
Object tracking algorithms

Pavlinić, Nikola

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:699699

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-11

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:699699
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:9841
https://repozitorij.unizg.hr/islandora/object/pmf:9841
https://dabar.srce.hr/islandora/object/pmf:9841


Object tracking algorithms

Pavlinić, Nikola

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:699699

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2022-11-11

Repository / Repozitorij:

Repository of Faculty of Science - University of 
Zagreb



UNIVERSITY OF ZAGREB
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Nikola Pavlinić

Object tracking algorithms

Master thesis

Mentor:
Prof.Dr.Sc.Bojan Basrak

Zagreb, July 2021.



This master thesis was defended on in front of an ex-
amination commission composed of:

1. , president

2. , member

3. , member

The committee evaluated the thesis with a grade .

Signatures of committee members:

1.

2.

3.



I dedicate this master thesis to my parents and my family. I would like to thank Prof.Dr.Sc.
Bojan Basrak and Dr.Sc. Drago Špoljarić for their advices and suggestions.



Contents
1 Introduction 1

2 Recursive Bayesian solution 1
2.1 Application to object tracking . . . . . . . . . . . . . . . . . . . . . . . 2

3 Object dynamics and measurement equations 3

4 The Kalman filter 5
4.1 Simple example of the Kalman filter . . . . . . . . . . . . . . . . . . . . 5
4.2 Derivation of the Kalman filter . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . 9

5 The Point mass filter 10
5.1 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . . . . . 11

6 The particle filter 12
6.1 Importance sampling and sequential importance sampling . . . . . . . . . 12
6.2 The basic particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 The bootstrap filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.4 The auxiliary bootstrap filter . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Implementation of Kalman filter in R 16
7.1 Differences in filter estimation of position and speed and actual position

and speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A R code 26

References 30



1 INTRODUCTION 1

1 Introduction
Nowadays, object tracking technology is in various aspects of our lives. One of the first ap-
plications was in military purpose, but now we use it for surveillance, monitoring, science in
every day life. Object tracking technology is used in GPS-based navigation, aircraft radars,
weather monitoring and video surveillance. We need different kinds of sensors to apply the
tracking algorithms, so we are interested in sensors outputs. In this master thesis, we will
introduce three well-known object tracking algorithms, Kalman filter, point mass filter and
particle filter. We will also consider the advantages and disadvantages of each filter and
present the implementation of Kalman filter in R programming language. Since all three
methods are based on recursive Bayesian logic we will start with the recursive Bayesian
solution. We also note that the main literature in the thesis is the book Fundamentals of
object tracking, S. Challa, M. R. Morelande, D. Mušicki, R. J. Evans [1].

2 Recursive Bayesian solution
First, we give a definition of the conditional probability of event A given observation of
event B.

Definition 1. Let A and B be two related events, the conditional probability of event A
given observation of event B is

P(A|B) =
P(A,B)

P(B)
. (1)

Using (1) twice, Bayes’ theorem [9] can be written as

P(A|B) =
P(B|A)P(A)

P(B)
. (2)

If X and Y are two continuous random variables with densities functions p(x) and p(y),
respectively, Bayes’ theorem can be written as follows [8]:

p(x|y) =
p(y|x)p(x)

p(y)
, (3)

where p(x|y) is the conditional density function of X given the value of Y , and p(y|x) is
the conditional density function of Y given the value of X .

Let x be a random variable of interest, for example the state of the object, and y be mea-
surement related to x, such as different types of sensors outputs. We want to use measure-
ment y related to x to update our current knowledge about x. We represent our knowledge
about x with a continuous or discrete density function p(x), depending on whether x takes
continuous or discrete values. We update p(x) with new sensor outputs y by p(x|y) as in
the assertion of Bayes’ theorem (3). Now we can see that for a fixed y, p(x) is altered by
p(y|x) to become p(x|y). Once y is known, p(y) is the same for all x values, so we can



2.1 Application to object tracking 2

ignore the effect of p(y). The term L(x) = p(y|x) viewed as a function of x is called the
likelihood function. We can write p(x|y) ≈ p(y|x)p(x). Considering p(y) as a function of
x, p(y) is constant and is called the normalization constant or normalization factor, which
ensures that p(x|y) sums up or integrates to 1 as a function of x. The initial distribution
p(x) is called the prior distribution and p(x|y) is called the posterior distribution, which is
the new distribution of x.

2.1 Application to object tracking
Let yk = (y1, y2, ..., yk), where yi is the measurement at time i, i ∈ {1, 2, ..., k}, are the
sensor outputs. Bayes’ theorem (2) derives p(Sk|yk) as

p(Sk|yk) =
p(yk|Sk)p(Sk)

p(yk)
, (4)

where p(Sk) = p(Sk, Sk−1, ..., S0) is the joint probability density function, and Sk denotes
a generic object state representing the single-object or multiple-object states, or the num-
ber of objects, or the identity of an object, or a combination of them at time k. The prior
distribution of Sk is p(Sk). The conditional probability distribution p(Sk|yk) is the poste-
rior distribution of the object state, that is, the object state after the measured values yk are
obtained. The likelihood function is p(yk|Sk) and p(yk) is the normalization factor that en-
sures that the resulting probability distribution p(Sk|yk) satisfies the axioms of probability
and sums up to 1. The Bayesian solution (4) can be extended to a recursive solution. The
term yk can be written as yk = (yk, yk−1). Now we can rewrite the terms in (4) using (1)
as follows:

p(yk|Sk) = p(yk, yk−1|Sk) = p(yk|yk−1, Sk)p(yk−1|Sk),

where p(yk−1|Sk) = p(yk−1|Sk−1), because the measurements at time k − 1 do not depend
on the object state at times greater than k − 1. Now follows:

p(yk|Sk) = p(yk|yk−1, Sk)p(yk−1|Sk−1),

p(Sk) = p(Sk, Sk−1) = p(Sk|Sk−1)p(Sk−1),

p(yk) = p(yk, yk−1) = p(yk|yk−1)p(yk−1).

Substituting those terms in (4) we end up with the recursive form of the Bayesian solution:

p(Sk|yk) =
p(yk|yk−1, Sk)p(Sk|Sk−1)

p(yk|yk−1)
p(Sk−1|yk−1), (5)

where p(Sk−1|yk−1) =
p(yk−1|Sk−1)p(Sk−1)

p(yk−1)
. We can simplify the measurement likelihood

function p(yk|yk−1, Sk) to p(yk|Sk) under the assumption that measurements at a given time
depend only on the object states at the corresponding time and are conditionally independent



3 OBJECT DYNAMICS AND MEASUREMENT EQUATIONS 3

of measurements at other times, and that they depend only on the current states of the
objects via Sk and not on its entire sequence of states. The majority of systems obey the
Markov property, where the current state does not depend on previous states given the last
state. This means that Sk depends only on Sk−1 and not on (Sk−2, ..., S0). Consequently,
p(Sk|Sk−1) = p(Sk|Sk−1), which brings us to the recursive form of the Bayesian solution
to the object tracking problem:

p(Sk|yk) =
p(yk|Sk)

p(yk|yk−1)
p(Sk|Sk−1)p(Sk−1|yk−1). (6)

The recursive Bayesian solution (6) yields the posterior conditional distribution p(Sk|yk)
at time k, after obtaining the last measurement yk. Our interest is to know the sequence of
objects and their states, and to know the number of objects and their states at a certain time
k. Therefore, we will use the recursive Bayesian solution to derive the state conditional
density:

p(Sk|yk) =

∫

Sk−1

...

