Naslov H-distributions and compactness by compensation
Naslov (hrvatski) H-distribucije i kompaktnost kompenzacijom
Autor Marin Mišur
Mentor Nenad Antonić (mentor)
Član povjerenstva Marko Vrdoljak (predsjednik povjerenstva)
Član povjerenstva Nenad Antonić (član povjerenstva)
Član povjerenstva Evgenij Jurjevič Panov (član povjerenstva) strani drzavljanin: Nije dostupno
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Matematički odsjek) Zagreb
Datum i država obrane 2017-06-02, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Matematika
Univerzalna decimalna klasifikacija (UDC ) 51 - Matematika
Sažetak H-measures are matrix Radon measures describing the behaviour of weak limits of quadratic quantities. They proved to be very successful tool in investigations of asymptotic limits of quadratic quantities. However, they turned insufficient for nonlinear problems. Recent investigations resulted with the introduction of variant H-measures, so called H-distributions, which surmount some of the noted inadequacies, and allow the treatment of terms involving sequences of \(L^p\) functions. Basic tools for the construction of aforementioned microlocal objects are pseudodifferential and singular integral operators. In the \(L^2\) case, Fourier transform together with Plancherel’s theorem proved to be a very efficient tool. However, in the \(L^p\) case one needs to use the theory of Fourier multipliers (Marcinkiewicz theorem, Hörmander-Mihlin theorem) which requires a higher regularity of the space of test functions, together with corresponding bounds on derivatives. There are two crucial steps in the construction of the above mentioned microlocal objects. First one is an application of the First commutation lemma to pass from trilinear functional to a bilinear one, while the second one is an application of the Schwartz kernel theorem to identify the obtained bilinear functional with an element from the dual of smooth functions on the product domain. We showed the Krasnoselskij type of result for unbounded domains, and with its help we lowered the regularity of the symbol needed for a variant of the First commutation lemma for the \(L^p\) spaces. We also showed how the same idea can be used to improve the results on existence of H-distributions on the Lebesgue spaces with mixed norm. Furthermore, we studied how further we can lower the regularity of the Sobolev multiplier under the assumption that the symbol of the Fourier multiplier operator satisfies only the Hörmander condition. What’s more, in the case when the symbol of the Fourier multiplier is defined on the unit sphere, Luc Tartar showed that the result remains valid in the \(L^2\) case even when we have coefficients from the VMO space (the space of functions of vanishing mean oscillations). We arrived at the same conclusion in the \(L^p\) space. In the end we showed a variant of the First commutation lemma in the case when we have general pseudodifferential operator instead of the Fourier multiplier operator. For that we used the bounds from Hwang’s results on boundedness of pseudodifferential operators. To give a better description of H-distributions, we refined the notion of distributions by introducing a notion of anisotropic distributions of finite order. Those are distributions which have different order in different coordinate directions. The main obstacle was adjusting the Schwartz kernel theorem to this new notion. We used Dieudonne’s approach which used the structure theorem of distributions. An advantage of this approach is that the order of distribution increases only with respect to one variable, while it remains unchanged with respect to the other. This allowed us to consider partial differential equations with continuous coefficients in the localisation principle of H-distributions. Up to now, we could only consider the smooth case. Let us emphasise that continuous coefficients were optimal in the \(L^2\) case. Motivated by Panov’s approach in the article on ultra-parabolic H-measures, we showed a variant of compactness by compensation. For that we used a variant of H-distributions, which we obtained from a result on the extension of the bilinear functionals to Bôchner spaces. This variant of H-distributions allowed us to consider variable discontinuous coefficients in differential restrictions and quadratic form. What is more, the derivatives in differential restrictions could be of fractional order. Because of that, we do not have symbols defined on the unit sphere, but on a more general manifold. For this reason we had to use the Marcinkiewicz multiplier theorem for continuity of the Fourier multiplier operators. We applied this new variant of compactness by compensation to a nonlinear degenerate equation of parabolic type, for which the known theory of H-measures was not adequate.
