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Abstract

We expand a method for seismic moment tensor inversion using probabilistic Bayesian in-
ference, which yields parameter uncertainties and includes a thorough treatment of noise
in the data, to include additional noise parameters that weight the contributions of par-
ticular stations. In a synthetic test, we show that having individual noise parameters for
each station gives an optimal fit to the data. The noise determines the level of data fit
at each station, and in turn weights their contribution in the final solution. Apart from
the noise level, an empirically determined data covariance matrix accounts for noise cor-
relations present in waveform data. This improves the estimate of the centroid location
and the non-double-couple components. We apply the method to two earthquakes, one
from a volcanic (Long Valley caldera) and another from a geothermal (The Geysers) en-
vironment in California, which are likely to have non-double-couple components in the
source mechanism. We confirm a significant isotropic component for the Long Valley
caldera earthquake. Implementing a cosine data covariance matrix reduces the trade-off
between the isotropic and compensated linear vector dipole components for The Gey-
sers earthquake, and yields considerably higher non-double-couple components. This
shows the importance of adequate noise treatment for earthquakes in complex tectonic
environments.

Introduction

Earthquakes of small and moderate magnitudes can be effectively explained using the
point source approximation (Aki and Richards, 2002). Even small earthquakes in envi-
ronments such as volcanic or geothermal areas can have complex mechanisms including
tensile faulting and fluid flow (Miller et al., 1998). Mechanisms other than simple shear
dislocation are included in the second-rank seismic moment tensor (MT), usually decom-
posed into a double-couple (DC), compensated linear vector dipole (CLVD) and isotropic
(ISO) components (e.g. Jost and Herrmann, 1989). In recent years, an increasing number
of studies focused on non-double-couple components of the seismic MT (e.g. Miller et al.,
1998; Panza and Sara6, 2000; VavryCuk, 2004; TkalCi¢ et al., 2009).

Uncertainty estimates are important when examining earthquakes with large non-DC
components, as the percentages of CLVD and ISO components are known to vary sig-
nificantly with small perturbations of source position and time (Zahradnik et al., 2008).
Uncertainties have been estimated in linearized inversions (not including the source loca-
tion) (e.g. Riedesel and Jordan, 1989; Vasco, 1990; Zahradnik and Custodio, 2012), but
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analytical expressions cannot be obtained when the location is also inverted for. Thus,
they are being computed using probabilistic methods (e.g. Sileny, 1998; Ford et al., 2009;
Fichtner and Tkalci¢, 2010; Kfizova et al., 2013), including the Bayesian inversion. In
a Bayesian framework, the model parameters are treated as random variables and the
solution is given as a posterior probability density of model parameters, taking into ac-
count prior independent knowledge of the model. The prior distribution is updated with a
likelihood function that incorporates information from the data. Walsh et al. (2009) used
generalized Matrix Fisher distributions to parameterize focal mechanism uncertainties us-
ing wave polarity data. Data functionals of seismic waveforms have been analyzed by Lee
et al. (2011), while Duputel et al. (2012) and Stahler and Sigloch (2014) used waveform
data.

Apart from uncertainty assessment, another advantage of the Bayesian inversion is its
ability to account for noise in the data making it a free parameter in the inversion. Ade-
quate evaluation of the amount and distribution of the noise enables an appropriate fit to
the data, in contrast to ordinary least squares method that maximizes the fit to observa-
tions, discarding the noise. In turn, noise assessment regulates the model complexity. As
pointed out by Scales and Snieder (1998), noise is everything the model cannot fit, i.e. it
includes both measurement and theory errors. Duputel et al. (2012) used pre-event noise
levels as noise variances for each trace, and emphasized the importance of non-diagonal
elements of the covariance matrix to account for noise correlations, i.e. the interdepen-
dence of data errors. Including noise variances is similar to weighting station contributions
based on the pre-event noise (e.g. Zahradnik and Custodio, 2012) or epicentral distance
(e.g. Kubo et al., 2002; Scognamiglio et al., 2009) in linearized inversions. Our assump-
tions on the noise define the level of data fit expected from the model and can be crucial
in estimating correct parameter uncertainties.