∫

S0

p(Sk|yk) dS0...dSk−1.

Applying (6) to the above equation gives:

p(Sk|yk) =
p(yk|Sk)

p(yk|yk−1)

∫

Sk−1

...

∫

S0

p(Sk|Sk−1)p(Sk−1|yk−1) dS0...dSk−1,

where we simplify the integrals
∫

Sk−2

...
∫

S0

p(Sk−1|yk−1) dS0...dSk−2 to p(Sk−1|yk−1), be-
cause of the fact that p(Sk−1|yk−1) = p(Sk−1, Sk−2|yk−1), leading to the state conditional
density:

p(Sk|yk) =
p(yk|Sk)

p(yk|yk−1)

∫

Sk−1

p(Sk|Sk−1)p(Sk−1|yk−1)dSk−1. (7)

The integral
∫

Sk−1

p(Sk|Sk−1)p(Sk−1|yk−1)dSk−1 is the Chapman - Kolmogorov equation.
Solving the recursive relation in (7) is the core of solving object tracking problems and
most object tracking algorithms compute or attempt to approximate (7).

3 Object dynamics and measurement equations
Let xk ∈ R

nx denote the object state at time k, where nx denotes the dimensionality of the
object state at time k. The object dynamics are modeled by a stohastic difference equation
xk = g(xk−1, vk), which defines the prior density for the object state, where g : Rnx ×

R
nv → R

nx is C2 continuous and vk is a random noise input to the system. Object tracking
algorithms usually assume an additive noise assumption for the object dynamics equation,
leading to an equation

xk = f(xk−1) + vk. (8)



3 OBJECT DYNAMICS AND MEASUREMENT EQUATIONS 4

The inverse of the function g(xk−1, vk) = f(xk−1) + vk of the object dynamics equation is
g−1(xk, xk−1) = xk − f(xk−1). Furthermore, the transition density function is

p(xk|xk−1) = pvk(g−1(xk, xk−1))|∇xkg−1(xk, xk−1)| = pvk(xk − f(xk−1)), (9)

where pvk is posterior density function of vk.
Let yk ∈ R

ny denote the observed measurement at time k, where ny denotes the dimen-
sionality of the observed measurement at time k. Usually we describe sensors for object
tracking with sensor models of the form yk = l(xk,wk), where l : Rnx ×R

nw → R
ny is C2

continuous and wk is a random variable modeling the measurement error. The likelihood
function p(yk|xk) is derived from the sensor measurement equation. If the object dynam-
ics equation g and the measurement equation l are linear and the random variables vk and
wk are Gaussian, which means they are normally distributed, the posterior density of xk is
Gaussian and can be found using the Kalman filter. Just as with additive noise assumption
for the object dynamics equation, we have an additive assumption for the measurement
noise, resaulting in an equation

yk = h(xk) + wk. (10)

The inverse of the function l(xk,wk) = h(xk) + wk of the measurement equation is
l−1(yk, xk) = yk − h(xk). Furthermore, the likelihood function is

p(yk|xk) = pwk
(l−1(yk, xk))|∇yk l

−1(yk, xk)| = pwk
(yk − h(xk)), (11)

where pwk
is posterior density function of wk.

The transition density function p(xk|xk−1) and the likelihood function p(yk|xk) are used for
the recursive estimation of the conditional density function:

p(xk|yk) =
p(yk|xk)

p(yk|yk−1)

∫

xk−1

p(xk|xk−1)p(xk−1|yk−1)dxk−1. (12)

Substituting the transition density (9) and the likelihood function (11) in (12), the posterior
density p(xk|yk) of object state is

p(xk|yk) =
pwk

(yk − h(xk))
∫

pvk(xk − f(xk−1))p(xk−1|yk−1)dxk−1
∫

pwk
(yk − h(xk))p(xk|yk−1)dxk

, (13)

where p(xk|yk−1) =
∫

pvk(xk − f(xk−1))p(xk−1|yk−1)dxk−1. The Bayesian approach to
non - maneuvering object tracking is summarized in equation (13). It consists of two steps.
The first step is the prediction step and the second step is the filtering step. The prediction
step uses p(xk−1|yk−1), which is the conditional density at time k − 1, and the Chapman-
Kolmogorov equation to form the predicted density p(xk|yk−1). The predicted density con-
tains the current information about xk up to and including time k − 1, before the new in-
formation yk is included. In the filtering step, the new information yk is passed through
the likelihood function(11) to form the filtering distribution p(xk|yk). This is the beginning



4 THE KALMAN FILTER 5

for our three filters, there are only differences in the assumptions used in the evaluation of
(13). Here are assumptions we will use in deriving the Kalman filter:
i) The object dynamics and measurement equations are linear:

xk = Fxk−1 + vk, (14)

yk = Hxk + wk. (15)

ii) vk and wk are white, uncorrelated, Gaussian noise sequences with zero mean and covari-
ance Qk and Rk respectively.
iii) The posterior density of the object state p(xk−1|yk−1) at time k − 1 is Gaussian with
mean x̂k−1|k−1 and covariance Pk−1|k−1.

4 The Kalman filter
One of the first mathematicians who was developing Kalman filter was Rudolf Emil Kálmán
(1930. - 2016.)1 and the filter is named after him. He was not the only mathematician who
studied Kalman filter. There was also Peter Swerling (1929. - 2000.)2 who anticipated the
development of the filter. Kalman filter was used in navigation computers in NASAApollo
program.

4.1 Simple example of the Kalman filter
Example 4.1. Consider a train moving at a constant speed on the railway without ma-
neuvering. In this case, the train moves in one dimension. Let xk be its one-dimensional
position and ẋk its speed at time tk, k = 1, 2, 3... The state of the train is represented by
the two-dimensional vector xk = [xk, ẋk]

T . Under the assumptions in the example, we can
write the position of the train xk at time tk in terms of position and speed at time tk−1:

xk = xk−1 + ẋk−1T, (16)

where T = tk−tk−1 is the interval between measurements and is assumed to be constant for
all k. Assuming constant train speed we notice ẋk = ẋk−1. Therefore, the object dynamics
equation is:

xk = Fxk−1 + vk, (17)

whereF =

[

1 T

0 1

]

and vk is Gaussian noise with zeromean and covarianceQk. The sensor

provides measurements of the object position embedded in zero-mean additive Gaussian
1Hungarian-American electrical engineer and mathematician
2American mathematician and economist



4.1 Simple example of the Kalman filter 6

noise at times tk = 1, 2, 3, ... The measurement equation is:

yk = Hxk + wk, (18)

where H =
[

1 0
]

and wk is Gaussian noise with zero mean and covariance Rk.

