (1) fX(g),

for all homogeneous f,g € C*°(M). A special class of graded vector fields are cohomo-
logical® vector fields, degree +1 fields that commute with themselves. This implies the

canonical existence of a graded commutator of vector fields:
(X, Y]=XoY — (-1)X ¥y o X,

that is again a graded vector field, however now of degree |[X, Y| = | X|+|Y|. This means

that a cohomological vector Q:
Q: C*(M) = C*(M)[1],
is a differential on the algebra of smooth functions C*°(M) because:
0=1Q,Q=2Q0Q = Q*=0.

Graded manifolds endowed with a cohomological vector field are called differential graded
manifolds or Q-manifolds for short.

An interesting example is a real, finite dimensional Lie algebra g. The shifted space

2Sometimes called homological, although this is usually reserved for the degree -1 case.
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g[1] has a natural cohomological vector field () which is essentially the Chevalley-Eilenberg

differential on Ag* = C*°(g[1]). This can be seen from the fact that g being a Lie algebra

has a bracket defined by the set of structure constants C*,;:
e, €j] = Ckijeka
where {e;} is a basis on g. We define @) to be:

Q= ;C’kijxixjaik,
where {z'} are (graded) coordinates on g[1] (dual to {e;}). Now if one were to calculate
(@, Q] they would obtain the Jacobiator corresponding to the bracket defined above (ex-
pressed through the structure constants), thus the requirement that ) be cohomological
is equivalent to [-,-] being in fact a Lie bracket i.e. satisfying the Jacobi identity. At
this point it is interesting to explore what happens in this example if: one changes the
base manifold from a point to a nontrivial manifold therefore transforming g into a vector
bundle F, or allows the space to have (in general infinitely many) different types of struc-
ture constants and be fully Z graded. The first case corresponds to Lie algebroids (vector
bundles that have a bracket and anchor map to the tangent bundle that satisfy the Jacobi
and Leibniz rules) if @ is cohomological on E[1], see [14]. The second is more relevant to
our discussion in chapter 3 and beyond, since this is in a one-to-one correspondence with

Lo.-algebras as is further explained in section 3.1.2.

Graded symplectic geometry. So far we have constructed graded manifolds and the
special cohomological vector, now we add another structure integral to our story: graded
symplectic structures. A graded symplectic form on a graded manifold M is a homogeneous
degree k two-form w that is closed with respect to the de Rham differential and is non-
degenerate. By non-degenerate we mean that w taken as a map to the cotangent bundle

induces an isomorphism of vector bundles:
w:TM — T kM.

Thus we define a graded manifold M with the additional structure of a symplectic form
w to be a symplectic graded manifold or P-manifold (M,w). To clarify nomenclature we
mention also symplectic and Hamiltonian vector fields that are defined as those vector

fields X along which the Lie derivative of w vanishes and those that contract the graded
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symplectic form into an exact 1-form:?

EXw =0
txw = —dH

where H is called the Hamiltonian function. If a graded symplectic manifold is also
equipped with a symplectic cohomological vector field () this is called a differential graded
symplectic manifold (dg symplectic manifold) or, more recently, a QP-manifold. As a

symplectic form w defines a graded Poisson bracket (also know as a Gerstenhaber bracket):

{f7g} = nga

where Xy is the Hamiltonian vector field corresponding to the function f. It can be
shown that ) of a QP-manifold will always be Hamiltonian except in the specific case of
|w| = k = —1. In the case when k # —1 one can write the cohomological vector using the

Poisson bracket with the corresponding Hamiltonian function as:

Q:{Sv'}u

and therefore the nilpotency of ) becomes:

(@, QLf = {{5,5}, f},

implying {5, S} must be a constant. By doing some degree counting one may notice that
function S is of degree k+1 (since the bracket is of degree —k), this makes |{S, S}| = k+2

implying if k£ # —2 one necessarily has:
{S,S}=0.

This famous expression is known as the classical master equation if one can identify S
with the action functional. Examples of such QP-manifolds are Poisson manifolds (k = 1)
and Courant algebroids (k = 2) which will be explored in more detail in section 2.1.1.
QP-manifolds are integral in the AKSZ construction [15] of topological sigma models such

as the Poisson sigma model [16,17] or Courant sigma model [18-20].

1.1.3 | BV algebra and cohomology

A quick recap of classical field theory is given before moving on to BRST or BV in

order to see where precisely the need for these more advanced methods arises. Sources

3We would like to caution the reader that conventions vary in the sign of the rhs for Hamiltonian
vector fields between mathematics and physics oriented literature.
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include [10], [11] and [21] (for a classic reference see also [22]).

Classical Field Theory. The Lagrangian approach to classical physics states a classical

field theory is specified with three ingredients:
1. a spacetime manifold M;

2. a space of fields F, generally the space of sections of some bundle over M with the

structure of an infinite dimensional manifold;

3. an action functional S : F — R.

An additional requirement on this action functional is that it is local in the sense that S

can be written as:
S[d)] = / L(£>J;} )7
M

where j7¢ is the n-jet of field ¢. The classical physics of such a system is completely
captured by the critical locus of S: Crit(S) = {¢ € F | dS[¢] = 0}, or, stated in the
vernacular of physics: the principle of least action. In the variational principle this leads
to (in cases where the boundary does not contribute) the Euler-Lagrange equations the
solutions of which constitute Crit(.S).

