Sažetak | Tema ovog diplomskog rada su konveksne funkcije realne varijable. U prvom poglavlju dana je definicija i opis osnovnih svojstava konveksnih funkcija, te su zatim razmotrena svojstva neprekidnosti i derivabilnosti. Iako definicija konveksne funkcije služi u korisne svrhe, često matematičari prepoznaju konveksne funkcije ili razmišljaju o njima na drugačiji način; na primjer integralnim prikazom, svojstvima derivacija, geometrijskim svojstvima grafa i slično. U prvom poglavlju također je dana karakterizacija konveksnih funkcija pomoću integrala, pomoću druge derivacije funkcije ukoliko postoji, te geometrijski pomoću potpornih pravaca. Na kraju prvog poglavlja opisane su osnovne operacije s konveksnim funkcijama. U drugom poglavlju dana je veza konveksnih funkcija s klasičnim nejednakostima, poput Jensenove, koja je svojevrsna generalizacija nejednakosti kojom smo definirali konveksnu funkciju. Youngova, Cauchyjeva, Hölderova, Minkowskijeva te Hermite--Hadamardova nejednakosti su samo neke od poznatih nejednakosti koje su vezane za Jensenovu nejednakost i konveksne funkcije. Za svaku od navedenih nejednakosti dan je iskaz, dokaz, nekoliko riječi o matematičarima koji su ih dokazali i po kojima su nazvane, te primjeri primjene za svaku od njih. Također je dana veza Jensenove nejednakosti za konveksne funkcije s nejednakostima između sredina, kao npr. nejednakost između aritmetičke i geometrijske sredine koja je jedna od najpoznatijih algebarskih nejednakosti. Sve navedene nejednakosti imaju široku primjenu te upravo u tome leži njihova velika važnost ne samo za matematiku već i za druge znanosti. |
Sažetak (engleski) | The topic of this thesis are the convex functions of a real variable. In the first chapter, the definition and description of basic properties of convex functions are given, and then the continuity and derivability properties are considered. Although the definition of a convex function serves for useful purposes, mathematicians often recognize convex functions or think about them in a different way; for example through an integral representation, derivative properties, geometric properties of a graph, etc. In the first chapter, it is also given the characterization of convex functions by integral, using second derivative of the function if it exists, and geometrically by support lines. At the end of the first chapter, basic operations with convex functions are described. In the second chapter, there is a connection of convex functions with classical inequalities, such as Jensen inequality, which is a kind of generalization of inequality by which we defined a convex function. Young, Cauchy, Hölder, Minkowski and Hermite--Hadamard inequalities are just some of the known inequalities that are related to Jensen's inequality and convex functions. For each of these inequalities there is definition, proof, a few words about mathematicians who proved them and by which they are named, and examples of application for each of them. Also, a connection between Jensen's inequality for convex functions with inequalities between means is given, such as inequality between arithmetic and geometric mean that is one of the most well-known algebraic inequalities. All of these inequalities have wide application, and it is precisely why they are very important not only in mathematics, but also in other sciences. |