
Model order reduction with applications

Bošnjak, Domagoj

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:005969

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-26

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:005969
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:9808
https://repozitorij.unizg.hr/islandora/object/pmf:9808
https://dabar.srce.hr/islandora/object/pmf:9808

UNIVERSITY OF ZAGREB

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Domagoj Bošnjak

MODEL ORDER REDUCTION WITH

APPLICATIONS

Diploma Thesis

Thesis supervisor:
prof.dr.sc. Zlatko Drmač

Zagreb, 2021

Ovaj diplomski rad obranjen je dana pred ispitnim povjeren-

stvom u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

To my sister Josipa for her endless support, to my brother Marko for his invaluable

guidance, and to my parents for remembering every single test.

Contents

Introduction 1

1 Parametric Partial Differential Equations and POD 2

1.1 Weak Formulation of Parametric Partial Differential Equations 3

1.2 Proper Orthogonal Decomposition . 4

1.3 Parametric PDE Example . 8

1.4 Greedy Basis Generation . 11

2 Discrete Empirical Interpolation Method (DEIM) 13

2.1 Basic Setting . 14

2.2 Algorithm and Theoretical Background 15

2.3 Example . 22

2.4 Q-DEIM . 23

2.5 K-DEIM . 25

3 Numerical Example 27

Appendices 31

A General Results 31

A.1 Weak Formulation . 31

A.2 Method of Lines . 32

B MATLAB Code 34

Bibliography 39

Introduction

The growing need for solving large-scale systems is not accompanied by a propor-

tional development in quality and availability of appropriately powerful and afford-

able hardware. As complex as systems of partial and ordinary differential equations

already are, they are made even more difficult to solve when introducing tunable

parameters and nonlinearities. Neither of those circumstances can be avoided when

developing methods for tackling real-life problems in applied sciences and engineer-

ing. Available approaches to such problems often end up using high-dimensional

models in order to remain sufficiently accurate. This has inspired the development

of model order reduction. It is an approach that seeks to convert a high-order (high-

dimensional) system to a small-order one, by keeping the most important variables in-

tact. The emphasis is on keeping an adequately accurate model whilst reducing both

computation time and required resources. The systems we deal with are systems of

ordinary and partial differential equations. Even though a plethora of methods and

approaches exist, they may not perform well in the case of high dimensionality, espe-

cially in situations when limited hardware is available.

The rest of the thesis is organized as follows. The first chapter covers the topic

of parametric differential equations, starting with a motivational example. A short

overview of the weak formulation is given, as well as the method of solving such

problems, namely the proper orthogonal decomposition (POD). The aforementioned

example is then solved using this method. The chapter ends with an alternative -

the greedy basis generation. Nonlinear parametric partial differential equations are

tackled in the following chapter. The issue with using a POD-only approach is dis-

cussed in detail, as well as the way to solve it, i.e. the discrete empirical interpolation

method. An extensive theoretical background is provided as well. Additionally, two

potential improvements of the said method, called the Q-DEIM and K-DEIM, are pre-

sented next. The chapter ends with a synthetic example. The final chapter combines

the POD and DEIM methods so as to solve a model example - a nonlinear PDE by the

name of Fisher-KPP equation. Appendices at the end include MATLAB codes for the

mentioned examples, as well as several general results which are omitted from the

main chapters, so as not to draw attention away from the main theme.

1

1 Parametric Partial Differential Equations and POD

Many problems in applied sciences and engineering are modeled by partial differen-

tial equations. Often, such a mathematical model, expressed by partial differential

equation, includes physical parameters (e.g. material properties) that take values in

their respective domains, usually real segments. The task is, for example, to optimize

the solution and obtain some desirable properties as function of the physical param-

eters. A model example is the heat conduction problem described by the following

equation

∇(κµ∇u(µ)) = 0,

where

kµ(x, y) =


µ1, (x, y) in B(0, 0.5)

1, (x, y) in B(0, 0.5)c
,

where B(0, 0.5) denotes the ball centered around (0, 0) with the radius r = 0.5. The

parameter µ1 may, in this case, lie in the interval [0.1, 10]. As solving PDEs and

systems of PDEs may be computationally taxing enough by itself, solving multiple

times with particular choices of parameters is a time-consuming computational task.

Moreover, this example, for now, depends only on a single parameter. In case of

several different parameters, the computational task becomes even more difficult if

not nearly untractable.

However, as much as variable parameters present a problem, the different solutions

u(µ), µ ∈ P (where P is the parameter space) are in fact connected because they

represent variations of the same model. More specifically, we do not expect them

to lie arbitrarily in an infinite-dimensional space, but rather in (or close to) a low-

dimensional space or manifold. This assumption led to the development of reduced

basis methods, where the goal is to find a basis that adequately describes that low-

dimensional space. In case we manage to find such a basis, it is no longer necessary

to solve the entire problem all over again when a solution for a different parameter

choice is required. Instead, we would obtain the new wanted solution using the

reduced basis.

Here we make use of the Proper Orthogonal Decomposition (POD), so as to com-

pute the reduced basis of the space in which different solutions u(µ) lie. As usual

2

with PDEs, we start with the weak formulation after which we transition to the POD

method and afterwards explain the aforementioned example in more detail and we

solve it. An alternative to POD is presented at the end of the chapter, namely the

greedy basis generation.

1.1 Weak Formulation of Parametric Partial Differential Equations

Let us introduce the abstract version of the problem, i.e. the weak formulation of

the parametric partial differential equations. Most of the conclusions in this chapter

originate from [1] and [4]. We consider an appropriate (regular, bounded) domain

Ω ⊂ Rn, n ∈ {1, 2, 3}, with a suitably regular boundary ∂Ω. If we consider scalar

functions, the corresponding test functions reside in the Sobolev space H1(Ω), which

is slightly modified if we seek to impose Dirichlet boundary conditions on the partial

differential equation at hand, so it becomes H1
0(Ω). More on Sobolev spaces may

be found in [15]. In the case of multivariable functions with domain dimension

dv = 2, 3, we divide the boundary ∂Ω into boundary measurable segments for Dirichlet

boundary conditions, denoted by ΓD
i , i = 1, . . . , dv. We then introduce the spaces:

Vi = {v ∈ H1(Ω) : v
∣∣∣
ΓD

i
= 0} ⊆ H1(Ω),

for i = 1, . . . , dv. Finally, we make use of the Hilbert space:

V = V1 × · · · × Vdv ,

equipped with an inner product whose induced norm must be equivalent with the

(H1(Ω))dv norm, which additionally ensures that V is indeed a Hilbert space. The

standard notation for the inner product and the corresponding induced norm is used:

〈v,w〉V, ‖v‖V =
√
〈v, v〉V.

Finally, we introduce a parameter space P ⊂ Rp. In that case, the standard variational

equation

a(u, v) = f (v), v ∈ V,

3

where f (v) = (f , v)V, becomes

a(u(µ), v; µ) = f (v; µ), v ∈ V,

where a : V × V × P → R denotes the bilinear form (with respect to the two first

variables) and f : V × P → R denotes the right hand side, linear with respect to

the first variable. Alongside the variational equation, the model may also contain an

output function s(µ) = `(u(µ); µ).

In order to guarantee the well-posedness of the problem we introduce the standard

assumptions for the use of the Lax-Milgram Lemma, i.e. we assume that the bilinear

form a is coercive and continuous for all µ ∈ P. More precisely, we assume:

∀µ ∈ P, ∃ a(µ) > 0, a(u, u; µ) ≥ a(µ)‖u‖2V

and

∀µ ∈ P, ∃ γ(µ) < ∞, a(u, v; µ) ≤ γ(µ)‖u‖V‖v‖V

which holds for all u, v ∈ V. Moreover, we assume that f is continuous with respect

to the first variable for all µ ∈ P, i.e.

∀µ ∈ P, ∃ ε(µ) < ∞, f (u; µ) ≤ ε(µ)‖u‖V,

for all u ∈ V. The coercivity assumption on a for all parameters µ implies that a(·, ·; µ)

introduces an inner product onV, whose induced norm is equivalent to the ‖·‖V norm.