In order to transform this theory from the classical to the quantum regime one intro-
duces the concept of path integrals.* In the most basic sense the path integral formalism
gives the expectation values of an observable in the following way. We are given the
classical data of the theory, so a manifold M, space of fields F and action functional S.
We want to calculate the expectation value of observable O that is a function O : F — R,

the principle of path integrals says this is given by:

1

©) =4

| 0(6)exp i1 Do,
where exp %S [¢] D¢ is a measure on F and Zg is the partition function:

/ exp %S[gzﬁ] Do.
r

Normalising by the partition function makes this a probability measure, however, as F is
infinite dimensional rigorous mathematical treatment of this approach is still in progress
in the community. Nonetheless if one ignores the problems of infinite-dimensionality (as
we shall) this approach is very successful.

The procedure outlined above works if the critical locus is non-degenerate, which is not

the case if the system has symmetries such as those stemming from a gauge redundancy.

4There are other possibilities to quantise a theory, however, the path integral method makes dealing
with symmetries the simplest and relies on the Lagrangian formulation of classical physics that we focus
on in this work.
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This is tackled by introducing a gauge-fixing, however, this is not trivial to do. Essentially
what one needs to do is restrict the integration to the subspace of only gauge inequivalent
field configurations i.e. reduce the integration domain to F/G where G is the group of

gauge transformations.

BRST. BRST is a method of quantising or gauge fixing gauge theories. It cannot handle
all kinds of gauge symmetries and is superseded by the BV formalism. Nevertheless we
begin with the idea of BRST as this is the basis on which BV is built upon.

The framework is as follows. We embed the manifold of classical fields F into the
0 degree body of a (Z-) graded manifold Fgrgr. This grading is what is usually called
the ghost number meaning physical fields have ghost number 0. Additionally Fggrsr is

endowed with a cohomological vector field and measure that is assumed to be @Q-invariant:

for any function f on Fprgr (for more details on this see [23]). BRST is related to the
classical case by two conditions: first is that the classical action is a BRST cocycle i.e.
QS = 0, and the second is Fpgrsr is a resolution of F/G or in other words the zeroth
cohomology of Fggrgr is isomorphic to the space of functions on F/G. The gauge fixing is
done by a choice of gauge fixing fermion W which is a degree -1 function on Fgrsr, then

for the path integral we have:

/ exp %Suz/ exp £(S + QW) p,
FBRST FBRST

that holds because of the invariance of the measure. By requiring the zeroth cohomology

to match F /G we ensure each gauge orbit is counted only once in the integral.

BV. The Batalin-Vilkovisky procedure is a generalisation of the BRST formalism in that
to each field an additional antifield is attributed. We shall now define this construction.
A BV manifold is a P(—1)-manifold or a graded symplectic manifold of degree —1 with a
measure compatible with this symplectic structure in such a way that locally it is just the
coordinate Berezinian measure. Usually we take the BV manifold to be of form 77 [—1]M.

This measure defines a divergence as:

/MXfuz/MdivuX-fu,
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with X f understood as the differential action of vector field X on functions f on M. With

this divergence one can now define the BV Laplacian as:®

NIl .
Aufz( g)fdlvu{f, -}

Its important to note that the Gerstenhaber bracket and Laplacian are not independent
even though they are usually included separately in the definition of a BV algebra as a

Gerstenhaber algebra with a compatible Laplacian in the sense of:

A{f, g} = {Af. g} + (=) F Ag}

A Lagrangian submanifold £ is in the graded case defined as in the ordinary case, as
a submanifold on which the symplectic form vanishes and that has maximal dimension.
When we take the BV manifold 7%[—1]M there is a special Lagrangian submanifold given

by a gauge fixing fermion of degree -1, in local Darboux coordinates {z°, m;r 36

4= o)

A Lagrangian will always have a measure induced from the measure on the BV manifold.
The main result of this formalism are the two following statements (due to [6] and [24]).

If Af =0 and £ and £ are homologically equivalent Lagrangians then:

/Lflm:/ﬁ,flw;

/ﬁfﬂczo-

This theorem assures us that integrating over differently gauge fixed actions does not

if fis A-exact then:

change the result.

We now have all the ingredients necessary to construct a BV gauge field theory. We start
with the classical information (M, F, Sq), then through the above explained procedure
obtain the BRST fields Fgrst and identify this with the M manifold on which we built
up our BV manifold:

Fav = T*[1]Farst-

This induces the aforementioned antifields, in essence the fibre coordinates on Fgy. The

remaining unknown is the BV action functional. For the scope of this thesis we shall only

5The measure x will only be written in the subscript of A in this definition to emphasize its origin but
will later be omitted for brevity.
6 A dagger in superscript will always physically mean the corresponding antifield.