Sažetak (hrvatski) H-mjere su matrične Radonove mjere koje opisuju slabi limes kvadratičnih izraza. Pokazale su se kao vrlo uspješan alat za proučavanje asimptotičkog ponašanja kvadratičnih izraza. No, nisu dovoljno dobre za promatranje nelinearnih zadaća. Nedavna istraživanja su rezultirala uvodenjem inačica H-mjera, nazvanih H-distribucijama, koje uklanjaju neke od uočenih nedostataka, i omogućuju proučavanje izraza koji sadrže nizove \(L^p\) funkcija. Osnovni alati za konstrukciju navedenih mikrolokalnih objekata su pseudodiferencijalni i singularni integralni operatori. U slučaju \(L^2\) funkcija, Fourierova pretvorba je preko Plancherelovog teorema vrlo efikasan alat. Medjutim, u \(L^p\) teoriji moramo koristiti teoriju Fourierovih množitelja (posebno Marcinkiewiczev ili Hörmander-Mihlinov teorem) koja zahtijevaja i veću regularnost prostora probnih funkcija, te odgovarajuće ocjene na derivacije. Dva su ključna koraka u dokazu egzistencije ovih mikrolokalnih objakata. Prvi je korištenje prve komutacijske leme da bi se iz trilinearnog funkcionala dobio bilinearni funckional, dok je drugi primjena Schwartzovog teorema o jezgri kako bi se dobiveni bilinearni funkcional poistovjetio s elementom duala glatkih funkcija na produktnoj domeni. Pokazali smo Krasnosel’skijev tip rezultata za neograničene domene, te pomoću njega smanjili regularnost simbola potrebnu za varijantu prve komutacijske leme za \(L^p\) prostore. Vidjeli smo da se ista ideja može iskoristiti i za poboljšanje rezultata na Lebesgueove prostore s mješovitom normom. Nadalje, proučili smo koliko možemo smanjiti regularnost Soboljevljevog množitelja uz pretpostavku da simbol Fourierovog množitelja zadovoljava samo Hörmanderov uvjet. Štoviše, u slučaju kad je simbol Fourierovog množitelja definiran na sferi, Tartar je pokazao da rezultat u \(L^2\) ostaje valjan i za koeficijente iz prostora VMO (prostora funkcija s iščezavajućim srednjim oscilacijama). Mi smo došli do istog zaključka i za \(L^p\) slučaj. Na kraju smo pokazali varijantu prve komutacijske leme za slučaj kad umjesto Fourierovog množitelja imamo općeniti pseudodiferencijalni operator. Za to smo koristili ocjene iz Hwangovih rezultata o neprekidnosti pseudodiferencijalnih operatora. Za bolji opis H-distribucija, profinili smo pojam distribucije uvodenjem pojma anizotropnih distribucija konačnog reda. To su distribucije koje imaju različit red u različitim koordinatnim smjerovima. Glavna prepreka u tom smjeru je bila prilagodba Schwartzovog teorema o jezgri. Koristili smo Dieudonneov dokaz koji koristi strukturni teorem za distribucije. Prednost ovog pristupa u odnosnu na ostale leži u činjenici da se red jezgre povećava samo po jednoj varijabli, dok po drugoj ostaje nepromijenjen. Ovo nam je omogućilo da u lokalizacijskom svojstvu H-distribucija promatramo jednadžbe čiji koeficijenti više nisu glatke funkcije, već su samo neprekidne. Naglasimo da su neprekidni koeficijenti bili optimalni u \(L^2\) slučaju. Motivirani Panovljevim pristupom ultraparaboličkim H-mjerama, pokazali smo varijantu kompaktnosti kompenzacijom. Za to nam je bila potrebna varijanta H-distribucija koju smo dobili koristeći rezultat o proširenju bilinearnih funkcionala na Bôchnerove prostore. Ova varijanta H-distribucija nam je omogućila korištenje koeficijenata u kvadratnoj formi i u diferencijalnim ograničenjima koji su varijabilne prekidne funkcije. Štoviše, derivacije u diferencijalnim ograničenjima mogu biti i razlomljenog reda. Iz tog razloga, nemamo više simbol definiran na sferi, već na općenitijoj mnogostrukosti, za što smo trebali koristiti Marcinkiewiczev teorem za neprekidnost Fourierovih množitelja. Dobiveni rezultat kompaktnosti kompenzacijom smo primijenili na nelinearnu degeneriranu jednadžbu paraboličkog tipa za koju poznata \(L^2\) teorija nije bila dostatna.
Ključne riječi
H-measures
H-distributions
Fourier multiplier
kernel theorem
compactness by compensation
Ključne riječi (hrvatski)
H-mjere
H-distribucije
Fourierov množitelj
teorem o jezgri
kompaktnost kompenzacijom
Jezik engleski
URN:NBN urn:nbn:hr:217:446805
Studijski program Naziv: Matematika Vrsta studija: sveučilišni Stupanj studija: poslijediplomski doktorski Akademski / stručni naziv: doktor/doktorica znanosti, područje prirodnih znanosti, polje matematika (dr. sc.)
Vrsta resursa Tekst
Opseg v, 97 str.
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2019-03-20 09:45:28