We will first consider how we formed the object dynamic equation (17) and the transi-
tion matrix F. For this purpose we will use the train position xk at time tk as well as the
assumption of a constant speed, ẋk = ẋk−1, for all k, which gives us the equations:

xk = xk−1 + ẋk−1T,

ẋk = ẋk−1.

We can also write these equations in matrix form:
[

xk

ẋk

]

=

[

1 T

0 1

] [

xk−1

ẋk−1

]

.

By comparing the equations in matrix form with (14), we can see that F =

[

1 T

0 1

]

. Al-

though we cannot know the actual train position xk, the Kalman filter algorithm provides
an estimated train position x̂k at time k. The Kalman filter is based on Gaussian probabil-
ity density functions, and therefore we need to know the variances and covariances of the
multivariate normal distribution or the normal distribution stored in the covariance matrix
Pk. To illustrate, the matrix Pk in Example 4.1 can be initialized to P0 =

[

32 0
0 102

]

, where

32 is the variance of the train position, meaning that we are confident in our initial estimate
of the train position for a drift of 3m, and 102 is the variance of the train speed, meaning
that we are not too confident in our initial estimate of the train speed for a drift of 10m/s.

The Kalman filter algorithm consists of two steps, prediction and measurement update.
The filter equations for the prediction step are:

x̂k|k−1 = Ftx̂k−1|k−1,

Pk|k−1 = FkPk−1|k−1Ft
k + Qk,

where Qk is the process noise covariance matrix. The filter equations for the measurement
update step are:

x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1),

Pk|k = Pk|k−1 − KkHkPk|k−1,

where Kk = Pk|k−1Ht
k(HkPk|k−1Ht

k + Rk)
−1 is called the Kalman gain.

For each measurement obtained, we want to know the best estimate of the train position.
We obtain information from predictions based on the last known position and speed of the
train, and from measurements. To achieve the best approximation, we use both prediction



4.2 Derivation of the Kalman filter 7

based on last known position and measurements together. Consider this in the following
example. At time k = 0, we have an estimated state where the train position is given by
a Gaussian probability density function. At the next time k = 1, we can estimate the new
train position based on the train position and speed at time k = 0. The train position at
time k = 1 is represented by a new Gaussian probability density function with new mean
and variance. We also take a measurement of train position at time k = 1, which is also
represented by another Gaussian probability density function. Now we use our knowledge
from the prediction and the measurement for the best estimate of the train position. Mathe-
matically, this means that we multiply the two corresponding Gaussian probability density
functions together. In doing so, we take advantage of the fact that the product of two Gaus-
sian densities is a Gaussian demsity and the product represents our best estimate of the train
position.

In implementing the Example 4.1, we will specify the initial starting point and the co-
variance matrix, but we will discuss this in more detail in the final chapter.

4.2 Derivation of the Kalman filter
In deriving the Kalman filter we must use all three assumptions i), ii), iii). We will now
use the following theorem, known as the Gaussian product, to derive the Kalman filter [1,
Theorem 2.1, 27. page].

Theorem 2. For x1,µ1∈ R
d1 ,H ∈ R

d2×d1 , x2 ∈ R
d2 , postive definite matrices P1,P2,

X1 ∼ N(Hx1,P2), X2 ∼ N(µ1,P1), X3 ∼ N(Hµ1,P3) and X4 ∼ N(µ,P)

fX1
(x2) · fX2

(x1) = fX3
(x2) · fX4

(x1), (19)

where fX1
, fX2

, fX3
, fX4

are probability density functions of X1, X2, X3 and X4, respec-
tively and P3 = HP1HT + P2, µ = µ1 + K(x2 −Hµ1), P = P1 + KHP1, K = P1HTP−1

3 .

Using (9), the transition density is:

p(xk|xk−1) = fX1
(xk), (20)

where sX1
(xk) is probability density function of X1 ∼ N(Fxk−1,Qk) and Qk is covari-

ance matrix. The posterior density of the object state at time k − 1 is Gaussian so that
p(xk−1|yk−1) = fX2

(xk), fX2
(xk) is probability density function of

X2 ∼ N(x̂k−1|k−1,Pk−1|k−1). The predicted density is

p(xk|yk−1) =

∫

fX1
(xk)fX2

(xk)dxk−1. (21)

Applying Theorem (2) to (21) gives

p(xk|yk−1) = fX2
(xk), (22)

where x̂k|k−1 = Fx̂k−1|k−1 and Pk|k−1 = FPk−1|k−1FT + Qk. The prediction density is
Gaussian if the posterior density at time k− 1 is Gaussian and the object dynamic equation



4.2 Derivation of the Kalman filter 8

is linear/Gaussian which is shown in (22). This is the standard Kalman filter prediction and
its pseudofunction is:

[x̂k|k−1,Pk|k−1] = KFP [x̂k−1|k−1,Pk−1|k−1,F,Q], (23)

where x̂k|k−1 and Pk|k−1 are the same as in (22).
Let’s see what it would be the likelihood function and normalization factor. The likelihood
function is p(yk|xk) = fY1

(yk), where we use (11), fact that pwk
is a Gaussian density

with zero mean and covariance Rk and fY1
(yk) is probability density function of Y1 ∼

N(Hxk,Rk). We can found the normalization factor using Theorem 2:

p(yk|yk−1) = fY2
(yk), (24)

where fY2
(yk) is probability density function of Y2 ∼ N(ŷk|k−1, Sk), ŷk|k−1 = Hx̂k|k−1

and Sk = HPk|k−1HT + Rk. With this operation we get the mean and covariance of the
object measurement predicted probability density function and its pseudofunction is:

[ŷk|k−1, Sk|k−1] = MP [x̂k|k−1,Pk|k−1,H,R], (25)

defined by ŷk|k−1 = Hx̂k|k−1 and Sk = HPk|k−1HT + R.
Using 12, the conditional density function can be found as:

p(xk|yk) =
fY1

(yk)fX2
(xk)

fY2
(yk)

. (26)

Applying Theorem 2 on 26 gives:

p(xk|yk) = fX3
(xk), (27)

where

fX3
is probability density function of X3 ∼ N(x̂k|k,Pk|k),

x̂k|k = x̂k|k−1 + Pk|k−1HTS−1
k (yk − ŷk|k−1),

Pk|k = Pk|k−1 − Pk|k−1HTS−1
k HPk|k−1.