10
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consider the zeroth order in the formal power series of S as a function on Fgy:
S =Sy + Sih+ Seh* + -+,

since we are not explicitly interested in quantum calculations that follow once one knows
Sp. Thus from now on we shall by Sgy denote Sy for which the following must hold in

order to be consistent with the classical action:

SBV|.FBRST = SC]

Remembering BV is an extension of BRST means that we inherit the cohomological BRST

operator () that can now be expressed using the Gerstenhaber bracket as:

Q = {SBV> : }7
that makes the BRST invariance of the action:

the classical master equation again (equivalent to the requirement that QQ be cohomological).
Therefore the main challenge becomes finding a BV action Sgy that satisfies the classical
master equation. Notice that we have obtained the master equation just as in the previous
section for QP-manifolds, however, it is important to emphasize that in the previous
case it arose as a geometrical consequence of construction, whereas now it has appeared
as a separate requirement since this is not a QP-manifold. In fact it could not be one
since it was shown that the QP compatibility allows the cohomological vector to be both
symplectic and Hamiltonian in the cases when the degree of the graded symplectic structure

is different from —1, the precise case we have in BV.

1.2 | Double field theory

Double field theory, an attempt to make T-duality a manifest symmetry of field theory
[9,25-27], is a special field theory of focus in this thesis and onto which all the above
machinery will be applied. Thus, in this section we shall briefly go through the motivation
for double field theory, namely T-duality, and its relation to the split orthogonal group
that constitutes the foundation of the formulation of DFT. Then a short description of
DFT is given introducing objects such as the generalised metric before going into a change
of formalism by swapping the information contained within the generalised metric with
that of a generalised vielbein. The section ends with the basics of the flux formulation

needed in later chapters for the correspondence to the algebraic structure called a DFT

11
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algebroid.

1.2.1 | Foundation

T-duality. In the simplest sense T-duality is the physical equivalence of sigma models
over a background with a circle dimension of radius R and 1/R. For example, this can
most easily be seen in bosonic string theory (covered in most string theory books e.g. [28]
but here following the approach of [29] and [30]). There one can show that 26 spacetime
dimensions are needed for the theory to be consistent, implying 22 of them need to be
“hidden” somehow. This is done via the process of compactification, in essence, by making
these dimensions small compact subspaces such that they cannot be observed directly
(at least at energy scales presently available). The simplest such subspace is a circle of
radius R and this will make our example. Take the target space to be M = R?* x S and
worldsheet 3 parametrised by coordinates (7, 0). The 25th component (corresponding to
the circle direction) of the target coordinates of ¥ understood as maps X : ¥ — M is

then required to satisfy:
X®(r,0+7) = X>(1,0) + 21 Rm,

where m € Z is the winding number. By calcualting the Fourier modes of the string one

can obtain the Virasoro generators and arrive at the mass spectrum of the string:

s (n\? (mR\?
(3] + (5

the dots indicating terms irrelevant to the compactification and following observation,

and n € Z the momentum excitation. This expression is completely agnostic to the
substitution: /

8
<> d R+ —
n m o an R

with o/ € R a dimension —2 constant parameter inverse to the string tension (up to 2).
This is T-duality. One can replace the circle S' with a different one of inverse radius
and the physics (other than the switching of winding and momentum modes) would not
change. This means that if we have coordinate X2® on the first and X5 on the second,

the duality becomes the equivalence:
X25 <~ X25.

Double field theory is a realisation of a field theory over a doubled space (spanned by
coordinates x and %) such that this doubled nature has T-duality manifestly between the

two sets of coordinates.

12
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O(d, d)-symmetry. Our aim now is to see how a T-duality as described above generalises
to O(d, d) symmetry. Continuing with string theory, and in addition to [29] also following
[9] and [31], closed strings must satisfy the level matching condition, a constraint stemming
from the reparametrisation invariance of the worldsheet in the o direction. In the more
general case of the compactified space being an n-torus i.e. M = R26=" x T™ the level

matching condition becomes:
N — N = piwia

with N and N the number operators, and p and w the momentum and winding operators.

If N =N =1, for example, this condition implies the weak constraint:

8181( ' ) = Oa
where the dot indicates any one field. This comes from the fact that p; = —i0; and
w' = —id" by analogy. One must take care not to confuse the weak constraint that is

a physical requirement with the strong constraint of DFT that is just an artefact of the
formulation, as we will see later. However, the form can be deceiving as it has the same

expression:

the difference being in the argument that is now any product of fields as opposed to the
weak constraint that had only one field acted upon. Coming back to the level matching

condition, one may combine these winding and momentum operators into a 2d vector (in
W'
v =
pi

. 0 1
N —N =1v"nv  where 77:< d).

bosonic strings d being 26):

making the condition:

1z 0
Written in this form the relevant term in the string Hamiltonian becomes:
H > WH(G, B)w,

where H (G, B) is the generalised metric depending on the background metric G and 2-form
Kalb-Ramond field B:

G- BG'B BG!
H(G,B) - ( ) |

~G'B G

13
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Its inverse is given by:

H! =nHn.

Both the level matching condition and the Hamiltonian must be invariant under a T-
duality transformation which we take to be an invertible d x d matrix O. Therefore we
say:

v=0T,

implying v7nv = v OnOTv, meaning for the level matching condition to be invariant O
must satisfy:
OnO™ =1.

Remember that 7 is an off-block diagonal unit matrix so can be transformed into the block
diagonal form diag(1l4, —14). Hence O defines an element of the split orthogonal group
O(d,d). This transformation reflects on the generalised metric as well, this can be seen

by the second claim that the Hamiltonian must be invariant:
VI H(G, By = vTOH(G, B)O™,
defining the transformed metric as:
H(G', B') = OH(G, B)O".