For a fixed parameter µ ∈ P, a standard finite element discretization technique can

be performed through the use of a discrete (finite-dimensional) approximation space

Vδ, an appropriate basis {ϕ1, . . . , ϕNδ
}, and the enforcement of Galerkin orthogonality.

The parameter δ depends on the discretization used to obtain Vδ. More on PDE

discretization methods may be found in [16].

1.2 Proper Orthogonal Decomposition

We assume that we have obtained N snapshots, i.e. solutions {u(µi)}Ni=1 for different

parameter values µ1, . . . , µN. Such snapshots may be obtained by solving the varia-

tional problem N times. However, solving N times for a large N and with high fidelity

4

discretization requires additional attention in order to be computationally tractable.

Here we assume that there is an off-line phase, when we can afford time and compu-

tational resources to generate data snapshots. This is often the case in applications.

Additionally, in the case of a discretization, we assume that all snapshots lie in Vδ,

i.e. there is no need for additional refinement and all snapshots exist over the same

mesh. The Proper Orthogonal Decomposition (POD) is a method of obtaining a re-

duced basis through the use of such snapshots. The end goal is to approximate future

solutions of interest by obtaining M basis vectors from the N snapshots, where we

naturally aim to achieve M � N.

We denote the snapshots with y1, . . . , yN ∈ V. The goal is to find the reduced basis

functions ϕ1, . . . , ϕM ∈ V by solving the following minimization problem:


min

ϕ1,...,ϕM∈V

∑N
n=1

∥∥∥∥yn −
∑M

m=1(yn, ϕm)V ϕm

∥∥∥∥2

V
,

(ϕi, ϕ j)V = δi j, ∀i, j ∈ {1, . . . ,M},
(1.1)

where M satisfies 1 ≤ M ≤ N.

The solutions of the minimization problem can be obtained through the use of the

eigenvalue decomposition of the Gramian matrix G of the snapshots, given element-

wise by:

Gi j = (yi, y j)V.

The eigendecomposition of the matrix G yields eigenvalues λ1, . . . , λN and eingevec-

tors v1, . . . , vN. Since the matrix G is Hermitian and positive semidefinite, it follows

that λi ∈ R, and vi ∈ R
N, for all i = 1, . . . ,N. We denote by d the index of the last

non-zero eigenvalue, where we assume the ordering

λ1 ≥ λ2 ≥ · · · ≥ λd > 0 = λd+1 = · · · = λN .

Naturally, in applications, a tolerance ε relatively small in comparison to e.g. λ1 or λd

would be chosen as the threshold. Now M may be chosen in {1, . . . , d}.

Finally, the starting POD functions are now given by:

ϕk =

N∑
n=1

vk
n
√
λk

yn, k = 1, . . . ,M.

5

We provide the proof for the case V = RK. Denote the snapshot matrix by

Y =

[
y1 y2 . . . yN

]
.

We consider the singular value decomposition of the matrix Y

Y = UΣVT = U

Σd 0

0 0

 VT ,

where Σd ∈ R
d×d is the diagonal matrix of non-zero singular values σ1, . . . , σd. Ad-

ditionally, we denote by ui and vi the columns of U and V, respectively. Using the

orthogonality of U and V it follows that

UT YV =

Σd 0

0 0

 .
Now we note that, for i ∈ {1, . . . , d}

Yvi = σiv, YT ui = σivi.

Combining the two we obtain, again for i ∈ {1, . . . , d}

YYT ui = σ2
i ui, YT Y = σ2

i vi.

Returning to the minimization problem 1.1, we introduce the appropriate Lagrange

functional

L(ϕ1, . . . , ϕM, λ11, λ12, . . . λMM) =

N∑
n=1

∥∥∥∥yn −

M∑
m=1

(yn, ϕm)V ϕm

∥∥∥∥2

V
+

M∑
i, j=1

λi j
(
(ϕi, ϕ j)V − δi j

)
,

and consider the optimality conditions

∂

∂ϕi
L = 0 ⇐⇒

M∑
m=1

(ym, ϕi)ym = λiiϕi and λi j = 0, i , j,

∂

∂λi j
L = 0 ⇐⇒ (ϕi, ϕ j) = δi j

6

This yields, with the notation λi = λii:

YYTϕi = λiϕi, i = 1, . . . ,M.

This means that the required solution consists of u1, . . . , uM, where M ≤ d = rank(Y).

Since our assumption is that the dimension of the space is much larger than the num-

ber of snapshots, the snapshot matrix Y has significantly more rows than columns.

That is why the computation starts with the eigendecomposition of the matrix YT Y,

yielding:

YT Y = σ2
i vi and ui =

1
σi

Yvi,

which is exactly what the statement was, since the Gramian G is YT Y, and σi =
√
λi.

Remark 1.2.1 If the scalar product 〈·, ·〉V is replaced by the usual l2 scalar product, the

POD basis vectors can be obtained directly by taking the first M left singular vectors of

the snapshot matrix, i.e. the singular vectors which correspond to the M largest singular

values. Additionally, M is chosen such that M ≤ d, where d denotes the largest index

such that σd , 0, meaning we consider the singular vectors which correspond to non-zero

singular values.

Y = [y1, . . . , yN] S VD
= UΣV,

and the denoting the first M columns of U with U(:, 1 : M) we get:

[ϕ1, . . . , ϕM] = U(:, 1 : M).

Subsequently, we seek to approximate the solution u(· ; µ), for a fixed parameter µ ∈ P

as:

u(µ) =

M∑
m=1

pmϕm,

so the final step includes determining the POD coefficients {pm(µ) : m = 1, . . . ,M}.

Let us denote the POD space as VPOD = span{ϕ1, . . . , ϕM}. A natural choice of coeffi-

cients stems from projecting u(µ) onto VPOD:

PM(u(µ)) =

M∑
m=1

(ϕm, u)V ϕm,

for any M = 1, . . . , d. We now limit M from above with d, rather than N, since there

7

are d non-zero eigenvalues of the Gramian matrix G, similarly as in the Remark 1.2.1.

The POD coefficients for a chosen function u are then given by:

pm = (ϕm, u)V, m = 1, . . . ,M.

This choice of POD coefficients is additionally motivated by the optimality of the

projection in the following sense:

‖u − Pd(u)‖V = inf
v∈VPOD

‖u − v‖V.

Finally, we apply the aforementioned procedure to obtain the final model of the form:

for a given µ ∈ P, find u(µ) ∈ VPOD which satisfies

a(u(µ), v; µ) = f (v; µ), v ∈ VPOD.

Since u(µ) may be represented through the POD coefficients as u(µ) =
∑M

m=1 pmϕm, it

is enough to determine the POD coefficient vector p = (p1, . . . , pm). For a fixed µ, this

can be achieved by testing the equation for POD functions, i.e.

M∑
i=1

a(ϕi, ϕm; µ) pi = f (ϕm; µ), m = 1, . . . ,M,

where it is important to emphasize that p depends on µ, i.e. p = p(µ).

Remark 1.2.2 A common application of POD involves using the SVD to obtain the re-

duced basis. However, since the resulting basis will naturally heavily depend on the

choice of the inner product 〈· , ·〉, it makes sense to modify it according to a specific prob-

lem. Inner product is related to the concept of energy, which is why it makes sense to use

a weighted inner product instead, depending on the problem.

1.3 Parametric PDE Example

In this section we consider a heat conduction problem modeled by a parametric par-

tial differential equation. The example originates from [1]. The domain of the prob-

lem is Ω = 〈−1, 1〉 × 〈−1, 1〉, with the boundary sides denoted by Γtop,Γbottom,Γle f t and

8

Γright. The partial differential equation together with boundary conditions is given by:



∇(κµ∇u(µ)) = 0 in Ω,

u(µ) = 0 in Γtop,

κµ∇u(µ) · ~n = 0, on Γle f t ∪ Γright,

κµ∇u(µ) · ~n = µ2, on Γbottom.