Final step is to define the Kalman filter estimation pseudo-function:

[x̂k|k,Pk|k] = KFE[y, x̂k|k−1,Pk|k−1,H,R], (28)

defined by:
[ŷk|k−1, Sk] = MP [x̂k|k−1,Pk|k−1,H,R],

Kk = Pk|k−1HTS−1
k ,

x̂k|k = x̂k|k−1 + Kk(y − ŷk|k−1),



4.3 Advantages and disadvantages 9

Pk|k = Pk|k−1 − KkHkPk|k−1.

We can now list the three steps of the Kalman filter [1]:
1. Compute the predicted mean an covariance matrix:

x̂k|k−1 = Fx̂k−1|k−1,

Pk|k−1 = FPk−1|k−1FT + Qk.

2. Compute the predicted measurement, innovation covariance matrix and Kalman gain:

ŷk|k−1 = Hx̂k|k−1,

Sk = HPk|k−1HT + Rk,

Kk = Pk|k−1HTS−1
k .

3. Compute the posterior mean and covariance matrix:

x̂k|k = x̂k|k−1 + Kk(y − ŷk|k−1),

Pk|k = Pk|k−1 − KkHkPk|k−1.

4.3 Advantages and disadvantages
If all three assumptions of the Kalman filter are satisfied, we can obtain a very good estimate
despite the uncertainty due to noisy sensor data. Moreover, the Kalman filter recursively
computes the posterior mean and covariance matrix as measurements are acquired. It is
this recursive structure that allows real-time execution without storing observations or past
estimates.
The main drawback of the Kalman filter is that it is only applicable when three assump-
tions are met. However, the assumption of linear dynamic and measurement equations is
unsatisfied in most tracking problems. For this reason, we have an algorithm which can be
derived only under assumptions ii.) and iii.), which is called the extended Kalman filter.
We also have an alternative algorithm to the extended Kalman filter, the unscented Kalman
filter. The unscented Kalman filter has the same computational complexity as the extended
Kalman filter, but performs better in most cases.



5 THE POINT MASS FILTER 10

5 The Point mass filter
Unlike the Kalman filter, we do not need assumptions for the Kalman filter to derive the
point mass filter. To use the point mass filter, we need advanced or high-tech computers to
achieve higher accuracy in the numerical approximation of the posterior probability density
function.
At time k − 1, a region of state space is partitioned into n hyper-cubes of equal volume.
Let xi

k−1 denote the center of the cube i, i ∈ {1, 2, ..., n}. Each hyper-cube is associated
with a weight wi

k−1|k−1, i ∈ {1, 2, ...n}, where wi
k−1|k−1 sums up to one as i goes from

0 to n. Hyper-cubes and weights together form a discrete approximation to the posterior
probability density function at time k − 1:

p(xk−1|yk−1) ≈
n

∑

i=1

wi
k−1|k−1δ(xk−1 − xi

k−1). (29)

Let denote the object dynamics wtih:

xk = f(xk−1) + vk, (30)

where vk is additive noise. The transition density is p(xk|xk−1) = pvk(xk − f(xk−1)). Us-
ing transition density and the Chapman-Kolmogorov equation we can found the prediciton
density:

p(xk|yk−1) =

∫

pvk(xk − f(xk−1))p(xk−1|yk−1)dxk−1. (31)

Substituting (29) into (31) gives:

p(xk|yk−1) ≈
n

∑

i=1

wi
k−1|k−1pvk(xk − f(xk−1)). (32)

A finite-dimensional representation of the prediction density is obtained by partitioning a
region of the state space into n hyper-cubes of equal volume. It is not necessary to use the
same number of points at each time, although this is done here for notational convenience.
Let xi

k denote the center of the i th hyper-cube for i = 1, ..., n. Then the point mass filter
approximation to the prediction density is:

p(xk|yk−1) ≈
n

∑

i=1

wi
k|k−1δ(xk − xi

k), (33)

where

wi
k|k−1 =

n
∑

j=1

w
j

k−1|k−1pvk(xi
k − f(xj

k−1)), i = 1, ..., n. (34)

Measurement equation has the same form as (10), where wk is additive noise and the like-
lihood function of xk has the same form as (11). We can expand the normalization factor
p(yk|yk−1) as:

p(yk|yk−1) =

∫

pwk
(yk − h(xk))p(xk|yk−1)dxk. (35)



5.1 Advantages and disadvantages 11

Using (33) in (35) gives the point mass filter approximation to the normalizing factor:

p(yk|yk−1) ≈
n

∑

i=1

wi
k|k−1pwk

(yk − h(xi
k−1)). (36)

Now we can compute the point mass filter approximation to the posterior probability density
function at time k using (33), the likelihood function and (36) in (13):

p(xk|yk) ≈
n

∑

i=1

wi
k|kδ(xk − xi

k), (37)

where

wi
k|k = wi

k|k−1pwk
(yk − h(xi

k−1))/
n

∑

j=1

w
j

k|k−1pwk
(yk − h(xj

k)), (38)

where i = 1, ..., n.
In the end we can obtain a point estimate of the state as:

x̂k|k =
n

∑

i=1

wi
k|kxi

k. (39)

Based on this analysis we list the point mass filter algorithm [1]:
1. Select grid points:

x1
k, ..., xn

k .

2. Compute the weights for prediction density:

wi
k|k−1 =

n
∑

j=1

w
j

k−1|k−1pvk(xi
k − f(xj

k−1)), i = 1, ..., n.

3. Compute the weights for posterior probability density function at time k, i = 1, ..., n :

wi
k|k = wi

k|k−1pwk
(yk − h(xi

k−1))/
n

∑

j=1

w
j

k|k−1pwk
(yk − h(xj

k)).

4. Compute a state estimate:

x̂k|k =
n

∑

i=1

wi
k|kxi

k.

5.1 Advantages and disadvantages
Unlike the Kalman filter, the point mass filter does not require any of the three assumptions.
This allows its application to nonlinear dynamic and measurement equations. The point
mass filter achieves higher accuracy by obtaining a discrete approximation of the posterior
probability density function. Achieving higher accuracy in this way requires significant



6 THE PARTICLE FILTER 12

computer resources, which is the main drawback of the point mass filter. The second step
of the point mass filter algorithm computes the weights of the prediction probability den-
sity function which requires n2 operations. Kramer and Sorenson reduced the complexity
in the second step by using the fast Fourier transform, which results in O(nlog(n)) op-
erations. Another computational problem is that the number of grid points required for a
certain level of accuracy increases exponentially with the dimension of the state, leading
to a relative approximation error of O(n−1/nx). In addition to computational complexity,
another problem is the selection of the grid points for the approximation of the posterior
probability density function. The grid must include all regions of interest and exclude the
regions of no interest. The problem is that we do not know doubtless which regions are of
interest.