There are two points to emphasise, first, since the momentum and winding numbers are
integers the group is over the set Z, and second, the physical symmetry itself is actually
O(n,n) as there are only n compactified dimensions that can dualise. As was shown
the symmetry is formally extended to O(d, d), however, another extension is made with
regards to the first observation, namely O(d, d) is extended from the integers to all of R.
This is the group double field theory will be based upon, occasionally denoted O(d, d, R)

for clarity.

1.2.2 | Frame formulation

In order to make the description of DFT and O(d, d) symmetry more in line it is useful
to introduce a more covariant notation. First one needs a basis of O(d, d) such that the
invariant metric 7 takes the off-block diagonal form above. The coordinates on which this

metric can be used to raise and lower indices are given by:
Ta 0°
X 4 == ) 8 A — .
x® 0,

14
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Notice the index A =1,...,2d is doubled putting on an equal footing both the original
coordinates and their duals. These coordinates now transform with respect to an O(d, d)

transformation O in the following way:
X" =0%5X".

The field content i.e. the generalised dilaton (containing the dilaton and determinant of
the target metric) and metric (containing the target space metric and B-field) are O(d, d)

scalars and symmetric tensors of order 2:

d'(X') = d(X)
Hap = O° AOP g H .

‘H is symmetric from the fact that 1 defines its inverse by raising the indices:
HAP = n*“n"PHep  and HAPHpe = 6.

DFT defined in terms of H and d has a gauge symmetry generated by the generalised Lie
derivative:

LgAA = {BéBAA + AB(‘L@B - ABaBgAa

with A and £ generic O(d,d) vectors and ¢ understood as the gauge parameter. The
commutator of two gauge transformations induces the gauge algebra closure by the C-

bracket of DFT up to terms controlled by the strong constraint:

[Léu Liz] = L*[[&,ﬁzﬂ (1'2'1)

L
strong constraint

as will be seen in chapter 2. Taking cue from general relativity one can replace the
generalised metric by introducing frame fields (Refs. [27,32-34]). Hence, the fundamental
fields become the generalised dilaton d and the generalised vielbein £4 with I =1,...,2d
being the flat indices. A convenient choice for the flattened metric is that it coincides with

the O(d, d) invariant metric n making the bein precisely an element of the O(d, d) group:

. 0 1
Ny = ErE, nap = . (1.2.2)
1g O

It is important to note here that even though 7 and 7 have formally the same form its
indices give away their different nature, later this will become even more important to
distinguish as one will end up defining the curvature of the underlying L..-algebra with

the other just a structure constant. The choice of vielbein induces a flattened generalised

15
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metric:

s 0
SIJ = ( ) )
0 Sij

where i,j = 1,...,d are the indices split by 7 and s are two flat Lorentz O(1,d— 1) metrics
that satisfy:
Hap =E4E St

Having defined the vielbein we are now able to construct two objects or “generalised fluxes”

with which we can construct an O(d, d) scalar action:

Frixk = 35[11435&1351(]3,
Fr=E"2048,5E 5 + 2614 0ad,

that satisfy the Bianchi identities:”

g[IAaA]:JKL] - %ﬂIJM}—KL]M = 27IJKL
EXADL Frcrs + 2652 0aF ) — FE Fiery = 215 (1.2.3)
EMOnTF —YF Fr+ LF R Fk =2

The action defining DFT is now:
S = /dX exp(—2d) R(E,d), (1.2.4)
with R:

R = (S — i) (262 0uF; — FiFy)
+ FroFiun (_%ﬁILﬁJMﬁKN + iSILﬁJMﬁKN _ %SILSJMﬁKN> 7 (1.2.5)

playing the “role” of both the spacetime Ricci scalar, dilaton kinetic term (rescaled to
incorporate the metric determinant) and B-field strength H term of supergravity as a low

energy effective action:
St = / dev/~Ge™* (R +4(99)* — LH?),
to the worldsheet string theory action:

Sws = i [ drv/a((Gug™ + iBue”)0uX10,X7 + a'oR®)).

"Underlined indices are skipped in the antisymmetrisation.

16
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where R and R® are the spacetime and worldsheet Ricci scalars, and we have performed
a Wick rotation to Euclidian signature on the worldsheet. Relations (1.2.4) and (1.2.5)
do not assume the strong constraint as will not be assumed throughout this thesis unless
specifically stated. Additionally, in the remainder we shall drop the dilaton field for

simplicity, see [35] for a geometric description of the dilaton field.

17



CHAPTER 2

BRST SYMMETRY OF DOUBLED MEMBRANE SIGMA
MODELS

Double field theory (DFT) [9,26,27,36], seen as an attempt to realise the T-duality of
closed string theory in section 1.2 manifestly, is at the level of low-energy supergravity based
on a generalised geometry of a tangent bundle extended by 1-forms [37,38]. This generalised
tangent bundle is then equipped with a bracket, a symmetric bilinear form and a map
to a tangent bundle defining the structure of Courant algebroid [39-41]. The symmetric
bilinear form defines an O(d, d) structure relevant for T-duality on a d-dimensional target
space, while the symmetries of the generalised tangent bundle unify diffeomorphisms and
2-form gauge transformations of the Kalb-Ramond field.! Moreover, the properties of the
Courant bracket are used to systematically determine background fluxes of string theory
and their Bianchi identities [42,43].