(1.2)

There are two parameters in the model, µ1 and µ2. The dependence on the parameter

µ1 is given through the function kµ which is interpreted as the thermal conductivity,

in the following way:

kµ(x, y) =


µ1, (x, y) in B(0, 0.5)

1, (x, y) in B(0, 0.5)c
,

where B(0, 0.5) denotes the ball centered around (0, 0) with the radius r = 0.5. The

dependence on the parameter µ2 is given through the Neumann boundary condition

on Γbottom = {−1} × 〈−1, 1〉. The value intervals for the parameters are given by µ1 ∈

[0.1, 10] and µ2 ∈ [−1, 1]. An example of a solution together with the mesh is shown

in the Figure 1.1. Note that the effect of different values of the parameter-dependent

function kµ inside and outside of B(0, 0.5) is clearly visible.

Figure 1.1: A solution of the parametrized PDE (1.2): areas of different thermal
conductivity kµ are clearly visible. The parameter values are µ1 = 9, µ2 = 0.75.

The snapshot generation for solving the problem by the POD method of snapshots

is performed by choosing n equidistant parameter values in each parameter range,

9

yielding n2 snapshots. The implementation related to assembling the finite element

matrices is greatly supplemented both through code and conclusions from [2]. From

there on, the algorithm essentially follows the procedure described in the previous

subsection.

Figure 1.2: 20 largest singular values of the snapshot matrix in the log scale

The problem appears to be well-posed in terms of model reduction, as choosing sev-

eral thousands of snapshots yields a reduced basis subspace of dimension 6. The error

of the projection is of order 10−9, meaning that a 6−dimensional function subspace

is essentially good enough to describe an arbitrary solution of the partial differential

equation, for the given parameter ranges. Observing the singular value drop-off (Fig-

ure 1.2) in the snapshot matrix, this result might not be so surprising. Obviously an

even smaller subspace may be chosen, depending on the required accuracy.

Figure 1.3: Original solution and the projection to the POD reduced basis space:
the area of different thermal conductivity is again visible. The parameter values are
µ1 = 9, µ2 = 0.75.

10

However, the process of generating a large enough set of snapshots in order to come

to experimental conclusions is, by far, the most computationally taxing part of the

aforementioned process. Therefore, this approach might not be ideal in case of a

more ill-posed model, in which no snapshots are obtained in the off-line phase. Sub-

sequently, for a larger problem, with e.g. 10 parameters and n samples per parameter,

this procedure would require computing n10 snapshots, which is clearly not a viable

option. That is why it is important to consider alternative methods of generating a

reduced basis, perhaps without generating snapshots in this manner.

1.4 Greedy Basis Generation

In the previous section the reduced basis of size M was computed through the use of

N � M snapshots, which is cumbersome if they are to be manually computed. In this

section we present an alternative: a ”natural” greedy algorithm for the reduced basis

generation. An important assumption needed in this entire section is that we possess

an error estimator at hand, denoted by e(µ), which (we assume) adequately estimates

the error caused by performing the model reduction, not including the discretization.

The algorithm itself is rather intuitive. First, a finite dimensional subspace Ph ⊂ P

is chosen. The greedy process is iterative: consider the step k and the appropriate

generated reduced basis space Vrb of dimension k. The goal is to determine the next

parameter µk+1 ∈ Ph for which we compute the solution u(µk+1), which we then choose

as the next basis function. Naturally, there is no guarantee of linear independence yet

– this issue will be addressed later. The choice of the parameter is done by minimizing

the error estimator e(µ) over Ph, with respect to the space Vrb. For every parameter

µ ∈ Ph, we compute the reduced basis approximation using the current space Vrb, i.e.

we solve a modified (finite) problem

a(urb, vrb; µ) = f (urb; µ), ∀ vrb ∈ Vrb,

of dimension k = dim(Vrb) or more specifically the dimension of the reduced basis of

the current step. For each choice of parameter µ ∈ Ph, we compute the error estimate

e(µ) and choose the parameter with the largest error value:

µk+1 = arg max
µ∈Ph

e(µ).

11

Then, the solution u(µk+1) is computed and the reduced basis space is updated as

Vrb ← Vrb ∪ {u(µn+1)}.

Finally, the process stops when the error estimator in the given step becomes small

enough, i.e. smaller than an a priori set tolerance ε. The final greedy algorithm

goes as follows. The expression A ← B denotes that we replace whichever value the

variable A held with the value in the variable B, whether A was defined before or not.
Algorithm 1: Greedy basis generation

Input: A tolerance ε, the first parameter µ1 and set n = 1;

while e(µn+1) > tol and n ≤ dim(Ph) do

Compute the solution u(µn) for the parameter µn

Vrb ← span{u(µ1), . . . , u(µn)}

for µ ∈ Ph do

Compute the reduced basis approximation urb(µ) ∈ Vrb

Evaluate the error estimator e(µ)

end

µn+1 ← arg max
µ∈Ph

e(µ)

n← n + 1
end

Output: The reduced basis {u(µ1), . . . , u(µn)}

The obvious advantage of this approach is that an M-sized reduced basis space re-

quires the computation of only M snapshots. Another, maybe less obvious advantage,

is that the computation may be freely continued, should the generated space of di-

mension M prove to not be of desired accuracy. The process of generating additional

k reduced basis functions is completely the same as if we determined M + k functions

in the first place, i.e. the space Vrb is absolutely the same in both cases.

Another important issue to consider is the fact that the computed snapshots may be

nearly linearly dependent, which is bound to cause problems with condition num-

bers. This is why orthogonalization should be applied, e.g. the Gram-Schmidt proce-

dure. On the other hand, POD is usually performed using the singular value decom-

position, meaning it already yields an orthogonal reduced basis. Ultimately, we note

that the greedy algorithm heavily depends on the quality of the error estimator.

12

2 Discrete Empirical Interpolation Method (DEIM)

Consider the problem of solving nonlinear systems of partial or ordinary differential

equations. Many interesting and relevant examples may be found in [11]. One such

example is the Kolmogorov–Petrovskii–Piskunov equation, given in a general form by

∂

∂t
u(t, x) − a

∂2

∂x2 u(t, x) = f
(
u(t, x)

)
,

where a is a constant and f = f (u) is a nonlinear function of the unknown variable u.

The equation often appears in problems involving heat or mass transfer, as well as in

many problems in biology, e.g. population growth. A notable example is the Fisher-

Kolmogorov–Petrovskii–Piskunov equation which models both wave propagation as

well as population growth, defined as

∂

∂t
u(t, x) − D

∂2

∂x2 u(t, x) = r u(t, x)
(
1 − u(t, x)

)
,

for constants r,D > 0. Naturally, this needs to be equipped with the proper boundary

conditions.

An approach to solving this problem involves a discretization or a semi-discretization

technique, both resulting in a large, nonlinear system. Here we focus on the semi-

discretization method, yielding a dynamical system of the form

d
dt

v(t) = Av(t) + F
(
v(t)

)
+ b(t),

where the wanted solution v is now of dimension n. F corresponds to the nonlinearity,

whereas b(t) may come from boundary conditions of the original problem. The details

on the semi-discretization, i.e. the method of lines may be found in the appendix. In

order to obtain a relatively accurate solution, the chosen discretization may need

to be rather fine, resulting in a large dimension n. The computational barrier is

now obvious, especially taking into consideration that computing F(v) many times

may impose a heavy burden. We then turn to demonstrate why a POD approach is

not enough to solve this problem both accurately and in a time/memory-effective

manner. In combination with using the POD approach to obtain a reduced model,

we show in detail why the nonlinear part of the problem presents an issue, and we

13

offer a method that deals with such issues even more generally. Namely, it may be

applied to any nonlinear function approximation problem.

2.1 Basic Setting

In this chapter we focus on the Discrete Empirical Interpolation Method (DEIM), first

presented in [5], which aims to improve the efficiency of the model reduction pro-

cess. As discussed, let us consider a dynamical system, described as:

d
dt

x(t) = Ax(t) + f (x(t)), (2.1)

where x(t) ∈ Rn describes the state, A ∈ Rn×n is a matrix with constant values and

f : Rn → Rn is a (generally nonlinear) function. A setting we work with is that n may

be very large, for example of order 106 or higher.