We expand the method of Musta¢ and TkalCi¢ (2016), which uses a hierarchical
Bayesian inversion to compute the seismic MT, its location and related uncertainties, by in-
cluding additional hyperparameters to weight the contributions of noise in the data specific
to each seismic station. Seismograms from different stations included in the inversion can
have different levels of noise because of their epicentral distances, proximity to the sea,
different geological structures beneath stations, human activities, as well as adequacy of
the structure model for that particular path. Our algorithm determines the level of data fit
for each station (or a group of stations), which influences the complexity of the solution.
The optimal number of noise parameters is determined using the Bayesian Information
Criterion (BIC) (Schwarz, 1978, more details are available in the electronic supplement
to this article). Sampling of the parameter space is performed using two Markov chains:



one for the location and another for the MT parameters and the noise because the loca-
tion parameters make the problem non-linear. We run a separate, inner Markov chain for
every location in the outer one. This results in advantageous sampling the locations with
highest likelihoods multiple times with different initial values of the MT parameters and
the noise, similar to sampling with parallel chains. The inversion gives an ensemble of
solutions that can be utilized to estimate model uncertainties.

The algorithm is designed to invert waveforms of moderate-size earthquakes and ex-
plosions at regional distances. We use long-period (20-50 s) data to reduce the effects
of Earth structure and perform a thorough treatment of the noise, including its correlation.
We test the importance of including multiple noise parameters in a synthetic experiment
with real noise added to the waveforms. Subsequently, we apply the method to earth-
quakes from a volcanic (Long Valley caldera) and a geothermal (The Geysers) area in
California. Before inverting seismograms of real events, we perform a linear inversion on
a number of depths and search for a time shift between the data and synthetics based
on 1D model Green’s functions. These time shifts define the centroid origin time and
accommodate for an imperfect structure model.

Method

Bayesian inversion

In a Bayesian approach, the inversion yields the posterior distribution of model parameters
p(mld), based on a prior distribution p(m) and the likelihood function p(d|m), where m
are the model parameters, d is the data and x|y denotes the probability of = given a value
of y. The posterior is defined by the Bayes’ theorem (Bayes and Price, 1763)

p(d|m)p(m)
p(d) 7 )

where p(d) is a constant, known as the Bayesian evidence. It normalizes the posterior
distribution so its integral over the model space equals to unity.

The model consist of three parameters for the location (longitude, latitude and depth)
and six parameters for the MT, based on the approach of Kikuchi and Kanamori (1991).
Slight modifications were implemented in the frequency-wavenumber code AXITRA to
create the Green’s functions (Bouchon, 1981; Cotton and Coutant, 1997) and convolve
them with six elementary tensors to yield six elementary seismograms E". Thus, the
forward modeling involves computing synthetic seismograms w;(¢) as a linear combination

p(m|d) =
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of the elementary seismograms

6
w;(t) = ZanEi”. (2)
n=1

Coefficients a,, define the MT, and one of them isolates the isotropic component. More
details can be found in the electronic supplement to this article and in Musta¢ and Tkalci¢
(2016). The noise is defined by additional hyperparameters determining the value of
data errors. The number of noise hyperparameters is determined prior to the inversion;
it can be between one and the number of stations (see the following section). The noise
values could be approximated using the signal-to-noise ratio (SNR) (e.g. Duputel et al.,
2012; Zahradnik and Custodio, 2012). Still, the noise hyperparameters also include the
theory error so we do not use the SNR to define the prior distribution of the noise. The
algorithm can always converge to the SNR value, and we prefer this over restricting our
prior. Furthermore, the choice of the prior distribution should not affect the inversion
outcome (e.g. Sivia and Skilling, 2006).

Thus, a uniform prior distribution with a broad range of values is used for all model
parameters. To speed up the inversion, particularly when analyzing multiple events in a
certain area, we pre-compute the elementary seismograms for a discrete set of points
around a reported location. All the locations have equal prior probability. For the MT
parameters, we employ a uniform distribution between —1.5 x M, to 1.5 « My, where M, is
a previously determined value for the scalar moment.