Furthermore, in Ref. [18] Roytenberg used graded geometry to show that given the data
of a Courant algebroid one can uniquely construct the Batalin-Vilkovisky (BV) master
action, Sgy of section 1.1.3, for a membrane sigma model which is a first-order functional
for generalised Wess-Zumino terms in three dimensions. (See also Refs. [19, 20, 44] for
earlier work in the same direction.) Therefore, the aim of this chapter is to connect the
BV knowledge of the Courant sigma model with the known [45] classical projection that
produces a sigma model over a doubled target that is identified with the DF'T sigma model,
and check these two are compatible.

The chapter is based mostly on [46] and is split in two parts: the first that recaps the
Courant algebroid and sigma model theory, and the second that introduces the projection

and applies it to the first part.

IThese are not, however, all of the elements of O(d,d). In addition to diffeomorphisms and B-field
transformations one has factorised duality transformations and S-transformations, though these will be
ignored.
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Chapter 2. BRST symmetry of doubled membrane sigma models

2.1 | Gauge and BRST symmetries of the Courant sigma

model

The Courant sigma model belongs to a general class of topological sigma models of
AKSZ type [15] satisfying the classical master equation. In this particular case one can
show that the conditions for gauge (or more generally BRST) invariance of the Courant
sigma model and the on-shell closure of the algebra of gauge transformations follow from the
classical master equation and correspond to the axioms of a Courant algebroid defined in
section 2.1.1. Membrane sigma models were subsequently used for a systematic description
of closed strings in non-geometric flux backgrounds [42,45,47-49].

The gauge transformations of the DF'T membrane sigma model were obtained in [45] by
projecting the standard gauge transformations of a Courant sigma model over a doubled
target base manifold. However, the latter is the antifield zero sector of the classical
BV action constructed using the AKSZ procedure. The master action is defined over a
graded manifold in terms of superfields (fields of the same total degree) whose components
include the classical fields, ghosts, ghosts for ghosts and antifields. The classical gauge
transformations lift to the BRST transformations of the superfields as shown in sections
2.1.2 and 2.1.3.

2.1.1 | Courant algebroid

To begin we outline the definition of a standard Courant algebroid (due to [39,40])
following [50]. A standard Courant algebroid is defined over £ =TM & T*M, where M
is a d-dimensional manifold. The resulting generalised vector stems from the generalised
bundle E: A = Ay + A € I'(E) where we have separated the vector part Ay € I'(T'M)
and one-form part Ap € I'(T*M).

Let E — M be a vector bundle. Define an antisymmetric bracket of sections of
the bundle, [-,-]¢c : ['(F) @ I'(F) — T'(E), a non-degenerate symmetric bilinear form,
(,):T(E)®T(E) — C*(M), and, finally, an anchor map, p : E — T'M. This quadruple
(E,[-,-]c, (-, ), p) defines a Courant algebroid [40] up to some compatibility conditions
discussed below.

A Courant algebroid allows for two types of operations, the antisymmetric Courant
bracket or the Dorfman derivative [51]. The Courant bracket can be obtained as an
antisymmetrisation of the Dorfman derivative. In the case of a standard Courant algebroid
(the focus of this section) the bracket can be explicitly stated in terms of the vector and

form parts of the sections:

[A, Ble = [Av, Bv] + L4, Br — Lp, A — 2+ d(va, Bp — tp, Ar),

19
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and can be further twisted by T'(Ay, By) where T is a closed three-form. The Dorfman

derivative is this case is given by:
AoB = LAB = [Av,Bv] + »CAVBF - LBVdAF'

It is obvious the Courant bracket is a generalisation of the Lie bracket and the Dorfman

derivative of the Lie derivative. As for the pairing:
<A, B> = %(LAVBF —+ LBVAF),

one can immediately see the O(d, d) symmetry in the structure since:

(A B = (4 Ap) (fd 15) (Z) |

where the matrix is the O(d, d) metric that we denote 7j;; and the indices I, J go from
1,...,2d.> The three ingredients added to the bundle (the bracket, pairing and anchor)
must satisfy five compatibility conditions. The first is the Jacobi identity for the Courant
bracket,

[[A, Blc, Clc + cyclic = § D([A, B¢, C) + cyclic, (2.1.1)

where the differential operator D : C*°(M) — I'(E) is defined by
(Df, A) = 1 p(A)F, (21.2)
for any A, B,C € I'(E) and f € C*°(M). Second is the Leibniz rule for the bracket:
[A, f Blo = [ [A, Blo+ (p(A)f) B— (4, B) Df, (2.1.3)
third the homomorphism property of the anchor with respect to the bracket:
plA, Ble = [p(A), p(B)], (2.1.4)
fourth is the fact that Df is in the kernel of the anchor:
poD=0 <= (Df Dg)=0. (2.1.5)

This condition becomes key when going to the DF'T case as it will contain most explicitly

the strong constraint of DFT. The fifth and final property is the compatibility between

2The hat on 1) will always denote that the O(D, D) metric acts on vectors of the algebroid bundle (in
this case E). This is in opposition to 7 that will appear later and will also be an O(D, D) metric but one
that acts on tangent vectors of the base manifold. One must be careful as D can mean both d or 2d, the
difference should be clear from context and the range of the corresponding indices.
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Chapter 2. BRST symmetry of doubled membrane sigma models

the Courant bracket and the symmetric pairing,
p(C) A, B) = (IC, Ale + D(C, A), B) + (A,[C, Blo + D(C, B)). (2.1.6)

It is important to note that although given five, only three are in fact independent require-
ments and one only really needs the Jacobi identity, compatibility and any one of the rest.
Roytenberg and Weinstein [52] showed three properties of a CA that will become useful

later.