6 The particle filter
The term particle filter was first used in 1996. by Del Moral, who was studying fluid me-
chanics. Particle filtering uses a set of samples (particles) to represent the posterior distri-
bution of the stochastic process, given noisy and/or partial observations. To use the particle
filter, we do not need a linear state-space model and the noise distributions do not neces-
sarily have to be normal. Therefore, it is superior to the Kalman filter. Compared to the
point mass filter, the particle filter is easier to implement because it is no longer necessary
to establish rules for determining the grid points. Also, the computational complexity is
lower since the error convergence does not depend on the dimension of the state as in the
point mass filter. Since the basic particle filter is formulated with sequential importance
sampling, it is discussed in the following subsection.

6.1 Importance sampling and sequential importance sampling
Importance sampling is a Monte Carlo method that forms a sample-based approximation.
Samples are taken from the proposed distribution. The approximation uses weights to en-
sure the best result. We will compute the expectation of the generic function ht, which we
will consider as a test function with respect to the target distribution γt:

γt(ht) := Eγt [ht(x1:t)]. (40)

To make the calculation easier, we will rewrite the equation (40) as:

Eγt [ht(x1:t)] =
1

Zt

Eqt

[

γ̃t(x1:t)

qt(x1:t)
ht(x1:t)

]

=

Eqt

[

γ̃t(x1:t)

qt(x1:t)
ht(x1:t)

]

Eqt

[

γ̃t(x1:t)

qt(x1:t)

] , (41)

where Zt is normalization constant, γ̃t unnormalized target distribution, and qt is the pro-
posal distribution. Now we will estimate right-hand side of (41) using the Monte Carlo



6.1 Importance sampling and sequential importance sampling 13

method:

Eγt [ht(x1:t)] ≈
1
N

∑N

i=1 w̃t(x
i
1:t)ht(x

i
1:t))

1
N

∑N

j=1 w̃t(x
j
1:t)

, (42)

where w̃t(x1:t) =
γ̃t(x1:t)

qt(x1:t)
, xi

1:t are simulated independent and identically distributed ran-

dom variables (iid) from qt, and N is the number of the samples. Estimation (42) is usually
written more compactly as:

Eγt [ht(x1:t)] ≈
N
∑

i=1

wi
tht(x

i
1:t), xi

1:t
idd
∼ qt, (43)

where the normalized weights wi
t are defined by

wi
t :=

w̃i
t

∑

j w̃
j
t

,

where w̃i
t is a shorter note for w̃t(x

i
1:t). As the number of samples N tends to infinity,

the estimate (43) converges to the true expectation. On the other hand, we can consider
importance sampling as an approximation of γt:

γt(x1:t) ≈
N
∑

i=1

wi
tδxi

1:t
(x1:t) =: γ̂t(x1:t),

where δX denotes the Dirac measure at X . Importance sampling also provides an approxi-
mation to the normalization constant Zt:

Zt ≈
1

N

N
∑

i=1

w̃i
t =: Ẑt. (44)

The weights are random variables due to the dependence on the random samples xi
1:t. The

normalization constant Zt is unbiased, as can be seen from the fact that xi
1:t are iid draws

from qt and accordingly:

E[Ẑt] =
1

N

N
∑

i=1

E

[

γ̃t(x
i
1:t)

qt(xi
1:t)

]

=
1

N

N
∑

i=1

∫

γ̃t(x
i
1:t)

qt(xi
1:t)

qt(x
i
1:t)dx

i
1:t = Zt, (45)

since Zt =
∫

γ̃t(x1:t)dx1:t. Now we will sumarized the importance sampling method in
algorithm [7].

The main drawback of importance sampling is that it is hard to choose a good proposal
for multidimensional models. When we do find a satisfactory proposal,it is usually more
heavy-tailed than the target. We will solve these shortcomings by upgrading the impor-
tance sampling, which is called sequential importance sampling. Sequential importance



6.1 Importance sampling and sequential importance sampling 14

Algorithm 1: The importance sampling
Input: Unnormalized target distribution γ̃t, proposal qt and number of samples N
for i=1,...,n do

sample xi
1:t ∼ qt

set w̃i
t =

γ̃t(x
i
1:t)

qt(xi
1:t)

set wi
t =

w̃i
t

∑

j w̃
j
t

, for i = 1, ..., N

Result: samples and weights (xi
1:t, w

i
t)

N

i=1 approximating γt

sampling uses a proposal distribution that has an autoregressive structure and the weights
are computed recursively. If we select a proposal defined by:

qt(x1:t) = qt−1(x1:t−1)qt(xt|x1:t−1),

we can decompose the proposal problem into T conditional distributions. This allows us
to get samples xi

1:t by reusing xi
1:t−1 and append a new sample xi

t which is simulated from
qt(xt|x

i
1:t−1). The unnormalized weights are:

w̃t(x1:t) = w̃t−1(x1:t−1)
γ̃t(x1:t)

γ̃t−1(x1:t−1)qt(xt|x1:t−1)
. (46)

The weights in (46) are computed recursively.
The sequential importance sampling is summarized in the following algorithm [7] in which
we state q1(x1|x1:0) = q1(x1) and w̃0 = γ̃0 = 1.

Algorithm 2: The sequential importance sampling
Input: Unnormalized target distributions γ̃t, proposal qt, number of samples N
for t=1,...,T do

for i=1,...,n do
sample xi

t ∼ qt(xt|x
i
1:t−1)

append xi
1:t = (xi

1:t−1, x
i
t)

set w̃i
t = w̃i

t−1

γ̃t(x
i
1:t)

γ̃t−1(xi
1:t−1)qt(x

i
t|x

i
1:t−1)

set wi
t =

w̃i
t

∑

j w̃
i
t

Result: Samples and weights (xi
1:t, w

i
t)

N

i=1 approximatinh γt, for t = 1, ..., T



6.2 The basic particle filter 15

We can get the estimate of the ratio of normalization constants as follows:

Zt

Zt−1

= Eγt(x1:t−1)qt(xt|x1:t−1)

[

γ̃t(x1:t)

γ̃t−1(x1:t−1)qt(xt|x1:t−1)

]

≈

N
∑

i=1

wi
t−1

w̃i
t

w̃i
t−1

Although the estimate of the ratio is consistent, generally it is unbiased.

6.2 The basic particle filter
At the beginning, we state the basic particle filter alogrithm [1] formulated using the se-
quential importance sampling method.

Algorithm 3: The basic particle filter
for i=1,..,n do

Draw samples(xi
k, t

i) ∼ q

Compute the weight update factor:

eik =
p(yk|xk, y1:k−1)p(xk|xti

k−1, y1;k−1)

q(xi
k, t

i)

Compute the updated weights:

ωi
k =

ωi
k−1e

i
k

∑n

j=1 ω
j
k−1e

j
k

, i = 1, ..., n.