Hierarchical aspect

The likelihood function p(d|/m) quantifies how well does a given model m reproduce the
observed data d. We use a Gaussian distribution for the likelihood

p(djm) = ———— exp |- 2(G(m) - )7 Cp~}(G(m) — d)| . 3)

Vv (2m)¥|Cp| 2
where G(m) are the modeled seismic waveforms, N is the number of data points, Cp
is the data covariance matrix and |Cp| its determinant. The matrix Cp quantifies the
total data uncertainty and the covariability between data errors. Since we are inverting
for the location parameters, the principal source of theory error is the lack of knowledge
on the Earth structure (predominantly the velocity profile). We reduce this effect using
long-period waveforms (20-50 s) that are less sensitive to small-scale heterogeneities. A
part of the theory error might still be mapped into the free parameters of the covariance
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matrix. The measurement error stems from ambient noise, instrument imperfections (e.g.
timing errors, misalignment of components, changes in the instrument response) and data
processing. Instrument-related errors should be detected and accounted for separately,
but we can estimate the covariance matrix using pre-event noise traces, processed the
same way as the data.

The cross-diagonal elements of the Cp matrix can be related to noise auto-correlations,
which show a distinct character with prominent side lobes that depend on the frequency
content of the noise. Also, there is a difference in auto-correlations of the horizontal and
vertical components (Fig. S1, available in the electronic supplement to this article). We
construct the Cp matrix as block diagonal, where each block C,, corresponds to one
seismogram. To ensure the matrix is invertible, it is parameterized using two attenuated
cosine functions

(4)

where |i — j| is the time difference between samples i and j, b determines the amplitude
of the cosine functions, L, and L, their periods, and r.; and r., their exponential decay.
Due to the similarities of the auto-correlations on different stations, it is sufficient to define
the "shape” (the part within the square bracket) of only two C,, matrices (one for the hori-
zontal and one for the vertical components). Including the coefficients b, r.1, L1, 7.2 and L
as parameters in the inversion would require computing |Cp| and Cp " with every pertur-
bation of these parameters, which would make the inversion computationally expensive.
They are computed prior to the inversion as an average over horizontal and vertical noise
auto-correlations on the stations from the examined region using the Hyper-sweep code
(see the Data and Resources section) that performs a grid search in a multidimensional
space. Each block C,, is multiplied by a variance o2, which quantifies the contribution of a
particular seismogram in the inversion (the value of the cosine functions on the diagonal
is one). The variances are defined as a percent of data root mean square (rms) on a
particular station and can have values between zero and 500 per cent rms. Their value is
a hyperparameter in the inversion. We compare the performance of a cosine covariance
matrix with a diagonal one.

The algorithm we utilize here is summarized in Fig. S2, available in the electronic
supplement to this article. Before performing the inversion, the shape of the data covari-
ance matrix Cp and the elementary seismograms for all locations need to be computed.



We also determine the number of iterations beforehand, based on previous tests. For
each location in the outer Markov chain, the elementary seismograms are read and an
inner chain samples the MT parameters and the noise. Synthetic waveforms obtained
by forward modeling using random perturbations of an initial model are compared to the
waveform data, yielding the posterior probability distribution of model parameters p(m|d).
This is performed for different numbers of noise parameters and the BIC used to deter-
mine their optimal number. The lowest BIC value indicates the optimal number of noise
parameters, as explained in the electronic supplement to this article.

Synthetic tests with real noise

To show the performance of the algorithm in a realistic setting and explore the model
selection using the BIC, we construct synthetic data using real station locations and add
different amounts of noise on different stations. We take the location of an earthquake in
Long Valley caldera, California (Dreger et al., 2000; Minson and Dreger, 2008) and five
stations from the Berkeley Digital Seismic Network (BDSN) (shown in black in Fig. 1).
The Green’s functions are created using the SoCal model, an average structure model
of southern California commonly used in MT inversions (Dreger and Helmberger, 1990),
with 0.025° (~ 2.5 km) spacing for the epicentral coordinates and 1 km spacing in depth.
The waveforms have 1 Hz sampling and 200 s duration. A complex mechanism (55%
DC, 34% CLVD, and 11% ISO components) is used to create synthetic seismograms.
Additionally, we add real noise from a quiet period (without earthquakes with magnitudes
above 2.0), processed in the same way as the data (band-pass filtered between 20 and
50 s). We add noise from the north-south and vertical component seismograms to the
horizontal and vertical components of the synthetic data, respectively. The amount of
noise is defined as a per cent of the data rms; we add from 10 to 50%.