Property 2.1.7. In a Courant algebroid E with anchor p, differential D and Nijenhuis
operator Ne(eq, ez, e3) = 3([e1, ea], es) + cyclic, the following three identities hold for e; €
['(E):

1. [e,Df] = D<€an>;
2. No(ey, €2, Df) = jpler, el f,

3. (Jac(eq, e, €3), e4) + antisymm.(1,2,3,4) =
= —2([eq, ea], [e3, e4]) + antisymm.(1,2,3,4),
where antisymm.(1,2,3,4) indicates all terms needed for the antisymmetrisation of

ey, €, ez and ey.

Let’s introduce a local basis for the sections of E, e/ where I = 1,...,2d. The
structures defined thus far (bracket, pairing, anchor and derivation) produce the following

coefficients in this basis:

p(e)f =" p% 10,
Df =D;fel = p*0.fe.,

with a = 1,...,d the tangent bundle index. In this local basis the five abstract properties

become the following constraints on the functions p®; and Tk

A" e’ =0, (2.1.8)
P 1 0up® s — p° Oup’r — T PPk Trry =0, (2.1.9)
4pa[L 8aT]JK] +377MN TM[[J TKL}N - 0 (2110)

It is instructive to mention the correspondence between a Courant algebroid and
QP2-manifolds [53] (for a pedagogical exposition see [54]). Recall from sec. 1.1.2 that
a QP2-manifold (also called a differential graded symplectic manifold of degree 2) is
defined by the triplet (N, Q,w) with the base manifold usually taken to be of the form
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N = T*[2]T[1]M. The @ is a cohomological vector field on N (a vector of grading one
that squares to zero) and the P corresponds to the graded symplectic structure w of degree
2 that induces a graded Poisson bracket on C*°(N'). The triple is a QP2 manifold if the

two structures are compatible in the sense that:
£Qw =0.

The manifold A is charted by three types of coordinates: degree 2 coordinate F, coming
from the cotangent bundle fibre shifted by two, two degree 1 coordinates (one from the
shifted tangent and one from the shifted cotangent bundle) that can be combined into one
double coordinate A’ and a degree 0 coordinate of the base manifold z*. The Q-structure

defines a degree three Hamiltonian function © via:
Q =16, },
where { -, -} is the Poisson bracket induced by the symplectic structure:
w=dX*dF, + i, dA'dA’. (2.1.11)
The requirement Q?> = 0, therefore, yields the classical master equation:
{6,06} =0,
which in turn yields (2.1.8) - (2.1.10) in local coordinates when
O = p%(z) F, A"+ 3 Tryx (x) AT A7 AR (2.1.12)

This choice of Hamiltonian function gives the following cohomological vector field [54,55]:

0

OF,
0

oF,

O )
Q= —pal(x)AI% + 01 p® () Fy = 4 0up"1(x) F, AT +

‘oAl
0

+ %ﬁIJTJKL(fE)AKALﬁ + 50Ty (x) AT AT AR

(2.1.13)

2.1.2 | Courant sigma model as a reducible gauge theory

First we discuss the gauge symmetries of the Courant sigma model for a membrane
worldvolume 33, defined over a doubled target space M. We immediately start with a
doubled target space M since later in the chapter our procedure will require this of us,

however, everything stated within this and the next section holds for any base space. The
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action functional for the classical model is:

Sc[X, A, F] = /Z 3<FA AAXA + LipATA AAT — p? 5 (X)AIA Fi + LT3 (X)ATA ATA AR

(2.1.14)
where A = 1,...,2d is a target space index, I= 1,...,4d is the bundle index and we
have considered scalar fields as components of maps X = (X4) : ¥3 — M, 1-forms
A € QY(33, X*E), and an auxiliary 2-form F € Q%(33, X*T* M), and locally we consider
the generalised tangent bundle E = TM @ T*M. The fields (X4) = (X% X,) are
identified with the pullbacks of the coordinate functions, X¢ = X*(z%) and X, = X*(Z,).
The symmetric bilinear form of the Courant algebroid over E corresponds to the O(2d, 2d)-

5= (775) = 0 g
n Nij lyy 0 )

not to be confused with the O(d, d) metric n that acts on sections of T'M that will appear

invariant metric

later. p4 j are related to the components of the anchor map p : E — T'M and T} are
related to a general twist of the Courant algebroid, generating a generalised Wess-Zumino
term. For a local basis (e;) of E, they are related to X* ({e}, [e, ex])), where (-,-) and [-, -]
are the non-degenerate symmetric bilinear form and the bracket of the Courant algebroid
over E respectively.