Such systems model many situations, appearing directly or being the result of a semi-

discretization of partial differential equations. Since many of these systems are very

large-scale, they induce a significant computational burden. In numerous situations

however, there are in fact very few ”internal degrees of freedom”, i.e. such a large

dimension is not needed to essentially describe the behaviour of the state variable

x(t).

Remark 2.1.1 The entire process is equally valid for systems which, unlike the observed

one, aren’t time-dependant, i.e. systems of the form

Ay(x) + F(y(x)) = 0.

The idea of the DEIM method is to use projection in order to obtain a model of

reduced order, which adequately approximates the starting model. To that extent,

we denote by Vk the matrix of dimension n × k, where k � n, whose columns are

given by the reduced basis. This means that the reduced basis space Vk is then given

by

Vk = range(Vk).

Such a reduced basis may be obtained through the POD described in the previous

chapter. An additional assumption is that the columns are orthonormalized. This is

in accordance with the conclusions from the previous chapter, as the reduced basis is

14

computed by the POD, meaning that columns of Vk are columns of an orthogonal ma-

trix U from the singular value decomposition. Alternatively, if the reduced basis was

computed by the greedy basis algorithm we assume that the Gram Schmidt process

has been performed during the basis generation itself, meaning Vk is orthonormal in

that case as well.

2.2 Algorithm and Theoretical Background

The order reduction goes as follows: after determining the matrix Vk, we perform the

substitution x(t) = Vk y(t) ∈ Rk in the system 2.1 which yields:

d
dt

(Vk y(t)) = AVk y(t) + f
(
Vky(t)

)
.

Since Vk has orthonormal columns it follows:

d
dt

y(t) = VT
k AVk y(t) + VT

k f
(
Vky(t)

)
.

Now the unknown variable of the system is no longer of dimension n, but rather

dimension k (recall that k � n). We now take a look at the dimensions currently

present in the system, in comparison to the original system 2.1, again taking into

consideration that k � n. 

d
dt x(t) = Ax(t) + f (x(t)),

x(t) ∈ Rn,

A ∈ Rn×n,

f (x(t)) ∈ Rn,

whereas the latter situation is as follows:

d
dt y(t) = VT

k AVk y(t) + VT
k f (y(t)),

y(t) ∈ Rk,

VT
k AVk ∈ R

k×k,

VT
k f (y(t))→ Vk ∈ R

k×n, f (y(t)) ∈ Rn×1.

15

We observe that the only computationally taxing part of the new reduced system is

the evaluation of the nonlinear part of the system, i.e. VT
k f (y(t)), which still directly

depends on the large dimension n. This implies that the model has not yet been ad-

equately reduced. The DEIM method aims to compute the nonlinear function f in

a cost-effective manner. The goal is to project the function onto a space of dimen-

sion m � n in order to yield a satisfactory approximation of the nonlinearity. Let us

denote F(t) = VT
k f (y(t)) and observe that the following procedure can be performed

in order to approximate a general nonlinear function F, independently of the frame-

work presented here.

Let the m-dimensional approximation space be denoted by span{u1, . . . , um} ⊂ R
n, and

the coefficient vector for a given t with p = p(t) = (p1(t), . . . , pm(t)). The approxima-

tion space may be obtained by applying the POD method to a matrix of snapshots of

F, namely S =

[
F(ti1), F(ti1), . . . F(tiq)

]
. The approximation of F is then given by

F(t) ≈ [u1 . . . um]p = U p,

which is a system we need to solve for p = p(t). Considering the dimensions of the

system, we observe that F(t) ∈ Rn×1, U ∈ Rn×m, but p(t) ∈ Rm and m � n. Therefore,

the system is overdetermined. That is why it is sensible to somehow pick m rows of

the system in order to obtain an m × m system for p(t). This is equivalent to finding

a permutation matrix P ∈ Rn×m and multiplying the system from the left side by PT .

The system then becomes

PT F(t) = (PT U)p(t), (2.2)

where

PT F(t) ∈ Rm, PT U ∈ Rm×m,

meaning that the system is no longer overdetermined, but quadratic. Since P ∈ Rn×m

is a permutation matrix we know it can be represented as

P = [eϕ1 , . . . , eϕm],

16

where eϕi represents the canonical Rm basis vector

(eϕi) j =


1, ϕi = j,

0, ϕi , j.

Note that the new system depends on the assumption that PT U is invertible, which

we take as is now, but we provide the required argumentation later.

The algorithm goes as follows. The first index ϕ1 is chosen as the index of maximum

value of u1, in the sense of absolute value. In a general step k the matrices U and P

from the system 2.2 are set to be matrices with columns u1, . . . , uk−1 and eϕ1 , . . . , eϕk−1,

respectively, meaning that they are set to U = [u1] and P = [eϕ1] in the first step.

In order to compute the next m − 1 indices, in each step we compute p from the

system (PT U) p = PT uk and we choose the index ϕk as the index of the largest (again

in terms of absolute value) entry in the residual vector r = uk − U p.

We denote by arg max the index of the maximum element of a vector.

Algorithm 2: DEIM

Input: An approximation space basis {u1, . . . , um};

ϕ1 = arg max(|u1|);

U ← [u1] P← [eϕ1];

ϕ← [ϕ1];

for k = 2, . . . ,m do

Compute p from the system (PT U) p = PT uk;

Compute the residual r = uk − U p;

ϕk = arg max(|r|);

U ← [U uk];

P← [P eϕk];

ϕ← (ϕ , ϕk)

end

Output: Vector of row indices ϕ = [ϕ1, . . . , ϕm]

Formalizing the algorithm, we observe that DEIM is essentially an oblique projector.

Figure 2.1 illustrates the intuition behind the DEIM oblique projector. As per [5,

Definition 3.1], the DEIM approximation of order m of the nonlinear term F(t) is

17

Figure 2.1: An example of the DEIM oblique projector onto the subspace V applied
to the vector F, in comparison to the orthogonal projection.

given by:

F̂(t) ≈ U(PT U)−1PT F(t),

where U = [u1, . . . , um] and P = [eϕ1 , . . . , eϕm] are results of the Algorithm 2.

Observe that applying PT from the left side yields

PT F̂(t) = PT F(t),

meaning that this projection, unlike the orthogonal projection, interpolates exactly at

some rows. Again, the obvious issue is the regularity of the matrix PT U at each step

of the DEIM algorithm. The following result [5, Lemma 3.2] together with its proof

serves to prove that regularity follows directly from the construction of the matrix P.

The step of choosing an index ϕi in the DEIM algorithm essentially looks like

[|ρi|, ϕi] = [max(|r|), ind max(|r|)].

The value | ρi | is omitted in the algorithm as it is not used directly. However, the

proof that PT U is in fact invertible will rely on proving that the value | ρi | is non-

zero at each step. Moreover, it will follow that the chosen indices are all unique, i.e.

∀i, j, i , j =⇒ ϕi , ϕ j. Prior to the main statement we provide a helpful property.

18

Lemma 2.2.1 Let x ∈ Rn and A ∈ Rn×k a matrix with linearly independent columns.

The best approximation of x in terms of Range(A) is given by

A(AT A)−1AT x.

Proof. Let x = y + z, where y ∈ Range(A) and z ∈ Ker(AT) = Range(A)⊥. This implies

that

A(AT A)−1AT x = A(AT A)−1AT (y + z) = A(AT A)−1AT y.

Since y ∈ Range(A) there exists a vector q such that y = Aq. This yields:

A(AT A)−1AT x = A(AT A)−1AT y = A(AT A)−1AT (Aq) = Aq = y.

�

Remark 2.2.2 Since the matrix A ∈ Rn×m is a matrix with linearly independent columns,

the Moore-Penrose inverse of A is given by (AT A)−1AT , meaning that the expression from

the statement above is AA†.

Theorem 2.2.3 Let f ∈ Rn be a vector and {u1, . . . , um} ⊂ R
n a set of orthonormal

vectors. Assume we have computed the DEIM approximation of order m, where m ≤ n, as

per the Algorithm 2, yielding U = [u1, . . . , um], P = [eϕ1 , . . . , eϕm] and the approximation

f̂ = U(PT U)−1PT f .