This algorithm generates weights (ωi
k) and samples (xi

k) representing the posterior proba-
bility density function at time k. It is often sufficient to know only the sample and weights
at the previous time k− 1 to compute the sample and weights at time k. In order to use the
particle filter for tracking problems, we need to carefully choose and derive the importance
density q. To improve these poor performances, we need to increase the sample size, which
is often not possible. In this case we need to choose a more suitable importance density q.
In this master thesis, we will consider two different versions of the importance density q

for the problem of single-object tracking. We will use dynamic and measurement equations
that include additive noise:

xk = f(xk−1) + vk, (47)

yk = h(xk) + wk. (48)

6.3 The bootstrap filter
The importance density function q for the bootstrap filter is:

q(xk, t) = ωt
k−1pvk(xk − f(xt

k−1)). (49)



6.4 The auxiliary bootstrap filter 16

The main advantages of the bootstrap filter are relatively simple implementation and broad
applicability. The disadvantage of the bootstrap filter is that the samples of the mixture
index and the object state are drawn without considering the current measurement, since
the current measurement is only used to assess the quality of the samples. Therefore, to
achieve a precise approximation, we need a large number of samples.
We now list the algorithm for the bootstrap filter for single-object tracking [1] in which we
will see the use of importance density (49).

Algorithm 4: The bootstrap filter
for i=1,...,n do

Draw a mixture index ti such that P(ti = l) = ωl
k−1

Draw vi
k ∼ pvk and compute the sample object state xi

k = f(xti

k−1) + vi
k

Compute the wight update eik = pwk
(yk − h(xi

k))

Compute the updated weights:

ωi
k = ωi

k−1e
i
k/

n
∑

j=1

ω
j
k−1e

j
k, i = 1, ..., n.

Compute a state estimate:

x̂k|k =
n

∑

j=1

ωi
kxi

k.

6.4 The auxiliary bootstrap filter
The importance density function q for the auxiliary bootstrap filter is:

q(xk, t) = ξtk pvk(xk − f(xt
k−1)), (50)

where

ξtk = ωt
k−1pwk

(yk − h(µt
k)) /

n
∑

s=1

ωs
k−1pwρs

k

(yk − hρs
k
(µs

k
)), (51)

where µt
k = f(xt

k−1) + vt
k, vt

k ∼ pvk .
The auxiliary bootstrap filter is better performing and applicable to all samples for which
we use the bootstrap filter. This gives us better approximation accuracy combined with a
slightly more complicated implementation. The following algorithm represents a recursion
of the auxiliary bootstrap filter [1].

7 Implementation of Kalman filter in R
We will use the programming language R [5] to implement the Kalman filter. R is mainly
used for statistical computing and graphics. It is similar to the language and environment



7 IMPLEMENTATION OF KALMAN FILTER IN R 17

Algorithm 5: The auxiliary bootstrap filter
for i=1,...,n do

Draw ṽ
i
k ∼ pvk and compute µi

k
= f(xi

k−1) + ṽ
i
k

Compute the first stage weight update aik = pwk
(yk − h(µi

k))

Compute thefist stage weights:

ξtk = ωt
k−1a

t
k /

n
∑

i=1

ωi
k−1a

i
k, t = 1, ..., n

for i=1,...,n do
Draw a mixture index ti such that Pr(ti = l) = ξlk
Draw vi

k ∼ pvk and compute the sample object state xi
k ∼ f(x

k−1ti ) + vi
k

Compute the un-normalized weight:

ω̃i
k =

pwk
(yk − h(xi

k))

pwk
(yk − h(µti

k ))

Normalize the weights:

ωi
k = ω̃i

k /
n

∑

j=1

ω̃
j
k, i = 1, ..., n

Compute a state estimate:

x̂k|k =
n

∑

i=1

ωi
kxi

k.



7 IMPLEMENTATION OF KALMAN FILTER IN R 18

of S and most of the codes written for S run in R. One of the main advantages of R is the
ease with which plots can be created and the variety of mathematical symbols or formulas.
We have implemented Example 4.1 in R, which code is in Appendix A, where the Kalman
filter is implemented by definition. Such an implementation has the drawback that if the
process noise covariance Q has values close to zero, a rounding error may cause a small
positive eigenvalues are computed as a negative number, in which case the covariance ma-
trix P becomes an indefinite matrix, contradicting the statement that P is positive definite.
The shortcoming can be solved by a different implementation of the matrix P [3, 2]. Since
P is a positive definite matrix, it can be written as P = LLt, where L is a lower triangular
matrix with real and positive elements on the diagonals. Such a decomposition of a matrix
is called a Cholesky decomposition. With the Cholesky decomposition, we have ensured
that the matrix P is always positive definite. The Cholesky decomposition can be compu-
tationally expansive because it involves extracting square roots, so the LDL decomposition
is more commonly used. The LDL decomposition avoids extracting square roots. Applying
the LDL decomposition to the covariance matrix P gives P = CDCt, where C is a lower
unit triangular matrix and D is a diagonal matrix.

Consider again Example 4.1, where the sensor is placed on the railway and measures
the distance between the sensor and the train assuming that the train speed is constant. The
start position is the distance from where the sensor starts the measurement and we have
placed it at 500 m, the train speed is set to 50 m/s. Also the time between measurements
is set to T = 0.1s and assumed to be constant. The Kalman filter is initialized to 600m
and −65m/s since the vector xk is two dimensional. The origin of the coordinate system
is located in the sensor as shown in Figure 1, so the vector x is in the same direction as the
train speed vector, but has an opposite orientation so that the train speed is negative.

Figure 1: Position of the train and sensor



7 IMPLEMENTATION OF KALMAN FILTER IN R 19

Furthermore, the covariance matrices P , process noise Q, measurement noise R and
the sensor noise are tuned. By tuning the matrix R we try to approximate the sensor noise.
In the following examples, we know the exact sensor noise because we have tuned it, but in
the tracking problems, we do not know the exact sensor noise. In the following examples,
we will tune the sensor noise and the measurement noise and observe how they affect the
estimation of position and speed.

Example 7.1. In this example we will set covariance matrix P on P =

[

32 0
0 102

]

, process

noise onQ =

[

1 0
0 1

]

, measurement noise on R = [1], and sensor noise on random normal

variable withmean = 0 and standard deviation sd = 1.

Figure 2: Position and speed of the train in the Example 7.1

In Example 7.1, we get a very good estimate of the train position due to the high-quality
sensor. In the first few measurements, there was a big difference between the estimated
speed and the actual speed because the initialization of speed and distance was inaccurate,
but after the seventeenth measurement, we get a very accurate speed. In the initial measure-
ments, we have a large difference in the train speed because the filter is set to strongly trust
the measurements and after receiving the next measurement it tries to quickly converge to
the measured train position. The following example tests what would happen to the filter
estimate if we only change the sensor noise.