The action (2.1.14) is invariant under the following infinitesimal gauge transformations
[19]

Sen X =pte, (2.1.15)
5(6 t)AI = dEI —+ ﬁINTNjR-AJEK — ﬁIJij ta, (2.1.16)
5(qt)FA = —dty — 8,4ij Aj ANtg — EjaAij g+ %EjaATij Af A Ai, (2.1.17)
where €l is a scalar gauge parameter, dependent on the worldvolume coordinates, and

t4 is an additional one-form gauge parameter. These transformations define a first-stage
reducible gauge symmetry, typical for gauge theories that include differential forms with
degree larger than one [22,56]. For completeness, and although this is simpler to do
directly in the BV formalism, it is instructive to check the gauge invariance of the field
equations of the model and the closure of the algebra of gauge transformations. Varying
(2.1.14) with respect to Fj, Al and x4 respectively, we find the field equations:*

DXA =25 —dx4 - p ;AT =0, (2.1.18)
DAT = {17 35 = dAT — §TK pt Py + L/ Ty 5 AT A AT =0, (2.1.19)

3Both the Courant (and later DFT) algebroid differential and equations of motion are denoted with a
calligraphic D, however, due to their completely different nature it should be obvious from context what
is implied.
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DFy = 55 = dFa + 0ap” g AN A Fg — 204Tj; AT AAR AAL =0, (2.1.20)
Let us now examine how the field equation (2.1.18) transforms. We find:
Seny DX = e 0ppt ;DX — 7K p jpP gt + €/ AR (207 g Opp™ 5y — 0" 5 Ty 1)
where underlined indices are not antisymmetrised. This directly implies that:

, (2.1.21)
, (2.1.22)

whereupon the field equation transforms covariantly. Next we examine the transformation
of the equation (2.1.19) and obtain:

SenyDAT = =A™ (04Tg 10X AT — 0ap" 4 t1) ADXA + 7T ;X DAY +
+ 277[K< Pt 50aTin i — P kOaTx g1, — 3TKR[N77RPTJL]P) VS

where we used the condition in (2.1.22). We observe that the field equation transforms

covariantly provided one more condition holds, namely:
3p" 50Tk — P 504 Ty, — 3Tieau™ Tipyp = 0. (2.1.23)

It is then easily confirmed that transforming the field equation (2.1.20) does not produce
any further conditions. Moreover, the three conditions (2.1.21), (2.1.22) and (2.1.23) are
precisely the local coordinate expressions for the three independent axioms of a Courant
algebroid.

Closure of the algebra of gauge transformations gives:

A A _J
[5(6171&1)75(627152)})( =0 j €2
6{2 = nIJTJKLE{{Eé
where we used the condition in (2.1.22) to define €15. Furthermore we have:

[5(61,751)7 6(62,t2)]A] = 5(612,t12)A 77 aATYJKLEI DXA
tio4 = 8ATMj 61 62A + 25Ap e 6[1 9B,

where we used the conditions in (2.1.22) and (2.1.23). The closure on the field F; does not
introduce any further conditions. Therefore we conclude that the Courant sigma model is
gauge invariant on-shell, provided that Eqgs. (2.1.21,2.1.22,2.1.23) hold. (Sometimes this

is referred to as a reducible gauge theory with an open gauge algebra.)
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2.1.3 | The BV action and BRST transformations

On-shell closure of the algebra of gauge transformations implies that the natural de-
scription of the gauge symmetries for the Courant sigma model is the BV/BRST formalism
(for physics-oriented reviews, see [22,56]). In particular, one can construct the classical

master action [18]:

Sc[X,A,F] = /T[l]zsu (FA dX* + L ATdA7 — p* 5 (X)ATFu + %Tm(X)AfAJAk> 7

(2.1.24)
where 1 = d®0d®0 is the Berezinian measure on the graded manifold T'[1]33 spanned
by coordinates (o*, 6*) of degrees (0, 1) respectively, d = 60, is the superworldvolume
differential and superfields (in the sense of [57]) include the classical fields (X, A, F), ghosts
(€,t,v) of ghost numbers (1,1,2) and antifields:

XA = XA 4 A 4414 4 t4) (2.1.25)
Al = 4 AT 4 lTAL 4 el (2.1.26)
F4 :UA—i-tA—}—FA—FXL. (2127)

Here X4, Al , F 4 are superfields with total degree 0, 1, 2 respectively, where the total degree
of a field ¢ is the sum of its ghost number gh(¢) and its form degree deg(¢). Antifields
are denoted by a dagger T and we have gh(¢) + gh(¢") = —1 and deg(¢) + deg(¢') = 3.
The conditions given in Eqgs. (2.1.21), (2.1.22) and (2.1.23) are obtained directly from
the classical master equation {Sc,Sc} = 0, where the bracket arises from the target
manifold symplectic structure of type (2.1.11). Setting all ghosts and antifields to zero
in the master action (2.1.24) reproduces the Courant sigma model (2.1.14), while the
BRST transformations of the classical fields give the gauge transformations as in (2.1.15)—
(2.1.17). For completeness and as a comparison for chapter 4 we present here the BRST

transformations of all the fields,

Qv X" = pe, (2.1.28)
QuvAl = del — A pA sty + T AR EE — 41705 " F1By 4 + LTI OpT o FIBR (L
(2.1.29)