We denote by C = ‖(PT U)−1‖2 and ε∗(f) = ‖(I −UUT) f ‖2, where I represents the identity

matrix. The interpretation of ε∗ is the error of the best 2-norm approximation for f ,

from the space Range(U). An error bound is then given by

‖ f − f̂ ‖2 ≤ C ε∗(f),

Moreover, a bound for C is given by:

C ≤ (1 +
√

2n)m−1‖u1‖
−1
∞ .

Proof. Let f̂ be the DEIM approximation of order m for f . We denote by fU the best

19

approximation of f with respect to the space Range(U). Lemma 2.2.1 now yields

fU = U(UT U)−1UT f UT U=I
= UUT f .

We denote the DEIM projector by PD = U(PT U)−1PT =⇒ f̂ = PD f . Additionally, we

represent f = (f − fU) + fU and denote and w = f − fU , meaning f = w + fU . Now it

follows that

f̂ = PD f = PD(w + fU) = PDw + fU .

The term f − f̂ , for which we are trying to determine the bound, is then given by

f − f̂ = (w + fU) − (PDw + fU) = w − PDw = (I − PD)w,

which implies

‖ f − f̂ ‖2 = ‖(I − PD)w‖2 ≤ ‖I − PD‖2‖w‖2.

Observe that

‖w‖2 = ‖ f − fU‖2 = ‖ f − UUT f ‖2 = ‖(I − UUT) f ‖2 = ε∗(f),

which is the first term from the statement of the theorem. In the case of the second

term, we first prove that PD is a projector:

P2
D = [U(PT U)−1PT][U(PT U)−1PT] = U(PT U)−1PT = PD,

meaning that I − PD is a projector as well. Assuming PD , 0, I, and taking into

consideration that (due to column orthonormality) ‖U‖2 = ‖P‖2 = 1, it follows that

‖I − PD‖2 = ‖PD‖ ≤ ‖U‖2‖(PT U)−1‖2‖PT ‖2 = ‖(PT U)−1‖2 = C,

which completes the proof of the first statement of the theorem, i.e.

‖ f − f̂ ‖2 ≤ ‖I − PD‖2‖w‖2 ≤ ‖I − PD‖2 ε∗(f) ≤ Cε∗(f).

The next step of the proof is to establish the mentioned upper bound on C = ‖(PT U)−1‖2.

This is further justified by the fact that the term ε∗(f) in the bound does not depend

20

on the DEIM process. The analysis of each step of the DEIM algorithm is performed,

so as to prove the bound.

For each step of the algorithm k = 2, . . . ,m we introduce the following notation

Uk−1 = [u1, . . . , uk−1], , Pk−1 = [eϕ1 , . . . , eϕk−1],

Uk = [Uk−1 uk], , Pk = [Pk−1 eϕk].

Additionally, let Mk = PT
k Uk, meaning that in the first step of the algorithm, i.e. for

k = 1 we have

M1 = PT
1 U1 = eT

ϕ1
u1 =⇒ ‖M−1

1 ‖2 =
1

|eT
ϕ1

u1|

DEIM
=

1
‖u1‖∞

≥ 1,

meaning the norm ‖M−1
1 ‖2 is minimized by the DEIM algorithm. From here on, we

proceed with analysis for the algorithm steps k = 2, . . . ,m. For, starters, we introduce

some additional notation :

ak = pT
k Uk−1, ck = M−1

k−1PT
k−1uk, ρk = pT

k uk − aT
k ck,

and observe that |ρk| = ‖r‖∞, defined as the residual in the DEIM algorithm. We now

rewrite Mk as:

Mk = PT
k Uk =

 Mk−1 PT
k−1uk

pT
k Uk−1 pT

k uk

 =

Mk−1 0

aT ρ


I c

0 1

 ,
Finally, we rewrite the main matrix of interest M−1

k as

M−1
k =

 I −c

0 1


 M−1

k−1 0

− 1
ρk

aT
k

1
ρk

 =

 I −c

0 1


 I 0

− 1
ρk

aT
k

1
ρk


 M−1

k−1 0

0 1


=⇒ M−1

k =

( I 0

0 0

 +
1
|ρk|

 I −c

0 1


)  M−1

k−1 0

0 1

 .
This yields the bound

‖M−1
k ‖ ≤

(∥∥∥∥∥∥
 I 0

0 0


∥∥∥∥∥∥

2

+
1
|ρk|

∥∥∥∥∥∥
 I −c

0 1


∥∥∥∥∥∥

2

) ∥∥∥∥∥∥
 M−1

k−1 0

0 1


∥∥∥∥∥∥

2

.

21

As established earlier, the matrix Uk = [Uk−1 uk] is a matrix with orthonormal columns,

meaning that ‖x‖2 = ‖Ukx‖2. Applying this to the second term in the bracket we obtain

∥∥∥∥∥∥
 ck

−1

 [aT
k −1

] ∥∥∥∥∥∥
2

=

∥∥∥∥∥∥[Uk−1 uk]

 c

−1

 [aT
k −1

] ∥∥∥∥∥∥
2

≤ ‖Uk−1ck − u‖2 ‖ [aT
k 1] ‖2.

Taking into consideration that ‖ [aT
k 1] ‖2 =

√
1 + ‖ak‖

2
2 and applying the general in-

equality ‖x‖2 ≤
√

n‖x‖∞ yields

∥∥∥∥∥∥
 ck

−1

 [aT
k −1

] ∥∥∥∥∥∥
2

≤
√

2n ‖Uk−1ck − uk‖∞ =
√

2n |ρk|.

We now obtain the boundary for the norm of the matrix M−1
k as follows:

‖M−1
k ‖2 ≤

(
1 +

1
|ρk|
∗
√

2n |ρk|
)
‖M−1

k−1‖2
recursively
≤ (1 +

√
2n)k−1‖M−1

1 ‖2.

Ultimately, as previously established, ‖M−1
1 ‖2 = 1

‖u1‖∞
which implies

‖M−1
k ‖2 ≤ (1 +

√
2n)k−1 1

‖u1‖∞
,

which is exactly the boundary from the second statement of the theorem. �

Per [5] however, the bound in the theorem is rarely used as an a priori estimate since

it grows rather fast and it is therefore observed to be far too pessimistic in practice.

Finally, an important issue to consider is that the DEIM algorithm will depend on the

ordering of the columns in the snapshot matrix. These are some of the things which

determine the way forward for the DEIM approach.

2.3 Example

We demonstrate how the POD-DEIM method combination works on an artificial ex-

ample, and we later move on to the example from the beginning of the chapter. For

starters we consider an ODE system, created artificially to demonstrate the DEIM

method. The function F : Rn → Rn is given component-wise as

22

(
F(y1, . . . , yn)

)
i =


esin(xi+1) + 3

√
xi+1, i < n,

esin(x1) + 3
√

x1, i = n
.

Now we observe the system ∂
∂t y(t) = F

(
y(t)

)
. The function is selected as such, so that

the components depend on each other in order to better mimic the behaviour of an

actual ODE system. The dimension is set to n = 5 · 104 and the number of snapshots

is set to m = 103. Numerical rank is set to be chosen as the number of singular values

greater than tol = 10−10. The snapshot matrix rank turned out to be only 62. The

snapshots are chosen as the solutions of the system d
dt y = F

(
y(t)

)
, in the time interval

[1, 5].

Solutions and snapshots are calculated using the Runge-Kutta method. The final

error is evaluated as the infinity norm of the exact solution matrix x ∈ Rn×ntime and the

reduced model solution multiplied by the matrix Vk, as the original substitution was

x(t) = Vk y(t):

‖x(t) − Vk y(t)‖∞ = 1.0923 · e−9.

We plot the reduced model errors depending on the selected POD truncation rank in

the DEIM algorithm (the matrix U) values in the set {1, . . . , 25}, as shown in Figure

2.2.

