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Electronic Supplement to 
On the use of Data Noise as Site-specific Weight Parameter in a 
Hierarchical Bayesian Moment Tensor Inversion: The Case 
Study of The Geysers and Long Valley Caldera Earthquakes 

by Marija Mustać and Hrvoje Tkalčić 
 
This electronic supplement contains details about the forward modelling, and model selection 
with the Bayesian Information Criterion. It also contains six figures showing 
parameterization of the noise covariance matrix using auto-correlations of noise 
seismograms, the algorithm flowchart and sampled centroid locations in four inversions of 
The Geysers earthquake. 
 
Forward modelling 
 
Synthetic seismograms are computed as a linear combination of six elementary seismograms 
En, as defined in equation (2) in the main article. The elementary seismograms are computed 
as a convolution of the Green’s functions’ derivatives with the six elementary moment 
tensors 𝐌𝐧 
 

𝐸!! = 𝐺!",! ∗𝑀!"! .
!,!

 
 

(S1) 

 
The elementary moment tensors are defined as 
 

𝐌𝟏 =
0 1 0
1 0 0
0 0 0

 𝐌𝟐 =
0 0 1
0 0 0
1 0 0

 𝐌𝟑 =
0 0 0
0 0 −1
0 −1 0
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𝐌𝟒 =
−1 0 0
0 0 0
0 0 1

 𝐌𝟓 =
0 0 0
0 −1 0
0 0 1

 𝐌𝟔 =
1 0 0
0 1 0
0 0 1

 
 

 
and the seismic moment tensor is their linear combination 
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Model selection using BIC 
 
In our case, the model selection consists of determining the number of noise hyperparameters 
necessary to constrain the solution. The model selection process is necessary to determine the 
parsimonious (simplest) model that adequately explains the observed data (Maliverno, 2002). 
In Bayesian framework, the maximum likelihood principle regularly leads to choosing the 
model with the highest dimension, but overparameterizing the model can lead to spurious 
features and unrealistically large uncertainties. We use an asymptotic point estimate of the 
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Bayesian evidence called the Bayesian Information Criterion (BIC), which has been 
successfully employed in various geophysical studies (e.g. Dettmer et al., 2009, Pachhai et 
al., 2014). 
 
The BIC is given by: 

𝐵𝐼𝐶 = −2 log 𝑝 𝐝 𝐦𝐦𝐥 +𝑀 log𝑁, (S4) 
 
where mml is the maximum likelihood model vector, p(d|mml) its likelihood value, M is the 
number of model parameters and N the number of data points. The first term in the equation 
reflects the fit to the data and the second term includes a penalty for model complexity, 
including the number of data. Since the BIC is based on negative likelihood, the model with 
the lowest BIC is selected as the optimal model. 
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Figure S1: (a) (Gray) Auto-correlations of noise series on three seismogram components 
filtered between 20 and 50 s and (dashed black line) their fit using two attenuated cosine 

functions (cross-diagonal terms of the Cn matrices defined in eq. 4 in the main article). (b) 
Covariance matrices Cn for the horizontal and vertical components. 
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Figure S2: Flow diagram of the algorithm. The data covariance matrix and elementary 
seismograms are computed and the number of iterations determined prior to the inversion. 

Two Markov chains are used to sample the model space. For each location in the outer chain, 
six MT parameters (𝑎! to 𝑎!) and the noise are sampled in a separate, inner chain. The 

number of noise parameters can be between one and the number of stations. 
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Figure S3: Centroid locations for 1000 iterations in the outer Markov chain for the inversion 
of The Geysers earthquake assuming a diagonal covariance matrix and a common noise 

parameter. The average iteration number for each location determines its color. Open circles 
show all proposed locations and full circles are the accepted ones. Symbol sizes are 

determined by the likelihood value (the 1 per cent MAP locations are plotted with the largest 
circle, the next 9 per cent with a smaller one, etc.). The black star is the CNSS hypocenter 
and the green circle shows the MAP location. Locations are shown in 3-D (a) and in cross-

sections through the MAP source location (b) – (d). 
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Figure S4: Sampled centroid locations for The Geysers earthquake in the inversion assuming 
a diagonal covariance matrix and individual noise parameters. For details see the caption of 

Fig. S3. 
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Figure S5: Sampled centroid locations for The Geysers earthquake in the inversion assuming 
a covariance matrix with two attenuated cosine functions and a common noise parameter. For 

details see the caption of Fig. S3. 
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Figure S6: Sampled centroid locations for The Geysers earthquake in the inversion assuming 

a covariance matrix with two attenuated cosine functions and individual noise parameters. 
For details see the caption of Fig. S3. 

 

 
Figure S7: Posterior probability distributions of the noise hyperparameters together with their 

input values (dashed lines) for the inversion with a diagonal covariance matrix in the 
synthetic test. 
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Figure S8: Posterior probability distributions of the noise hyperparameters together with their 
input values (dashed lines) for the inversion with a cosine covariance matrix in the synthetic 

test. 
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Figure S9: Posterior probability distributions of the noise hyperparameters in inversions with 

(a) a diagonal and (b) a cosine covariance matrix for the LVC earthquake. 