Example 7.2. Let all parameters be set as in the example 7.1 except sensor noise in which
we will setmean = 1 and sd = 1.



7 IMPLEMENTATION OF KALMAN FILTER IN R 20

Figure 3: Position and speed of the train in the Example 7.2

Example 7.2 shows that if we had a well-tuned filter as in Example 7.1 and change the
mean from 0 to 1, which means that we have a bias in the measurement, the result is a
worse estimate. This means that, the estimated position is different from the actual position
at the end of the measurement, and instead of convergence, divergence occurs. Divergence
occurs because we have a bias in the measurements and the standard deviation is set to 1,
which means that the filter trusts the measurements strongly. This confirms that we are
evaluating speed below the actual speed, which means that we are deviating more from the
actual train position with each measurements. Looking again at Example 7.1, we can ask
what happens to the change in standard deviation, and we will consider this in the third
example.

Example 7.3. Let all parameters be set as in the example 7.1 except sensor noise in which
we will setmean = 0, sd = 5 and R = [25].



7 IMPLEMENTATION OF KALMAN FILTER IN R 21

Figure 4: Position and speed of the train in the Example 7.3

We notice slower filter adaptation especially in speed estimation where we did not reach
an actual speed of −50m/s in thirty measurements. Let us consider an example similar to
Example 7.1, but with a different measurement noise R.

Example 7.4. Let all parameters be set as in the example 7.1 except measurement noise
R = [10].

Figure 5: Position and speed of the train in the Example 7.4

Compared to Example 7.1, we notice a slower convergence in the train position, but
in the end we get an accurate estimate. The train speed also converges slower to −50m/s
compared to the train speed in Example 7.1. Example 7.4 shows that we get a slower filter
fit when we have high-quality sensor but do not really believe the measurement (R = [10]).



7 IMPLEMENTATION OF KALMAN FILTER IN R 22

In the following example we will look at what happens to the filter when we change sd = 5
and R = [20] in Example 7.2.

Example 7.5. Let all parameters be set as in the example 7.2 except measurement noise
R = [20] and standard deviation sd = 5.

Figure 6: Position and speed of the train in the Example 7.5

Compared to Example 7.2, we notice that in Example 7.5 we have a better estimate of
the train position and there is no divergence as in Example 7.1. Also in Example 7.5, we
have a better speed convergence, but still do not achieve the actual value −50m/s. Let’s
look at an example similar to Example 7.3, except that we set the measurement noise to
R = [5].

Example 7.6. Let all parameters be set as in the example 7.3 except measurement noise,
R = [5].



7.1 Differences in filter estimation of position and speed and actual position and speed23

Figure 7: Position and speed of the train in the Example 7.6

Compared to Example 7.3, we notice that in Example 7.3 we have a better estimate of
the train position, but even this estimate is not good compared to the actual train position.
The estimated train speed is also inaccurate in both examples.

7.1 Differences in filter estimation of position and speed and actual
position and speed

We will run the code found in Appendix A 1000 times and calculate the absolute difference
between the filter estimate of the train position and the actual train position, and the abso-
lute difference between the filter estimate of the train speed and the actual train speed. This
will generate 30000 differences for the train position and speed, as the algorithm generates
30 measurements each time. To get more accurate results, the first five measurements are
not considered, so we get 25000 measurements. Such initialization is often used in tracking
problems.
We will apply this procedure to examples 7.1 and 7.2 and draw the corresponding his-
tograms.



7.1 Differences in filter estimation of position and speed and actual position and speed24

Figure 8: Histogram of the absolute differences of the filter estimate of the train position
and the actual train position in the Examples 7.1 and 7.2

The mean of the train position difference data in Example 7.1 is 4.88, while in Example
7.2 it is 20.48, and we notice that we have smaller deviations from the actual train position
in Example 7.1 than in Example 7.2. The variance of the train position difference data in
Example 7.1 is 11.29, while in Example 7.2 it is 77.51 and we find that we have larger
dispersion of the data in Example 7.2 than in Example 7.1. According to the mean and
variance, Example 7.1 has a better estimate of the train position.

Figure 9: Histogram of the absolute differences of the filter estimate of the train speed and
the actual train speed in the Examples 7.1 and 7.2

The mean of the train speed difference data in Example 7.1 is 10.5, while in Example
7.2 it is 7.73 and we notice that we have smaller deviations from the actual train speed
in Example 7.2 than in Example 7.1. The variance of the train speed difference data in
Example 7.1 is 94, while in Example 7.2 it is 49.06, and we find that we have a larger



7.1 Differences in filter estimation of position and speed and actual position and speed25

dispersion of data in Example 7.1 than in Example 7.2. According to the mean and variance,
Example 7.2 has a better estimate of the train speed.

We will now apply the same procedure as for examples 7.1 and 7.2 to examples 7.2 and
7.5.

Figure 10: Histogram of the absolute differences of the filter estimate of the train position
and the actual train position in the Examples 7.2 and 7.5

The mean of the train position difference data in Example 7.2 is 20.48, while in Example
7.5 it is 19.51, and we notice that we have smaller deviations from the actual train position
in Example 7.5 than in Example 7.2. The variance of the train position difference data in
Example 7.2 is 77.51, while in Example 7.5 it is 288.6 and we find that we have a larger
dispersion of the data in Example 7.5 than in Example 7.2. Although the mean of Example
7.5 is slightly smaller, Example 7.2 has a better estimate of the train position because of the
smaller variance.



A R CODE 26

Figure 11: Histogram of the absolute differences of the filter estimate of the train speed and
the actual train speed in the Examples 7.2 and 7.5

The mean of the train speed difference data in Example 7.2 is 7.73, while in Example
7.5 it is 30.08 and we notice that we have smaller deviations from the actual train speed
in Example 7.2 than in Example 7.5. The variance of the train speed difference data in
Example 7.2 is 49.06, while in Example 7.5 it is 30.08, and we fing that we have a larger
dispersion of the data in Example 7.2 than in Example 7.5. Although the variance of Ex-
ample 7.5 is smaller, Example 7.2 has a better estimate of the train speed because od the
smaller mean.