There are essentially two POD processes to perform. The first one is needed to obtain

the matrix Vk which translates the high-order ODE system to a lower dimensional

system. The second one should yield the matrix U, needed to carry out the DEIM

algorithm for the nonlinear part of the system. In order to make calculations more

efficient, the snapshots are computed all at once. The solutions of the equation are

obtained by the Runge-Kutta method. Seeing as the method requires the evaluation

of f (t, y) at every step, the results are simply saved separately as the snapshots of f .

This naturally saves a lot on both memory and time.

2.4 Q-DEIM

A newer version of the DEIM algorithm given in [6] yields a significant improvement

in both the implementation and error bound. This algorithm, called Q-DEIM, es-

sentially consists of utilizing a QR decomposition of the snapshot matrix in order to

potentially improve the index choices. The goal of this subsection is to describe this

23

Figure 2.2: The errors when performing the DEIM process, depending on the POD
rank used to obtain the input matrix U in the DEIM process, i.e. the rank of the
reduced basis matrix used for DEIM (log scale)

method and provide a comparison with the DEIM method on the previously shown

example.

When the DEIM points {ϕ1, . . . , ϕm} are selected, the approximation does not depend

on the basis for Range(U). Let V = [v1, . . . , vm] be an alternative basis, which implies

that there exists a regular change-of-basis matrix Z ∈ Rm×m such that U = VZ. Now it

follows

U(PT U)−1PT F(t) = (VZ)(PT VZ)−1PT F(t) =

= VZZ−1(PT Z)−1PT F(t) =

= V(PT V)−1PT F(t).

(2.3)

However, the entire process does depend on the matrix U. This may obviously

present issues in the case of bad conditions due to e.g. clustered singular values.

These issues were the main driving force behind the development of the Q-DEIM

method. The main theorem [6, Theorem 2.1.] is presented below.

Theorem 2.4.1 Let m � n and U = [u1, . . . , um] ∈ Cn×m be a matrix with orthonor-

mal columns, meaning U∗U = Im. Let f ∈ Cn be an arbitrary vector. There exists an

24

algorithm to compute a selection operator P with complexity O(nm2) such that

C = ‖(PT U)−1‖ ≤
√

n − m + 1

√
4m + 6m − 1

3
,

whereas a full rank matrix U yields a bound

C = ‖(PT U)−1‖ ≤

√
n − m + 1
σmin(U)

√
4m + 6m − 1

3
,

Furthermore, the approximation error is bound as follows

‖ f − U(PT U)−1PT f ‖2 ≤
√

n O(2m)‖ f − UU∗ f ‖2.

Moreover, there exists a selection operator P∗ such that the approximation error is bound

as

‖ f − U(PT U)−1PT f ‖2 ≤
√

n
√

1 + m(n − m)‖ f − UU∗ f ‖2.

Finally, the selection operators do not change if we replace U by UΩ, for an arbitrary

unitary matrix Ω.

A constructive proof of this theorem may be found in [6]. In order to apply the

method in this framework, the selection matrix P used in the DEIM algorithm is

simply obtained in a different manner. By performing [Q,R,P] = qr(U’) and then

selecting m columns as PQDEIM = P(:, 1 : m) we keep the entire process intact, but

with a different selection matrix P. The performance of this improvement will be

demonstrated in the following chapter.

2.5 K-DEIM

The focal point of both DEIM and Q-DEIM was the way of choosing indices of rows

ϕ1, . . . , ϕm which we retain, for use in model reduction. A different approach to this

process is suggested in [12]. Let S denote the snapshot matrix for the nonlinear

function F. Observe now that the rows of S may be interpreted as trajectories of a

state with respect to time. This implies potentially similar behaviour to one another,

i.e. trajectories may be naturally grouped together. The method therefore consists

of applying clustering methods to the matrix S row-wise. More specifically, k-means

algorithm (going also by Lloyd’s algorithm, [13]) is suggested to be used in this

25

problem. This algorithm is then called K-DEIM. As k-means yields not only cluster

labels but also cluster centroids, a natural selection of the representative from each

cluster is provided as the member of the cluster closest to the centroid. Moreover,

the number of clusters is easily controlled, as opposed to using e.g. hierarchical

clustering algorithms.

A potential flaw of the k-means algorithm is the fact that it heavily depends on the

initial setting, i.e. it may yield a different clustering each time, if a somewhat random

starting position is used (the usual approach). A potential solution to this problem is

k-means++, given in [14], already implemented in MATLAB. It consists of a seeding

heuristic, for better control of the starting centroids. As per [14], the k-means++

enjoys better speed and accuracy, while introducing it results in an algorithm just as

fast as the original k-means. The example in the next chapter will be additionally

used to demonstrate how K-DEIM works compared to the previous methods.

26

3 Numerical Example

To sum up the conclusion from the previous chapters, we take a look at the motiva-

tional example for chapter 2, i.e. the Kolmogorov–Petrovsky–Piskunov equation. The

equation describes reaction-diffusion systems, namely population growth. We will

present the full model solution, as well as reduced model solutions using POD and

DEIM, together with its’ suggested improvements.

∂

∂t
u(t, x) − D

∂2

∂x2 u(t, x) = r u(t, x)
(
1 − u(t, x)

)
.

The constants are set to r = D = 1. Fixing a domain Ω = [a, b] and a time interval

[0,T], the problem equipped with Neumann boundary conditions is then given by


∂
∂t u −

∂2

∂x2 u = ru(1 − u), in Ω

∂
∂xu(t, a) = ∂

∂xu(t, b) = 0,

u(0, x) = e
−x+10

10 + 0.1.

(3.4)

We now select n equidistant points such that x0 = a < x1 < x2 < · · · < xn < xn+1 = b and

denote the step by δx. In this specific example, n is chosen to be 200. Applying the

semi-discretization, i.e. the method of lines (described in more detail in the Appendix)

we obtain the system of ordinary differential equations

d
dt

u =
1

(δx)2 Au + F(u), (3.5)

where

A =



−2 2 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 −2 1

0 . . . 0 0 2 2


, and F =

(
F(u1), . . . , F(un)

)
.

The highlighted elements of the matrix A are changed due to the Neumann boundary

conditions. The notation is left the same for simplicity, but u now represents

u(t) = (u1(t), u2(t), . . . , un(t)),

27

because of the discretization. The ODE system may now be solved with any number

of methods, here we choose the Runge-Kutta method. An example of a solution is

given in Figure 3.3. Moreover, in a standard method of lines for a linear PDE a

Figure 3.3: A full order solution of the system (3.5): observe that for any non-
negative initial conditions, the function eventually ends up being at the same value -
this may be interpreted as a guaranteed population growth, if there are any number
of non-negative individuals in the beginning

relevant value is the Courant’s number, whose value has implications on convergence.

Regarding the results for linear PDEs, it would be ideal if it was smaller than 1
2 . In

this case, we have

c =
δt
δx2 = 0.6644.

We compute the matrix of snapshots for dimension reduction, as well as the snapshots

of the nonlinear function for the DEIM process. Observe that the singular values of

both matrices drop extremely fast, seen in Figure 3.4.

We then set k = 5 and compute the matrix Vk and reduce the system using the POD

approach. In the next step we set m = 5 for DEIM reduction and compute the reduced

model solution. The Figure 3.5 shows the POD-DEIM and the POD-QDEIM solutions.

The errors when raising the solution back to the full dimension for k = m = 5 turned

out to be

e(uDEIM) = 0.0408, e(uDEIM) = 0.0397, e(uDEIM) = 0.0478,

28

Figure 3.4: 20 largest singular values of the snapshot matrices: left side for the main
model, right side for the snapshots of the nonlinear function for use in DEIM methods
(log scale)

Figure 3.5: Solutions when using DEIM(left) and QDEIM(right): virtually no differ-
ence is visible in regard to the FOM solution; outcome is the same for K-DEIM, which
is why it is omitted

and the errors for k = m = 6 :

e(uDEIM) = 0.0220 e(uDEIM) = 0.0220, e(uDEIM) = 0.0265,

The results of the clustering (i.e. how many points ended up in each cluster during

the K-DEIM algorithm) may also provide interesting conclusions:

29

Cluster Count Percent

1 20 10.00%

2 99 49.50%

3 36 18.00%

4 20 10.00%

5 25 12.50%

The second cluster contains almost half the trajectories, whereas the rest of them are

somewhat uniform.