We perform inversions with both diagonal and cosine covariance matrices and one
to five noise parameters, then use the BIC to determine the optimal number of noise
parameters. When incorporating two, three and four parameters, we perform inversions
with all possible station combinations (15, 25 and 10 combinations, respectively) and
average the BIC value. The BIC decreases as the number of noise parameters increases,
indicating that the number of noise parameters equal to the number of stations is optimal
(Fig. 2 a). The maximum a posteriori probability (MAP) location varies in inversions with
different number of free parameters when using a diagonal Cp, but implementing a cosine
Cp reduces the ambiguity and all inversions converge to the input location.

When we examine the MT solutions from inversions with one and five noise param-
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eters, the DC parts are fairly similar (Fig. 2 b). To examine this further, we compare
the variance reduction (VR = 1 — W}Ldgm”z) of the MAP solutions with the same ex-
pression VR, computed using synthetic data without noise as G(m). We get a higher
value (VR > VRy) for most inversions, i.e. they are fitting the noise and explaining more
features of the waveform than necessary. This overfitting is reduced when multiple noise
parameters are used, and diminishes when a cosine Cp is implemented. The amount of
input noise was determined taking into account its correlated nature so the noise values
retrieved with the diagonal Cp are somewhat larger (Fig. S7, available in the electronic
supplement to this article). Their relative values are similar, except that the noise on BKS
is higher than the noise on ORV. The inversion with a cosine Cp, retrieved the noise values
reasonably well, except for stations CMB and ORV, where it was somewhat overestimated
and underestimated, respectively (Fig. S8, available in the electronic supplement to this
article). This might be due to extreme values of the input noise on these stations (10 and
50%). The inversion with a single noise parameter had the MAP value of 30%, an average
of the input noises.

The main difference in the MT solutions is in the non-DC components of the moment
tensor (visualized on the lune plots of Tape and Tape (2013) in Fig. 2 d). Both inversions
with the cosine Cp retrieve the input non-DC components within uncertainty. Increasing
the number of noise parameters reduced the discrepancy in non-DC components when
the diagonal Cp was used.

Application to non-DC earthquakes

We apply the method to two earthquakes from complex tectonic environments. Initially, we
extend the analysis by Musta¢ and Tkalci¢ (2016) of a 30 November 1997 My, 4.9 earth-
quake in the Long Valley caldera (LVC) that occurred during an inflation episode (Dreger
et al., 2000). Subsequently, we examine a 20 October 2006 My, 4.6 earthquake in The
Geysers geothermal field, where the exploitation for electrical power was accompanied
by an increase in the number of earthquakes, many of which have substantial non-DC
components (Johnson, 2014).

Long Valley caldera

Recent unrest in the LVC began in 1978 and included continuous seismic activity, uplift
of the resurgent dome, emissions of C'O, and other evidence of volcanic unrest (Foulger
et al., 2004). Seismic activity intensified in 1997, when a number of earthquakes with
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moment magnitudes above 4.5 occurred. Four of them had anomalous non-DC radiation,
related to hydrothermal or magmatic processes (Dreger et al., 2000). In Musta¢ and
TkalCi¢ (2016), we have examined one of them using a single noise parameter for all
stations and confirmed a high ISO component. Now, we examine solutions obtained with
multiple noise parameters.