A R code
The following code partially follows [6]:

prediction_kf <- function(X, P, F, Q){
X<-F%*%X
pom<- P%*%t(F)
P<- F%*%pom + Q
return(list(X,P))

}

pdf <- function(X,M,S){
if(dim(M)[2]==1){

Dx<- X - rep(M, times = dim(X)[2])
pom2<-solve(S) %*% Dx
E<- 0.5 * apply ((Dx*pom2),1,sum)
E<- E+0.5*dim(M)[1]*log(2*pi)+ 0.5*log(det(S))
P<-exp(-E)



A R CODE 27

}
else if(dim(X)[1]==1){

Dx<- rep(X, dim(M)[2])-M
pom2<-solve(S) %*% Dx
E<- 0.5 * apply ((Dx*pom2),1,sum)
E<-E + 0.5*dim(M)[1]*log(2*pi)+0.5*log(det(S))
P<-exp(-E)

}
else{

Dx<- X-M
pom2<-solve(S) %*% Dx
E<- 0.5 * apply ((t(Dx)*pom2),1,sum)
E<- E + 0.5*dim(M)[1]*log(2*pi)+ 0.5*log(det(S))
P<-exp(-E)

}
return(list(P[1],E[1]))

}

update <- function(X,P,Y,H,R){
Im<- H %*% X
pom3<- P %*% t(H)
Is<- R + H %*% pom3
pom4<- t(H) %*% solve(Is)
K<- P %*% pom4
X<- X + K %*% (Y-Im)
pom5<- K %*% H
P<- P - pom5 %*% P
return(list(X,P,K,Im,Is))

}

X<-matrix(0,ncol=1,nrow=2)
#initialization of the starting position on 500m and
#speed on 50m/s
X[1,1]<-600
X[2,1]<- -65

P<-matrix(0,nrow=2,ncol=2)
P[1,1]<-3^2
P[2,2]<-10^2

T<-0.1
F<-diag(1,ncol=2,nrow=2)



A R CODE 28

F[1,2]<-T
F[2,1]<-0

Q<-diag(1,nrow = dim(X)[1])

num_of_meas <- 30
Y<-matrix(0,ncol=num_of_meas,nrow=1)
Y[1,1] <- 500
train_speed <- -50
real_tra<-numeric(num_of_meas)
real_tra[1]<-500
for(i in 2:num_of_meas)
{
Y[1,i] <- Y[1, i-1]+train_speed*T+rnorm(1, mean=0, sd=1)
real_tra[i]<-real_tra[i-1]+train_speed*T

}

H<-matrix(0,ncol=2,nrow=1)
H[1,1]<-1

R<- diag(1, nrow = 1)

c<-numeric(num_of_meas)
d<-numeric(num_of_meas)
for(i in 1:num_of_meas){

c[i]<-X[1,1]
d[i]<-X[2,1]
z1<- prediction_kf(X,P,F,Q)
z2<-update(z1[[1]],z1[[2]],Y[1,i],H,R)
X<-z2[[1]]
P<-z2[[2]]

}
index <- c(1:num_of_meas)
plot(index,c,col="red",type="p",xlab="Number of measurements",

ylab="Position",main = "Train position")
points(index,Y[1,],col="blue",pch =3)
points(index,real_tra,col="green",pch=4)
legend(17, 600, legend=c("Filter estimation",

"Sensor measurement","Actual position"),
col=c("red", "blue","Green"), pch = c(1,3,4), cex=0.8)

plot(index,d,col="red",type="p",xlab="Number of measurements",



A R CODE 29

ylab="Speed",main="Train speed")
points(index,rep(-50, times = num_of_meas),col="green",pch =3)
legend(20, -125, legend=c("Filter estimation", "Actual speed"),

col=c("red", "green"), pch=c(1,3), cex=0.8)

X - state estimate of the previous step
P - the state covariance matrix of the previous step
F - the transition matrix
K - the Kalman Gain
Im - the mean of predictive distribution of Y
Is - the covariance or predictive mean of Y



References
[1] S. Challa, M. R. Morelande, D. Mušicki, R. J. Evans, Fundamentals of object track-

ing, Cambridge University Press, New York, 2011.

[2] Wikipedia, Kalman filter, available at:
https://en.wikipedia.org/wiki/Kalman_filter#History (May 2021.).

[3] M. Verghaegen, P. V. Dooren, Numerical Aspects of Different Kalman Filter Im-
plementations, IEEE Transactions on automatic control, vol. ac-31. no. 10, October
1986.

[4] Wikipedia, Particle filter, available at:
https://en.wikipedia.org/wiki/Particle_filter (May 2021.).

[5] R language, available at:
https://www.r-project.org/about.html (May 2021.).

[6] M. Laaraiedh, Implementation of Kalman Filter with Python Language, available
at:
https://www.academia.edu/2637009/Implementation_of_Kalman_
Filter_with_Python_Language (May 2021.).

[7] C.A. Naesseth, F. Lindsten, T. B. Schön, Elements of sequential Monte Carlo, March
2019, available at:
https://arxiv.org/abs/1903.04797

[8] M. Huzak, Matematička statistika, available at:
https://web.math.pmf.unizg.hr/nastava/ms/files/ms1v8.pdf

[9] N. Sarapa, Teorija vjerojatnosti, Školska knjiga, Zagreb, 1992.

30



Sažetak
U ovom diplomskom radu predstavljene su tri poznate metode za praćenje objekata, Kalmanov
filter, point mass filter te filter čestica (particle filter). Kako su sva tri filtera zasnovana na
Bayesovoj logici na početku se gradila teorija koja je potom primjenjena na sva tri filtera.
Naposljetku smo naveli primjenu Kalmanovog filtera na simuliranim podacima.



Summary
This master thesis is presenting three well-known methods for monitoring objects, Kalman
filter, point mass filter and particle filter. The theory was initially built through recursive
Bayesian solution because all three methods are based on Bayesian Logic. Finally, we
present an application of Kalman filter on a simulated data set under several different sce-
narios.



Curriculum Vitae
I was born on December 21st, 1996 in Zagreb. I finished X. gymnasium „Ivan Supek“ high
school in Zagreb, a natural science course with excellent success for all four years. In 2015
I enrolled the university of Zagreb, Faculty of Science, Department of Mathematics. Dur-
ing the study in co-operation with Professor Zrinka Franušić, Faculty of Science, university
of Zagreb, Department of Mathematics, I wrote two popular articles O distribuciji prostih
brojeva, Acta mathematica Spalatensia, Series didactica, 2018 and Raznovrsni prosti bro-
jevi, Acta mathematica Spalatensia, Series didactica, 2020. Also, I wrote a popular article
Marie-Sophie Germain, Matematika i škola, 2019.


	Introduction
	Recursive Bayesian solution
	Application to object tracking

	Object dynamics and measurement equations
	The Kalman filter
	Simple example of the Kalman filter
	Derivation of the Kalman filter
	Advantages and disadvantages

	The Point mass filter
	Advantages and disadvantages

	The particle filter
	Importance sampling and sequential importance sampling
	The basic particle filter
	The bootstrap filter
	The auxiliary bootstrap filter

	Implementation of Kalman filter in R
	Differences in filter estimation of position and speed and actual position and speed

	R code
	References