It is worth noting that the problem was rather unstable, and small differences in

discretization parameters rendered it completely unsolvable, both by Runge-Kutta

method and the implemented functions in MATLAB.

Overall, all three approaches performed well and the solutions are quite satisfactory,

especially taking into consideration that the dimension of the system was reduced

from 200 to 5 or 6.

30

Appendices

Appendix A General Results

This appendix will contain several general results which the reader may already be

familiar with, but they are provided so as to achieve self-sufficiency.

A.1 Weak Formulation

Let H denote a Hilbert space, 〈 · , · 〉 the scalar product and ‖ · ‖ the induced norm.

Theorem 1. (Lax-Milgram) Let B : H×H ∈ R be a bilinear form, which is continuous

and coercive, i.e.:

∃µ > 0, ∀u, v ∈ H, |B(u, v)| ≤ µ‖u‖ ‖v‖,

∃α > 0 ∀u ∈ H, B(u, u) ≥ α‖u‖2.

Then, for each element of the dual space f ∈ H∗, there exists a unique element u ∈ H

such that

B(u, v) = f (v), v ∈ H.

Theorem 2. (Cea’s Lemma) Let H be a real Hilbert space and let A : H × H ∈ R be a

bilinear form, which is continuous and coercive. Let f : H → R be a bounded linear

operator, i.e. f ∈ H∗. The problem

find u ∈ H, B(u, v) = f (v), v ∈ H

has a unique solution as per the Lax-Milgram theorem. Let Hh ≤ H be a finite dimen-

sional subspace. Observe that the finite dimensional problem

find uh ∈ Hh, B(uh, v) = f (v), v ∈ Hh

has a unique solution as per the same theorem. Then it follows that uh is the best

approximation of u in the finite dimensional space Vh, up to the continuity and coer-

civity constants, i.e.

‖u − uh‖ ≤
γ

α
‖u − v‖, v ∈ Hh

31

A.2 Method of Lines

The method of lines is a numerical method for semi-discretization of partial differ-

ential equations, based on the notion of discretizing all variables except for a single

one. Afterwards, an appropriate ODE solving method may be used. The best way to

demonstrate the method is an example, so we consider the homogeneous version of

the problem studied in Chapter 3:

∂

∂t
u(t, x) −

∂2

∂x2 u(t, x) = 0, x ∈ [a, b].

The discretization with respect to x is performed by choosing a = x0 < x1 < · · · < xn =

b (e.g. an δx-equidistant grid) followed by the finite difference choice:

∂2

∂x2 u(t, xi) =
u(t, xi−1) − 2u(t, xi) + u(t, xi+1)

(δx)2 .

We introduce the notation ui(t) = u(t, xi). In order to obtain a final system, we need

to specify the boundary conditions. In the case of a Dirichlet boundary condition at

x = a:

u(t, a) = ba(t)

we observe that u0 = u(t, x0) = u(t, a) = ba(t) is no longer an unknown variable. This

means that the first equation

∂

∂t
u(t, x1) =

u0(t) − 2u1(t) + u2(t)
(δx)2

becomes
∂

∂t
u(t, xi) =

2u1(t) + u2(t)
(δx)2 +

ba(t)
(δx)2 .

On the other hand, in case of a Neumann condition like in the example from Chapter

3:
∂

∂x
u(t, a) = 0.

This means that the variable u0 = u(t, x0) = u(t, a) is no longer specified, meaning it

requires its’ own equation:

∂

∂t
u(t, x0) =

u−1(t) − 2u0(t) + u1(t)
(δx)2 .

32

The obvious issue is the point x−1 which lies outside of the domain [a, b]. Considering

a symmetric approach we obtain:

0 =
∂

∂x
u(t, 0) ≈

u1(t) − u−1(t)
2δx

+ O
(
(δx)2)

which motivates the choice u(t, y−1) ≈ u(t, y1). This means that the equation becomes

∂

∂t
u(t, x0) =

u−1(t) − 2u0(t) + u1(t)
(δx)2 =

−2u0(t) + 2u1(t)
(δx)2 .

Finally, we observe the system as it was in the example before, meaning that both

boundary conditions are Neumann type, yielding the following system



∂
∂t u0

∂
∂t u1

∂
∂t u2
...

∂
∂t un−1

∂
∂t un


=

1
(δx)2



−2 2 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 −2 1

0 . . . 0 0 2 2





u0

u1

u2
...

un−1

un


As discussed, this system may be solved by any available methods for solving systems

of ODEs. However, the system may be especially problematic as it depends on δx

not only in terms of multiplication by 1
(δx)2 , but in terms of the number of variables.

Therefore, it makes sense to do additional analysis when solving it.

33

Appendix B MATLAB Code

The function kpp envelopes the entire example presented in chapter 3. The model

is solved for the cases of the full model, POD-only reduced order model as well as

POD-DEIM and POD-QDEIM reduced order models.

function kpp(a, b, T, n, n_time, m, r, g)

% Function for solving the F-KPP equation

%% Input:

% a, b = space interval [a,b]

% T = time interval [0,T]

% n = number of points for x-discretization

% n_time = number of points for t-discretization

% m = POD system reduction dimension

% r = DEIM/QDEIM reduction dimension

% g = initial condition function

%% Space domain

x_vec = linspace(a,b,n);

dx = x_vec(2) - x_vec(1);

%% Time domain

time = linspace(0, T, n_time);

dt = time(2)-time(1);

c_number = dt/(dxˆ2)

%% Initial and Dirichlet conditions

u_0 = zeros(n,1);

for i = 1:n

u_0(i) = g(x_vec(i));

end

34

%% ODE System matrices

A = (-2 * eye(n) + diag(ones(n-1,1), -1) + diag(ones(n-1,1), 1));

A(1,2) = 2;

A(n,n-1)=2;

A = A * (1/(dx*dx));

b_temp = zeros(n,1);

b_fun = @(t) b_temp;

F_fun = @(t,x) f_nonlin(x);

%% Right-hand-side of the system

RHS = @(t,x) A*x + F_fun(t,x) + b_fun(t);

%% Solving ODE

u = rk4(RHS, time, u_0);

%% POD

Snapshots = u; % column wise snapshot vectors

[U_pod, S_pod, V_pod] = svd(Snapshots, 0);

V_k = U_pod(:, 1:r); % V_k dimension reduction matrix!

%% DEIM

Snapshots_nonlin = zeros(size(Snapshots));

% Compute nonlinear part snapshots

for i = 1:max(size(time))

Snapshots_nonlin(:, i) = F_fun(time(i), Snapshots(:,i));

end

[U_PD, S_PD, V_PD] = svd(Snapshots_nonlin, 0);

pod_basis_f = U_PD(:, 1:m);

35

phi = zeros(m, 1); %output

%[|rho|, phi_1] = max{|u|}

% phi = [phi_1, ..., phi_n]

[˜, phi(1)] = max(abs(pod_basis_f(:,1)));

%U = [u_1]

U = zeros(n, 1);

U(:, 1) = pod_basis_f(:, 1);

%P = [e_{phi_1}]

P = zeros(n, 1);

P(phi(1) ,1) = 1;

%for loop

for L = 2:m

u_l = pod_basis_f(:, L);

% solve for c

c = (P'*U)\(P'*u_l);

% residual r = u_L - Uc

res = u_l - U*c;

%[|rho|, phi_L] = max{|r|}

[˜, phi(L)] = max(abs(res));

% Save U and P

U(:, L) = u_l;

P(phi(L), L) = 1;

end

36

F_precomp_out = ((V_k)' * U) / ((P)' * U); % size = (r x m)

F_precomp_in = (P') * V_k; % size = (m x r)

A_precomp = (V_k)' * A * V_k; % size = (r x r)

% Define reduced model right-hand-side function

RHS_poddeim = @(t,x) A_precomp * x + ...

F_precomp_out * F_fun(t, F_precomp_in * x) + ...