The BIC shows that using an individual noise parameter for each station gives the
optimal fit to the data (Fig. 3 a). The MAP location in the inversions with five noise param-
eters is at a depth of 7 km, 1 km deeper than with a single noise parameter, and closer
to the Council of the National Seismic System (CNSS) hypocentral depth of 7.1 km. The
epicenter in all cases is 3.5 km SE of the reported location. The relative noise values
in the inversions with different assumptions about the noise are not the same. The inver-
sion with a diagonal Cyp, yields the highest noise for KCC and PKD, while taking the noise
correlations into account in the inversion with a cosine Cp results in the highest noise
for ORV and BKS (Fig. S9, available in the electronic supplement to this article). The
noise values from all inversions are significantly higher than values obtained by dividing
the pre-event noise rms with data rms. The latter were 3, 2, 17, 4 and 16% for BKS, CMB,
KCC, ORV and PKD, respectively. Such a difference most likely arises because of the
theory error. The MAP moment tensors are quite similar, with the biggest difference oc-
curring for the non-DC components (Fig. 3 b and d). However, they all confirm a high ISO
component from the previous studies, probably related to the presence of high-pressure
fluids from the magmatic body (Dreger et al., 2000).

The Geysers

Located in the Coastal Ranges of Northern California, The Geysers geothermal field lies
in the area of regional shear stress field. However, most of the seismicity, dominated by
microearthquakes, is related to steam production and water injection (Majer et al., 2007).
A number of studies found earthquakes with large ISO components, both positive and
negative, as well as large CLVD components (e.g. Ross et al., 1999; Johnson, 2014;
Guilhem et al., 2014). For the first time, we apply a Bayesian method to one of the
earthquakes in this region.

When performing inversions of The Geysers earthquake, elementary seismograms
were computed using the GIL7 structure model (e.g. Pasyanos et al., 1996) because it
yielded a better fit than the SoCal model in linearized inversions. We invert data from
ten BDSN stations (white stations in Fig. 1). Due to the shallow depth of this event
(3.46 km), the grid for elementary seismograms is refined to have 500 m spacing in depth



(0.025° spacing for the epicentral coordinates remains as before). We take seismograms
of longer duration (220 s) because the epicentral distance to some stations has increased.
Since we are using more stations for the inversion, the number of combinations of noise
parameters on these ten stations (i.e. the number of ways to group the stations) drastically
increases so we perform inversions using only one and ten noise parameters.

The algorithm was unsuccessful in retrieving a plausible centroid location for this earth-
quake (Figs. S3-S6, available in the electronic supplement to this article). Inversions with
the cosine Cp converged at a boundary of pre-computed Green’s functions, at a depth of
10 km. This most likely occurred because of the smaller size (the scalar moment is three
orders of magnitude smaller than for the LVC earthquake) and shallow depth of this event,
as determined by CNSS. A depth of 10 km is greater than depths of other earthquakes
observed in The Geysers field. Furthermore, a cooling magma body is suggested to lie
at 7-10 km depth (e.g. Truesdale et al., 1993) so it is less likely to expect earthquakes at
those depths. Thus, we also perform the inversion with the location fixed at the CNSS
hypocenter.

The inversions with different assumptions for the noise agree on high noise values on
HAST, HATC and SUTB, and low noise on BKS and MHC, but the relative values are again
quite different (Fig. 4 a). We get much larger differences between solutions obtained with
a diagonal and a cosine Cp than for the LVC earthquake (Fig. 4 b). DC components
of the MAP solutions are similar for inversions with one and ten noise parameters and
a particular parameterization of Cp, but inversions with a cosine Cp yield about 10°
smaller dip angles and 10 and 17° difference in rake angles (for the N-S and E-W striking
nodal planes, respectively) than inversions with a diagonal Cp. Once more, the largest
difference in the solutions is in the non-DC components. Accounting for noise correlations
with the cosine Cp resulted in significantly higher CLVD component and slightly lower ISO
component (Fig. 4 c). This led to poorer waveform fit (Fig. 4 a), but, as we showed in
the synthetic experiment, inversions with a diagonal Cp are prone to overfitting the data.
Furthermore, implementing a cosine Cp reduced the trade-off between the ISO and CLVD
components that is observed in solutions with a diagonal Cp.