QpvFa=—dts — aApjjBEIFB — aAprAItB + %aATfjf(EIAJAK +
+ %aATijﬁKﬁeijATﬁ — 8AprﬁfjA}’UB + %GAaBﬁchfFTBFTCeva —
— 8A83pCfFTBEItC + 8AaB,OCjFTBAIU(j — %aAaBachijTBFTCEIGJEK +
+ é@AaBTijtTBeIeJeK - %aAaBTijFTBAIEJEK - 8A83pcftTBerc,
(2.1.30)

QBVGI = ﬁIJij Vg — %ﬁ[‘]TjkfjﬁKeL, (2.1.31)
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Qpvta = dvg — 8Apr61tB + 3Aij Alvg — %8ATij-EIEJ AR 4+ 0A83p0f FtBelyn —
— 10405T; ji F1P el X, (2.1.32)

Qpvvs = —8AprerB + éaATfjf(EIEJGK. (2.1.33)

Note that one needs to introduce a ghost for ghost v because we are dealing with a first-
stage reducible gauge theory, or said differently, there are “gauge invariances” for gauge

transformations as expected in gauge theories that include higher differential forms.

2.2 | Gauge symmetries of the DFT membrane sigma model

In reference [45], the starting point of this whole chapter, a DFT membrane sigma
model was proposed beginning from a Courant sigma model defined over a doubled target
spacetime and adopting a suitable projection. As was seen in section 2.1.1, for Courant
algebroids the bundle over a base manifold is extended (“doubled”), while in DFT one
doubles the coordinates, i.e. the base space. In order to be able to relate the two we had to
start from a large Courant algebroid defined over a manifold spanned locally by the set of
doubled coordinates { X, X,}. This naturally introduces an O(2d, 2d) structure indicating
that a suitable projection to a subbundle with O(d, d) structure is due. This projection,
demonstrated in section 2.2.1, was identified and all Courant algebroid structures were
projected accordingly to DFT structures; for instance, the characteristic C-bracket of DF'T
(1.2.1) is obtained in this way from the Courant bracket of the large Courant algebroid.
The properties of this bracket were analysed and used to define a DFT algebroid that will
be of great importance later. Moreover, the flux formulation of DFT was used to identify
the components of the anchor map in section 2.2.2 and with these data a DFT membrane
sigma model was defined in 2.2.3. This worldvolume theory is gauge invariant only under
a certain condition which corresponds to the strong constraint of the target space DFT.

It was shown in Ref. [58] the classical master action of the large Courant sigma
model can be projected to the corresponding DFT action for projected superfields. This
action does not satisfy the BV master equation (1.1.1) and cannot be constructed using
AKSZ theory. This is an expected result, since already at the classical level the DFT
membrane sigma model is gauge invariant only up to the worldvolume analogue of the
strong constraint, and therefore one cannot expect BRST invariance of the full action.
Here we complete this analysis by explicitly constructing the BRST transformations for

all projected superfield components in sec. 2.2.4 of the full DF'T membrane sigma model.

22.1 | DFT algebroid

The question that naturally arises is if one can provide a geometric description of DF'T

symmetries based on the C-bracket, before reducing the theory by imposing the strong
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constraint. Our starting point for this section is the collection of properties corresponding
to a standard Courant algebroid from sec. 2.1.1 and their modification in the case of
double field theory.

Projection procedure. To make this connection of DFT to a Courant algebroid, one
must first double the target space of the canonical Courant algebroid. Therefore, we begin
with a doubled target space manifold M with local coordinates! X = (X4) = (X, X,)
and define a large Courant algebroid (E,[-, -]c, (-, - ), p) over a vector bundle over this
doubled target space M:

E=TM=TM&T*M.

Now, we introduce a splitting on the large section:

AL =1 (A"£7"A,), (2.2.1)

1
2
and anchor:

(p2)%s = p™y £ Nyr p™ (2:2.2)

The O(d, d) metric 7 on E is used, relating their standard and dual parts. The generalised

tangent bundle is thus split into two subbundles:
E=L,aL_,

where L is the bundle whose space of sections is spanned locally by eF. A general section

of E can thus be written in terms of L, and L_ parts:
A=ALef +Ale;. (2.2.3)

In order to obtain a DFT structure one first observes the indices of the fields are 2d-
dimensional. This is resolved by a projection to the subbundle L, of E through the

bundle map:®

Under the projection, the components AL in the generalised vector (2.2.3) vanish, and

we rename AL = A’. This is a new generalised vector that is in fact a DFT vector [59].

4Throughout A, B,... =1,...,2d and a,b,... = 1,...,d are indices that correspond to double and
standard spacetime respectively, while Latin indices from the middle of the alphabet I, J,... =1,...,2d
and 7,7,...=1,...,d are reserved for bundle indices.

5We shall denote this subbundle L in sections where the projection procedure is not under consideration.
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Additionally we shall need the inclusion map:
t: Ly — F
and a composition map of the inclusion and projection maps:
a=1topy: E— F.
The projection acting twice on the standard Courant bracket,

p+([a(4), a(B)]c) = [A, B

produces precisely the C-bracket of DF'T vectors (see e.g [60]). The same on the generalised

Lie derivative,

p+ (Laga(B)) = LaB,

yields the