(V_k') * b_fun(t);

u_0_poddeim = (V_k)' * u_0;

% DEIM SOLUTION:

u_poddeim = rk4(RHS_poddeim, time, u_0_poddeim);

%% QDEIM

[Qs, Rs, Ps] = qr(Snapshots_nonlin');

P_qdeim = Ps(:, 1:m);

%Solving by qdeim

F_precomp_out_q = ((V_k)' * U) / ((P_qdeim)' * U); % size = (r x m)

F_precomp_in_q = (P_qdeim') * V_k; % size = (m x r)

A_precomp_q = (V_k)' * A * V_k; % size = (r x r)

% Define reduced model right-hand-side function

RHS_qdeim = @(t,x) A_precomp_q * x + ...

F_precomp_out_q * F_fun(t, F_precomp_in_q * x) + ...

(V_k') * b_fun(t);

u_0_qdeim = (V_k)' * u_0;

%Q-DEIM SOLUTION:

u_qdeim = rk4(RHS_qdeim, time, u_0_qdeim);

%% K-DEIM

[idx, ˜, ˜, D] = kmeans(Snapshots_nonlin, m, 'OnlinePhase','on');

37

P_kdeim = zeros(n, m);

for i = 1:m

[˜, ind_min] = min(D(:,i));

P_kdeim(ind_min, i) = 1;

end

F_precomp_out_k = ((V_k)' * U)/((P_kdeim)' * U); % size = (r x m)

F_precomp_in_k = (P_kdeim') * V_k; % size = (m x r)

A_precomp_k = (V_k)' * A * V_k; % size = (r x r)

% Define reduced model right-hand-side function

RHS_kdeim = @(t,x) A_precomp_k * x + ...

F_precomp_out_k * F_fun(t, F_precomp_in_k * x) + ...

(V_k') * b_fun(t);

u_0_kdeim = (V_k)' * u_0;

% K-DEIM SOLUTION:

u_kdeim = rk4(RHS_kdeim, time, u_0_kdeim);

38

Bibliography

[1] Benjamin Stamm, Gianluigi Rozza, Jan S. Hesthaven: Certified Reduced Basis

Methods for Parametrized Partial Differential Equations, Springer, 2015

[2] Fredrik Bengzon, Mats G. Larson: The Finite Element Method: Theory, Imple-

mentation, and Applications, Springer, 2013

[3] Vladimir Buljak: Inverse Analyses with Model Reduction: Proper Orthogonal De-

composition in Structural Mechanics, Springer, 2011

[4] Sebastian Ullmann, Marko Rotkvic, Jens Lang: POD-Galerkin reduced-order

modeling with adaptive finite element snapshots, Journal of Computational

Physics Volume 325, Pages 244-258, 2016

[5] Saifon Chaturantabut, Danny C. Sorensen: Nonlinear Model Reduction via Dis-

crete Empirical Interpolation, SIAM J. Sci. Comput., 32(5), 2737–2764, 2010

[6] Zlatko Drmač, Serkan Gugercin: A New Selection Operator for the Discrete Empir-

ical Interpolation Method – improved a priori error bound and extensions, SIAM

Journal on Scientific Computing, Vol. 38, No. 2, pp. A631-A648, 2016

[7] Zlatko Drmač, Arvind K. Saibaba: The Discrete Empirical Interpolation Method:

Canonical Structure and Formulation in Weighted Inner Product Spaces, SIAM J.

Matrix Anal. Appl., 39(3), 1152–1180, 2018

[8] J. Nathan Kutz, Steven L. Brunton: Data-Driven Science and Engineering: Ma-

chine Learning, Dynamical Systems, and Control, Cambridge University Press,

2019

[9] J. Nathan Kutz, Steven L. Brunton: http://databookuw.com/

[10] Younes Chahlaoui, Paul Michel Van Dooren Benchmark Examples for Model Re-

duction of Linear Time-Invariant Dynamical Systems, Lecture Notes in Computa-

tional Science and Engineering, vol 45., Springer, 2005

[11] Andrei D. Polyanin, Valentin F. Zaitsev: Handbook of Nonlinear Partial Differen-

tial Equations, Second Edition, Chapman & Hall/CRC Press, 2012

39

[12] Benjamin Peherstorfer, Zlatko Drmač, Serkan Gugercin: Stabilizing discrete em-

pirical interpolation via randomized and deterministic oversampling, 2018

[13] Lloyd, Stuart P.: Least Squares Quantization in PCM, IEEE Trans. Inf. Theory, vol

28.,129-136, 1982

[14] David Arthur, Sergei Vassilvitskii: k-means++: The Advantages of Careful Seed-

ing, SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium

on Discrete algorithms, 1027–1035, 2007

[15] Evans, Lawrence C.: Partial Differential Equations, Graduate Studies in Mathe-

matics. 19 (2nd ed.). American Mathematical Society, 2010

[16] Quarteroni, Alfio, Valli, Alberto: Numerical Approximation of Partial Differential

Equations Springer, 1994

[17] Muruhan Rathinam and Linda Petzold: A New Look at Proper Orthogonal De-

composition SIAM Journal on Numerical Analysis, 2003

[18] Stefan Volkwein: Model Reduction Using Proper Orthogonal Decomposition Lec-

ture Notes, 2011

40

Sažetak

Redukcija dimenzije modela je ključan pristup rješavanju visokodimenzionalnih sus-

tava običnih i parcijalnih diferencijalnih jednadžbi. Kako potrebe za procesiranjem

velikih količina podataka koji rezultiraju u modelima visoke dimenzije rastu, ovaj

pristup, razumljivo, ostaje relevantan.

U ovom radu prezentirane su metode dobivanja reduciranih baza, s fokusom na POD

metodu. Pokazana je i njihova primjena na parametrizirane parcijalne diferencijalne

jednažbe. Problem na koji se nailazi u primjeni POD-a uključuje nelinearne parci-

jalne diferencijalne jednažbe, kojima se pristupa kombinacijom POD-a i diskretne

empirijske interpolacijske metode(DEIM). Pored njih, dane su i novije verzije DEIM

algoritma zvane Q-DEIM i K-DEIM, unutar kojih se, redom, koriste QR dekompozicija

i metode klasteriranja. Numerički eksperimenti pokazali su učikovitost ovih pristupa

na sintetičke i stvarne probleme, posebno na FKPP jednadžbu, vrlo važnu u biologiji.

Potencijalno neočekivani rezultati ukazuju na to da se modeli čija je dimenzija u

stotinama ili tisućama mogu dovoljno točno reprezentirati sistemima od svega neko-

liko jednadžbi. Ipak, metode prezentirane u ovom radu obuhvaćaju samo maleni dio

ogromnog spektra metoda za redukciju dimenzije modela.

41

Summary

Model order reduction is an integral approach to solving high-dimensional systems of

ordinary and partial differential equations. As the needs for processing large amounts

of data, resulting in high-order models, are only increasing, this approach will un-

derstandably stay relevant.

Reduced basis methods are discussed, with the focus being on the proper orthog-

onal decomposition (POD). Their applications to parametric PDEs are presented as

well. The encountered issue in this approach involves nonlinear systems, which are

instead tackled by a combination of POD and the discrete empirical interpolation

method (DEIM). Alongside them, newer versions of the DEIM algorithm are pre-

sented, namely the Q-DEIM and K-DEIM, which consist of utilizing the QR decompo-

sition and clustering methods, respectively. Numerical experiments have shown the

effectiveness of these approaches, to both synthetic and real-life problems, notably

the FKPP equation, which is very important in biology. The potentially surprising

results indicate that models whose dimensions are in hundreds or thousands may be

accurately represented by systems of only several equations. However, the methods

presented here encompass only a small part of the plethora of model order reduction

methods.

42

Curriculum Vitae

Domagoj Bošnjak was born on March 17th, 1998 in Mostar, Bosnia and Herzegovina.

He attended both elementary and high school in Široki Brijeg. In 2016 he began his

undergraduate studies at the Department of Mathematics, Faculty of Science at the

University of Zagreb, finishing in 2019. Immediately afterwards, he started graduate

studies in Applied Mathematics at the same department.

43