The positive CLVD obtained in these inversions is consistent with crack openings.
However, sources that involve only shear slip and an opening crack lie on the line connect-
ing the DC and +Crack points on the lune plot (Tape and Tape, 2013). Thus, inversions
with a cosine Cp suggest an additional mechanism that reduces the volumetric compo-
nent, such as fluid extraction. Microearthquakes with such mechanism have previously
been observed in The Geysers region (e.g. Ross et al., 1996, 1999) and the Hengill-
Grensdalur volcanic complex in Iceland (e.g. Julian et al., 1997). Uncertainties for The



Geysers earthquake are larger than for the LVC earthquake, most likely due to the shal-
low depth (determined by CNSS) and considerably smaller magnitude of this event. This
intensifies the need for a thorough noise treatment in the inversion.

Conclusions

We augmented a hierarchical Bayesian approach to the point source MT regional inver-
sion. In addition to implementing an empirically estimated cosine data covariance ma-
trix, whose non-diagonal elements account for interdependence of errors present in the
waveform data, we include individual variances for each station as free parameters in
the inversion. This allows the data themselves to modulate the contribution of each sta-
tion. Implementing a cosine covariance matrix increased the ability to retrieve the correct
centroid location and non-double-couple components in the synthetic experiment. This
was not the case for The Geysers earthquake, where the location had to be fixed to the
hypocenter. The Bayesian Information Criterion shows the advantage of using individual
variances for each station, as opposed to fewer noise parameters.

The solutions for the LVC earthquake did not differ significantly when individual station
variances were included, but there is a difference in the non-DC components. Further-
more, the BIC again favors inversions with individual noise parameter for each station. A
smaller earthquake in The Geysers region required fixing the centroid location. A trade-
off between the ISO and CLVD components can be seen when using a diagonal Cp, but
it is resolved when using the cosine one. Our preferred solution, obtained with a cosine
Cp and individual noise parameters, has large ISO and CLVD components that indicate
tensile failure due to fluid pressure, and suggest fluid extraction.

Data and Resources

Data for this study come from the Berkeley Digital Seismic Network (BDSN), doi:10.7932/BDSN,
operated by the UC Berkeley Seismological Laboratory, which is archived at the Northern
California Earthquake Data Center (NCEDC), doi: 10.7932/NCEDC (last accessed July
2015). Figures were made with the General Mapping Tools (www.soest.hawaii.edu/gmt

[last accessed February 2014]; Wessel and Smith. (1995)). This study makes use of the
computer package Hyper-sweep (http://www.iearth.org.au/codes/Hyper-sweep/) which was
made available with support from the Inversion Laboratory (ilab). llab is a program for
construction and distribution of data inference software in the geosciences supported by
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AuScope Ltd, a non-profit organization for Earth Science infrastructure funded by the
Australian Federal Government.
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Figure 1: Map of the studied region with the LVC (black star) and The Geysers earthquake
locations (white star), as well as stations used in the inversions of the LVC earthquake
(black inverted triangles) and The Geysers earthquake (white inverted triangles). Station
BKS was used in the analysis of both earthquakes.
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Figure 2: Comparison of solutions with different assumptions for Cp. (a) (Gray) The log-
arithmic likelihood and (black) the BIC values for inversions with (top) a diagonal, and
(bottom) an attenuated cosine covariance matrix for different numbers of noise hyper-
parameters in the inversion. BIC and likelihood values for two, three, and four noise
parameters are averages from all inversions. (b) Input mechanism and MAP solutions
from inversions with a diagonal and cosine Cp and one (common o) and five (individual
o for each station) noise parameters. The numbers below beachballs show that most
inversions have higher variance reduction (VR = 1 — f(de(zm))Q) than VR,, computed
between the data with and without noise. (c) (Gray) data without noise, (black) data with
noise and synthetic seismograms from MAP solutions, colored as in (b). Seismograms
from inversions with multiple noise parameters are plotted with a dashed line. Numbers
on the right hand side of the seismograms show the input level of noise (black) and the
MAP values obtained in inversions with a diagonal (blue) and a cosine (red) Cp matrix
for each station. (d) Lune source-type diagram showing the input mechanism (black star)
and ensembles of solutions from the same four inversions, colored as in (b).
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The color scheme for the ensemble solutions is given in (b).

18



